Doping and Characterization of Graphene & GNWs

Kuei-Hsien Chen

Institute of Atomic and Molecular Sciences (IAMS), Academia Sinica, and Center for Condensed Matter Sciences (CCMS), National Taiwan University, Taiwan chenkh@pub.iams.sinica.edu.tw

Outline

Introduction

- N-doping of GNWs
- BN-codoping of graphene
 - In-situ doping
 - > XPS, UV-Vis analysis
 - > STEM analysis
 - XES & XANES analysis
- Summary

Gap-opening in Graphene

Substrate-induced bandgap opening

Nature Materials 2007, 6, 770

Bilayer graphene

Science 2011, 313, 951

Graphene nanoribbons (quantum confinement)

Nature 2009, 458, 872 Phys. Rev. Lett. 2006, 97, 216803

BN doping in graphene

J. Phys. Chem. C 2011, 115, 3250 ACS Nano 2011, 5, 385 ACS Nano 2010, 4, 7619 J. Appl. Phys. 2010, 108, 073711

Outline

Introduction • N-doping of GNWs BN-codoping of graphene > In-situ doping > XPS, UV-Vis analysis > STEM analysis XES & XANES analysis Summary

Growth of Graphene Nanowalls

Microwave Plasma CVD reactor (MWCVD)

SiH₄/ CH₄ /H2 plasma

Source reactants: SiH₄ / CH₄ / H₂ Gas ambient : H₂ Microwave power :1000-2000 W Growth temperature : 900-1100 °C

Carbon 49, 4911 (2011) ⁶

Large-Scale Production Ultrathin Sheet-like Morphology

Microstructures

[101] 0.23 nm [002 0.25 nm 01 100

2009 Cross-Strait Wo

2 nn

Schematic of Hybrid GNWs Growth

Layer Number Control

Carbon 49, 4911 (2014)

TEM Analysis

GNWs for Supercapacitors

Supercapacitors

GNWs on CC

Mixing Method vs. Direct Growth

Graphene NW/CC

Capacitor Performance

CNWs/CC

CC only

N-doped GNWs on Carbon Cloth

Where does N sit in graphene?

Pyridinic N (six-member ring)398.2 eVPyrrolic N (five-member ring)400.1 eVGraphitic N401.1 eV

Li et al. JACS 131, 15939 (2009) Wang et al. ACS Nano 4, 1790 (2010)

XPS: Pristine FLGs vs. N-doped FLGs

Tunable Wetting Property of Graphene: Contact Angle vs. NH₃ Plasma Exposure Time

Ragone Plot

Figure 2. Comparison of the power density and energy density for batteries, capacitors, and fuel cells. (Energy is the capacity to do work; power is the rate at which work is done.)

Outline

Introduction • N-doping of GNWs BN-codoping of graphene > In-situ doping > XPS, UV-Vis analysis > STEM analysis > XES & XANES analysis Summary

In-situ BN-doping

Advantages:

- In situ BN doping
- Large-scaled growth
- Easy control of BN concentration in graphene

XPS and TEM Analysis

Raman Analysis

 Clear evidence of BN domains in high BN-doped (>27%) graphene.

FET Analysis

Semiconducting behavior is observed for 3% BN in graphene.

FE Characteristic

Optical Absorption

Summary

 N-doped GNWs/CC provides the material for EC applications such as supercapacitor.

• Evidence of gap-opening via BNcodoping of graphene is proposed.

Acknowledgement

C.C. Kuo, C.K. Chang, Dr. S. Kataria, Dr. B.Y. Wang

Prof. S. Isota, Prof. W.F. Pong, Prof. Li-Chyong Chen

Funding

National Science Council and Academia Sinica, Taiwan

AOARD, AFOSR