Physics of Few-Layer Graphene

Mei-Yin Chou

Institute of Atomic and Molecular Sciences Academia Sinica

and

School of Physics, Georgia Tech

The Graphene Phenomenon (石墨烯現象)

15,000 SCI papers on graphene published since 2004

The Graphene Phenomenon (石墨烯現象)

15,000 SCI papers on graphene published since 2004

Graphene may turn out to be the Lady Gaga of materials: it seems to have come from nowhere, everybody's talking about it, and before long it's going to be absolutely everywhere.

Gary Marshall, World of Tech News

Formal similarity between the excitations in graphene and 2d Dirac-Weyl fermions (Semenoff 1984; DiVincenzo and Mele 1984)

FIG. 3. Two degenerate eigenstates which provide the basis set for the $\vec{\kappa} \cdot \vec{p}$ trial wave function. The coefficients for a one-orbital description of these eigenstates are shown. They are the two Bloch functions at E = 0 at the K point (see Fig. 2).

For $\vec{k} = \vec{K} + \vec{\kappa}$ close to K, expand the wave function using Ψ_1^S and Ψ_2^S .

$$H = \hbar v_F \hat{\boldsymbol{\sigma}} \cdot \vec{\boldsymbol{\kappa}}$$
$$E = \pm \hbar v_F \left| \vec{\boldsymbol{\kappa}} \right|$$

$$\psi(\vec{\mathbf{k}},\vec{\mathbf{r}}) = f_1(\vec{\kappa})e^{i\vec{\kappa}\cdot\vec{\mathbf{r}}}\psi_1^S(K,\vec{\mathbf{r}}) + f_2(\vec{\kappa})e^{i\vec{\kappa}\cdot\vec{\mathbf{r}}}\psi_2^S(K,\vec{\mathbf{r}}) .$$
(1)

Inserting ψ into the Schrödinger equation, keeping terms of order $\vec{\kappa}$, and taking $E_F = 0$ gives the secular equation,

$$\frac{\hbar}{m}\vec{\kappa} \cdot \begin{bmatrix} \vec{p}_{11} & \vec{p}_{12} \\ \vec{p}_{21} & \vec{p}_{22} \end{bmatrix} \begin{bmatrix} f_1(\vec{\kappa}) \\ f_2(\vec{\kappa}) \end{bmatrix} = E(\vec{\kappa}) \begin{bmatrix} f_1(\vec{\kappa}) \\ f_2(\vec{\kappa}) \end{bmatrix}.$$
(2)

Here $\vec{p}_{ij} \equiv \int \psi_1^{S^*}(K,\vec{r})\vec{p}\psi_j^S(K,\vec{r})d\vec{r}$. It can be shown from group-theoretic arguments (and we can verify directly within the one-orbital tight-binding model) that the momentum matrix may be written in the form

$$\vec{p} \begin{bmatrix} 0 & \hat{x} - i\hat{y} \\ \hat{x} + i\hat{y} & 0 \end{bmatrix}.$$

$$\sigma_{x} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \quad \sigma_{y} = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$$
(3)

Dirac-Weyl equation for massless relativistic fermions (e.g., neutrinos); Here pseudospin = $\frac{1}{2}$ (two sublattices)

Electronic and Transport Properties of Graphene Systems

- Structural and electronic properties of oxidized graphene
 PRL 103, 086802 (2009)
- Effects of metallic contacts on electron transport through graphene
 PRL 104, 076807 (2010)
 Nano Letters (in press)
- Landau levels in twisted bilayer graphene
 Nano Letters (in press)
- Wave-packet dynamics in twisted bilayer graphene
- B-N co-doping in graphene

Multilayer Epitaxial Graphene

L. Miller et al. Science 324, 924 (2009)

J. Hass, et al. Phys. Rev. Lett **100** 125504 (2008)

Twisted Bilayer Graphene

Commensurate structures labeled by (*m,n*):

$$\mathbf{t_1} = n\mathbf{a_1} + m\mathbf{a_2} ; \ \mathbf{t_2} = -m\mathbf{a_1} + (n+m) \mathbf{a_2}$$
$$\cos(\theta) = \frac{n^2 + 4nm + m^2}{2(n^2 + nm + m^2)}$$

Twisted Bilayer Graphene

Moon et al. PRB 85, 195458 (2012)

Electronic Structure of Twisted Bilayer Graphene

Electronic Structure of Twisted Bilayer Graphene

Moon et al. PRB 85, 195458 (2012)

Localization of Dirac Electrons in Rotated Graphene Bilayers

Trambly de Laissardiere et al. Nano Lett. 2010

Reduction of Fermi Velocity in Rotated Graphene Bilayers

STM/STS measurements for few-layer graphene grown via ambient pressure CVD on polycrystalline Ni films

Luican et al. PRL 106, 126802 (2011)

