

Applications of 1st-Principles Based Evolution Algorithms in Material Design and Discovery

Jer-Lai Kuo (郭哲來)

Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan

1st Workshop of HPC on Nano-scale Materials Research

Aug/13/2009, NCKU, Tainan, Taiwan

Outlines:

• What is 1st-Principles Simulations? Why do we need Evolution Algoritm?

> • *Proton Order/Disorder transitions in Ice* a 70 year old problem in ice physics.

• ZnO based alloy

Alloy Synthesis on the Cloud ?

• Structure of nano-sized clusters

Knowing the structure is the FIRST step toward 原子與今子科学研understanding Material Properties

Collaborators and Group Members

Prof. Mike Klein Chem@UPenn

Prof. Ong Yewsoon SCE@NTU

Prof. Zhu Zexuan ShenZhen U/China

Fan XiaoFeng

Wu Hongyu

Nguyen Quoc Chinh

Bing Dan

Zhang Jingyun

Lee Ching-Tao

Basis of 1st-Principles Methods

Dirac (1929): "The underlying physical laws necessary for the mathematical theory of a large part of physics and the whole of chemistry are thus completely known."

 $\mathbf{H}\Psi = E\Psi$

Α

Schrödinger equation:

Erwin Schrödinger Paul A. M. Dirac Nobel Prize in Physics 1933

"for his development of DFT and comp. methods in quantum chemistry"

Multi-scale simulation from Ab Initio

Material Synthesis on the CLOUD

$\textbf{GRID} \rightarrow \textbf{CLOUD}$

• What is 1st-Principles Simulations: Why Multi-scale and go CLOUD?

• *Proton Order/Disorder transitions in Ice* a 70 year old problem in ice physics.

• <u>Be_xZn_{1-x}O?</u> Alloy Synthesis on the Cloud.

• Structure of nano-sized clusters

Knowing the structure is the FIRST step toward 原子與分子**動剤derstanding Material Properties**

WHAT!! Ordinary Ice is NOT crystal.

• Snow flakes have beautiful *hex-symmetry* !!

http://www.its.caltech.edu/~atomic/snowcrystals/

 A crystal is a solid in which the components are packed in a regularly <u>ordered</u>, <u>repeating</u> pattern extending in all three spatial dimensions

 Ice has a <u>disordered</u> proton distribution.

3,600,000 H-bond isomers.

Residual Entropy of ice-Ih

L.Pauling JACS 57, 2680 (1935)

 $\Omega \propto (3/2)^N, S = k \ln \Omega = 3.37 J / K$

W.F. Giauque and J.W.Stout, *JACS* **58**, 1144 (1936)

$$S(T \rightarrow 0) = 3.4 \pm 0.6 \ J \ / \ K$$

- Not just ice-lh, many phases of ice are proton-disordered.
- Thermal properties of ice is essential to many important issues in physics, chemistry, and environment.
- Finding the proton-ordered ice, will help us better understand H-bonding.

FECHNOLOGICAL

NIVERSITY

Proton Order/Disorder transition

What else about ice:

• New Phases?

• Effects of Pressure?

• X-ray Absorption Spectra

• What is 1st-Principles Simulations: Why Multi-scale and go CLOUD?

> • **Proton Order/Disorder transitions in Ice** a 70 year old problem in ice physics.

• ZnO based alloy Alloy Synthesis on the Cloud ?

• Structure of nano-sized clusters

Knowing the structure is the FIRST step toward 原子與分子**動前者**erstanding Material Properties

ZnO Alloys for opto-electronic applications

Semiconductor Alloys – Be_xZn_{1-x}O

 $\succ Be_xZn_{1-x}O$

Cluster Expansion Theory

Be_xZn_{1-x}O Alloys **Formation Enthalpy:** $\Delta H_f[\sigma,x] = \mathbf{E}[\sigma, \mathbf{Be}_x \mathbf{Zn}_{l-x}\mathbf{O}]$ $-x\mathbf{E}[\mathbf{BeO}] - (1-x)\mathbf{E}[\mathbf{ZnO}]$

(b)

5.0

2.0

x=0.375

5.4

5.2

Lattice parameter c (Å) 9. 8. 0.5

4.4

4.2

(a)

Fan, Zhu et al, **APL, 91**, 121121 ('07).

0.0 0.2 0.4 0.6 0.8 1.0 Be concentration x XF Fan, ..., and Jer-Lai Kuo, App. Phys. Lett. **91, 121121 (2007)**

x=0.4375

x=0.5625

/x=0.5

Effect of Lattice Vibration

Phonon DOS

PWSCF: linear response good for crystal.
PHONE: calculate DOS

Effect of Lattice Vibration

Approximations made:

- Bragg-Williams app.
- Neglect short range order
- Harmonic app.
- Small super-cell size

CK Gan, XE Fan, and Jer-Lai Kuo, Comp. Mat. Sci (in press)

Material Discovery on the CLOUD

Ist-Principle Calculations to replace wet-lab based methods?

