Tailoring Electronic Coupling in Single-Crystal Bilayer Graphene

NCKU (July 5, 2012)

Po-Wen Chiu

Department of Electrical Engineering National Tsing Hua University

National Tsing Hua University

Particularly thanks the hard-working group members...

Also Dr. Kazu Suenaga...

Outline

- 1. About graphene growth...
 - CVD graphene
 - CVD graphene without grain boundaries
- 2. About bilayer graphene ...
 - Tailoring a twist in bilayer
 - TEM + Raman technique
 - Coupling or decoupling?

1970-1980. Jack Blakely and team: Graphene Growth on Metals*

Ball model of a graphite(0001) layer on the (111) surface of Ni. The left hand portion of the photographic degics: the probable arrangement in state II with (0001)graphite [(111)Ni; [1120]graphite [[110]Ni, Note that the graphite layer has two atoms per unit mesh.

Graphitic carbon monolayer formation by surface segregation on Ni (111),(110),(311); Pd (100),(111); Co (0001).

Shelton JC, Patil HR, Blakely JM. Surf. Sci. 43:493 (1974); Eizenberg M and Blakely JM. J. Chem. Phys. 71: 3467 (1979); Eizenberg M and Blakely JM. Surf. Sci., 82:228 (1979); Hamilton JC and Blakely JM. Surf. Sci. 91:119 (1980)

*But: Isolation/transfer of graphene from metal substrates onto other substrates is quite recent. Yu et al. Appl. Phys. Lett. 93:113103 (2008); Reina et al. Nano Lett. 9:30 (2009); Li et al Science 324: 1312-1314 (2009)

First graphene growth on Cu

Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils

Xuesong Li,¹ Weiwei Cai,¹ Jinho An,¹ Seyoung Kim,² Junghyo Nah,² Dongxing Yang,¹ Richard Piner,¹ Aruna Velamakanni,¹ Inhwa Jung,¹ Emanuel Tutuc,² Sanjay K. Banerjee,² Luigi Colombo,³* Rodney S. Ruoff¹*

5 JUNE 2009 VOL 324 SCIENCE

Graphene Growth Process

- 25 μm thick 99.8% pure Cu foil
- Load Cu foil in furnace
- Evacuate furnace
- Heat to T ~ 1040°C under H₂ gas
- Introduce CH₄ at a flow rate of 35 sccm and P = 500 mTorr
- Grow graphene for 1 to 20 min
- Cool to room temperature

Graphene grown on Cu

Over 90% of the films is one-layer graphene

1L

C. C. Lu, et al., Langmuir, 27, 13748 (2011).

Polycrystalline structure

Control the layer number:

LPCVD

Self-limiting growth

Control the grain size:

APCVD with low C feedstock

High temperature

Single-crystal graphene on Cu (SEM)

Adv. Mater. 2011, 23, 4898–4903

Single-crystal graphene on Cu (OM)

Transport properties

Half-integer quantum Hall effect for single layer

mobility = 8000 cm²/Vs

on/off ratio = 12

Raman + TEM

Graphene transfer by PC

HR-TEM (done in AIST)

Graphene transfer by PMMA

Y. C. Lin, et al., ACS nano, 5, 2362 (2011).

Graphene transfer by PMMA

Y. C. Lin, *et al.*, ACS nano, 5, 2362 (2011)

TEM images of graphene annealing at 200 °C

Y. C. Lin, et al., Nano Lett., 12, 414 (2012)

TEM images of graphene annealing at 250 °C

Y. C. Lin, *et al.*, Nano Lett., 12, 414 (2012)

Angle-dependent Raman spectra

Angle-dependent Raman spectra

Angle dependent Raman spectra

Angle-dependent Raman spectra

Raman Signature of Graphene Superlattices

Victor Carozo,^{†,‡} Clara M. Almeida,[‡] Erlon H. M. Ferreira,[‡] Luiz Gustavo Cançado,[§] Carlos Alberto Achete,^{†,‡} and Ado Jorio^{*,§}

[†]Departamento de Engenharia Metalúrgica e de Materiais, Universidade Federal do Rio de Janeiro, Rio de Janeiro RJ, 21941-972, Brazil [†]Divisão de Metrologia de Materiais, Instituto Nacional de Metrologia, Normalização e Qualidade Industrial (INMETRO), Duque de Caxias RJ 25250-020, Brazil

[§]Departamento de Física, Universidade Federal de Minas Gerais, Belo Horizonte MG 30123-970, Brazil

Angle-dependent Raman spectra

Supercell of twisted bilayer

Supercell of twisted bilayer

Nano Letters

Thank you!

Graphene Growth on Metal Substrates