Multilayer Epitaxial Graphene

L. Miller et al. Science 324, 924 (2009)

J. Hass, et al. Phys. Rev. Lett **100** 125504 (2008)

ARPES of C-Face

M. Sprinkle et al., PRL, 103, 226803 (2009)

Free Electrons in a magnetic field (Landau levels)

Scanning Tunneling Microscopy and Spectroscopy In a magnetic field (Landau levels)

STM (T=13 mK) STS (B=0-4 T) 300 32 а -E (meV) inear Fit B=2 1 200 28 B=3 T B=4 150 100 24 dl/dV (nS) filled 20 2 3 4 5 6 7 1 (NB)^{1/2} 16 N=0 4 12 3 8 2 4 B=0 0 -200 -100 100 200 0 EF Sample Bias (mV)

Sample Bias=-250 mV

 $E_n = c * \sqrt{2n\hbar eB}$ $c^* = (1.08 \pm 0.03) \times 10^6 \text{ m/s};$

Hofstadter Butterfly (Hofstadter, PRB 14, 2239, 1976)

- A rare occurrence of a nice fractal-like picture in quantum mechanics
- 2D electrons with a periodic potential in the presence of a strong magnetic field

The energy bands are clustered into subgroups and subcells; spectra of almost Mathieu operator; self-similarity maps; gaps are labeled using a Diophantine equation with parameters related to Chern numbers.

A possibility to measure this spectrum on ultra cold neutral atoms D. Jaksch and Peter Zoller, New Journal of Physics 2003 Assume a 2D square lattice (representing the periodic potential) with lattice constant *a* and a perpendicular homogeneous magnetic field H.

SE describing the system is (LCAO for 1s orbitals and nearest neighbour interaction) is given by

 $\psi(x+a,y)+\psi(x-a,y)+e^{-\frac{ieHax}{\hbar c}}\,\psi(x,y+a)+e^{+\frac{ieHax}{\hbar c}}\,\psi(x,y-a)=\epsilon\,\psi(x,y).$

Discretize this equation and assume plane wave behaviour along *y*:

$$x = m a, \quad y = n a, \quad \psi(ma, na) = e^{i\nu n} g(m)$$

 $g(m+1) + g(m-1) + 2\cos(2\pi m\alpha - \nu)g(m) = \epsilon g(m)$ Harper's equation

Define parameter $\alpha = \frac{a^2 H}{hc/e} = \frac{\text{flux through lattice cell}}{\text{flux quantum }\phi_0}$ interesting regime: $\alpha \approx 1$, but for a normal crystal $a \approx 1$ Å that would require a huge magnetic field

Nemec and Cuniberti, PRB 74, 165411 (2006)

 $B = 40 T \rightarrow \phi/\phi_0 = 0.001$

Twisted Bilayer Graphene

Tight Binding Hamiltonian

$$H = \sum_{\mu,\nu=1,2} \sum_{l,j} t_{\mu l,\nu j} exp\left[\frac{ie}{\hbar} \int_{\vec{r}_{\mu l}}^{\vec{r}_{\nu j}} \vec{A} \cdot d\vec{l}\right] |\mu l\rangle \langle \nu j|$$
$$\vec{A} = (0, Bx)$$

TB parameters are obtained by fitting the TB bands to reproduce the band structure obtained from first-principles calculations

Lanczos Recursive Method

140nm×140nm, over 1.5million atoms

Laudau Levels for Twisted Bilayer Graphene

Laudau Levels for Twisted Bilayer Graphene

Trambly de Laissardiere et al. Nano Lett. 2010

Laudau Levels for Twisted Bilayer Graphene

Figure 1. Landau-level spectra for twisted bilayer graphene at three commensurate angles representing three ranges of the twist angle θ . (a) $\theta = 0.069^{\circ}$ for the Bernal-bilayer regime $0.0-0.3^{\circ}$, (b) $\theta = 1.444^{\circ}$ for the regime $0.3-3.0^{\circ}$, and (c) $\theta = 7.565^{\circ}$ for the effectively "single layer" regime $(3.0-30.0^{\circ})$. The corresponding electronic bands in these ranges are shown below each spectrum with $\theta = 0.0$, 1.538, and 7.341°, respectively. The band structures for all the commensurate angles are obtained by diagonalization of the unit-cell Hamiltonian in reciprocal space with periodic boundary condition.

Small Twist Angles: AB-Bilayer Graphene Region

Large Twist Angles: Monolayer Graphene Region

Landau Levels at Small Twist Angles

Summary

- Twisted multilayer graphene exhibits intriguing electronic properties.
- Quasi-ordered stacking may preserve single-layer linear energy dispersion.
- A complex Hofstadter butterfly spectra could be observed in twisted graphene bilayer within a certain angular range at laboratory accessible magnitudes of magnetic field.

Acknowledgment

Lede Xian (Georgia Tech) Dr. Zhengfei Wang (Georgia Tech) Professor Feng Liu (Utah University)

Dr. Chih-Piao Chuu (Academia Sinica) Kuan-Hung Liu (Academia Sinica) Dr. Ching-Ming Wei (Academia Sinica)