> Improve efficiency

2 month (2007) with in-house PC clusters

2 days (2008) with in-house PC clusters

2 hrs (2009) with large HPC?

• What is 1st-Principles Simulations: Why Multi-scale and go CLOUD?

> • **Proton Order/Disorder transitions in Ice** a 70 year old problem in ice physics.

• <u>Be_xZn_{1-x}O?</u> Alloy Synthesis on the Cloud.

• Structure of nano-sized clusters

Knowing the structure is the FIRST step toward 原子與分子**特許是erstanding Material Properties**

Basic scheme of the Multi-scale Method

Ab initio results can be used in return to reparameterized models

OMIC AND MOLECULAR

Parameterizing empirical models

- Levenberg-Marquardt nonlinear least square algorithm + Genetic Algorithm
- Objective function

$$F(p) = \sqrt{\frac{1}{M} \sum_{k=1}^{M} (E_{OSS2}^{k}(p) - E_{DFT}^{k})^{2}}$$

p: parameter, M: # of data points, E_{Oss2}^{k} , E_{DFT}^{k} : OSS2 and DFT binding energy of configuration k

How to distinguish diff. isomers?

"Ultra fast shape recognition"

Ballester and Richards, J. Comp. Chem. 28, 1711 (2007)

- <u>Similarity index</u> ranges from 0 to 1:
 - 0 : totally different
 - 1 : exactly the same
- Differ by just 1 atom, SI= 0.966

HSA: from isomers to thermal prop.

d) n=8

Harmonic superposition approximation

□ The canonical partition function Z (β) can be approximated as the summation of harmonic contributions of all collected local minima.

$$Z(\beta) = \sum_{a} n_{a} Z_{a}(\beta)$$

□ The finite temperature behavior (heat capacity curves, structural transitions, canonical probabilities .i.e.) of Wn+ clusters can be derived afterward.

Nguyen, Ong, and Kuo, "<u>A multi-scale approach to study thermal behavior of</u> <u>protonated water clusters $H^+(H_2O)_n$ ",</u> <u>J. Chem. Theory and Comp.</u>)

Two-stage melting of H^+(H_2O)_{18}

Melting of $H^+(H_2O)_{21}$ cage (135~155K)

Collaborators and Group Members

n Prof. Ong Yewsoon SCE@NTU

Prof. Zhu Zexuan ShenZhen U/China

Fan XiaoFeng

Wu Hongyu

Nguyen Quoc Chinh

Bing Dan

Zhang Jingyun

Lee Ching-Tao

Structural info from VPS

Thermal behavior of $H^+(H_2O)_n$

of Local minimum and why is statistical average important!

$(12)_n$			
n	GA TTM2F	re-opt B6	SHS*
4	14	10	
5	33	23	
6	154	95	
7	639	406	
8	2331	1429	(166)*

(*) K. Ohno, J. Phys. Chem. A, 111, 10732 (2007)

子與分子科學 OF ATOMIC AND MOLECULA

中央研究院

Dominating structures are the minimum of Free Energy!!

 $(H_2O)_n$

Development of Water Models

- OSS2 potential
 - Designed for $H^+(H_2O)_n$
 - $-V_{total} = V_{charge interaction} + V_{polarizaton interaction} + V_{O-H interaction} + V_{O-O interaction} + V_{three-body interaction}$
 - Polarizable
 - No artificial charge
 - Dissociable
 Important in ionic chemistry
 - Overlap of electron clouds modelled by some screening functions

Be_xZn_{1-x}O Alloys : Phase Diagram

Composite-T Phase Diagram

- $\Delta G = \Delta H_f T \Delta S_{conf} + \Delta G_{vib}$ • ΔH_f (formation enthalpy)
 - AS_{config}: Bragg-Williams app. for random alloys
 - ΔG_{vib} : including ZPE

Effect of Lattice Vibration

- PWSCF: linear response good for crystal.
- SQS: (special quasi-random structure)* to represent random alloy

* Zunger, Wei, Ferreira and Bernard, PRL 65 (1990) 353

cubic– BC_xN: 2nd hardest material ??

diamond

c-BN

=??

Sun, ...Louie, PRB, 64, 094108 (2001)

Chen, Gong, and Wei, **PRL. 98**, 015502 (2007)

- * (111) super-lattices config. are more stable
- Theyare also harder
 than c-BN

cubic-BC_xN: Bond Counting Rules

