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Overview

Consider effects of the spin orbit interaction (SOI) and disorder
on electrons moving along the surface of a nanoube

Obtain analytic expressions for the spin-split energy bands

Calculate scattering amplitude from a potential barrier located
around the axis of the nanotube into spin-dependent states

Estimate phenomenologically the effect of disorder within the
potential barrier on the transmission probability

Analyze the relative role of SOI and disorder

Prove that transmission probability

— depends on the linear and angular momentum of the
incoming particle and its spin orientation

— is reduced by disorder

Demonstrate that in the presence of disorder perfect
transmission may not be achieved for finite barrier heights




Experimentally observed SOl in gated nanotubes

f
Electron confined to
move along the surface
of a nanotube with gate
voltage applied
perpendicular to the
surface of the nanotube
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States split into

Separation between
eupper states decreases
with increasing B
elower states increases
with increasing B




Rashba-Bychkov SOl for electrons

confined to move along a nanotube
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Spin-orbit Hamiltonian arising
from electrostatic confinement

—

VV (F) = perpendicular potential gradient

& = vector of Pauli spin matrices

Image Credit: J. Hugo Dil, Physik-Institut, Universitat Zurich




Model Hamiltonian

Employing a continuum model, obtain
analytic expressions for the spin-split energy
bands of electrons moving along the surface

of a nanotube using the Hamiltonian

[(alsin $—0,C089) P, + 0, ﬁd

m m = effective mass of the electron
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a, = Rashba SOI parameter

from the nanotube symmetry axis




Eigenfunctions

Two-dimensional
spinor wavefunctions

Traveling wave-like solutions

in the z-direction

SOl mixes subbands

L, = normalization length

| =angular momentum quantum number
labels each subband
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Plasma excitations for cylindrical nanotubes with spin splitting C| = eXpanSion COefﬁCientS

Godfrey Gumbs, Yonatan Abranyos and Tibab Mchleish

Journal of Physics: Condensed Matter




Spin-split energy eigenvalues
in the absence of a barrier

El, (K, ar)+Ef (K, o )]2 +4ak?

s == Indicates two spin orientations

R = radius of the nanotube



Energy dispersion in the absence of a barrier
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Energy eigenvalues as a function of k, in the presence of SOI. Red line

for the “+” state. Green line for the “-” state.




Energy eigenvalues in the presence of a barrier
Eigenenergies given by
e (K

= 2B (K )+ BN (K g )

lag)-U =2° (K2, 1, ar, )
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[Elil(kzb,aR)+ Eﬁ(kf,aR)]

Cylindrical potential As the height of the barrier
ETE @ LUERELE increases, eigenvalue equation
and width w. L x b
cannot be satisfied by real k,




Reflection and transmission amplitudes

Wave functions in the three regions of interest

',u>:a+ kZi,Li,+>+a_

Conservation of angular momentum |_i — Lb — |_t
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Transmission probability as function of
notential barrier height, U
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Transmission probability as function of

votential barrier width, w
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Disorder — lifetime effect

Breakdown of momentum conservation due to impurity
scattering introduced as a finite lifetime of the electron states

t(disorder)
s,s’

y =Inverse lifetime
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Impurity scattering: lifetime effect
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Disorder — temperature effect

Breakdown of momentum conservation due to a
dimensionless temperature parameter

t(disorder)
s,s’

I = dimensionless phenomenological temperature




Effects of disorder
Momentum dissipation: thermal effect




Conclusions

 Transmission probability exhibits oscillatory
behavior

Barrier height where perfect transmission

occurs depends on the strength of the SOI, the
angular momentum as well as on the spin
orientation

SOl may be used as filter to obtain unimpeded
transport through a specified potential barrier
height
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