
An Introduction to

the Conjugate Gradient Method
Without the Agonizing Pain

abbreviated from note by

Jonathan Richard Shewchuk,

School of Computer Science,

Carnegie Mellon University,

Pittsburgh, PA 15213

by Chen-Shiung Hsue, National Tsing-Hua Univ. Taiwan

1 Introduction

The Conjugate Gradient Method (CG) is the most popular iteration method

for solving large systems of linear equations. CG is effective for systems of

the form

A · x = b (1)

where x is an unknown vector, b is a known vector, and A is a known, square,

symmetric, positive-definite matrix. A matrix A is positive-definite, if, for

every nonzero vector x,

x · A · x =
n
∑

i,j=1

xiAijxj > 0 (2)

Iterative methods like CG are suited for use with sparse matrices. If

A is dense, your best course of action is probably to factor A and solve

the equation by back substitution. The time spent factoring a dense A is

1

roughly equivalent to the time spent solving the system iteratively; and once

A is factored, the system can be back-solved quickly for multiple values of b.

2 The Quadratic Form

A quadratic form is simply a scalar, quadratic function of a vector with the

form

f(x) =
1

2
x · A · x − b · x + c (3)

For A positive-definite, the surface defined by f(x) is shaped like a paraboloid

bowl. Further, f(x) is minimized by the solution to A · x = b. It is readily

shown that

∇f(x) =
1

2
AT · x +

1

2
A · x − b (4)

If A symmetric, this equation reduces to

∇f(x) = A · x − b (5)

Setting the gradient to zero, we obtain Equation (1), the linear system we

wish to solve. Therefore, the solution to A · x = b is a critical point of f(x).

If A is positive-definite as well as symmetric, then this solution is a minimum

of f(x), so A · x = b can be solved by finding an x that minimizes f(x).

Consider the relation between f at some arbitrary point p and at the

solution point x = A−1 · b. From Equation (3) one can show that if A is

symmetric,

f(p) = f(x) +
1

2
(p− x) · A · (p− x) (6)

If A is positive-definite as well, then the latter term on the right hand side

is positive. It follows that x is a global minimum of f .

3 The Method of Steepest Descent

In the method of Steepest Descent, we start at an arbitrary point x(0) and

slide down to the bottom of the paraboloid. We take a series of steps

2

x(0),x(1), . . . until we are satisfied that we are close enough to the solution

x. In each step, we choose the direction in which f decreases most quickly,

which is the direction opposite to ∇f(x(i)). This direction is

∇f(x(i)) = b − Ax(i).

Let us introduce a few definitions here. The error

e(i) = x(i) − x

is a vector that indicates how far we are from the solution. The residual

r(i) = b − A · x(i)

indicates how far we are from the correct value of b. It is easy to see that

r(i) = −Ae(i)

and you should think of the residue as being the error transformed by A into

the same space as b. More importantly,

r(i) = ∇f(x(i)),

and you should also think of the residual as the direction of steepest descent.

For nonlinear problems, as discussed later, only the latter definition applies.

So remember, whenever you read ”residual”, think ”direction of steepest

descent.”

As our first step, we will choose a point along the direction of steepest

descent.

x(1) = x(0) + α r(0) (7)

The question is, how big a step should we take?

A line search is a procedure that chooses α to minimize f along a

line. From basic calculus, α minimizes f when the directional derivative

d
dα

f(x(1)) is equal to zero. By the chain rule, this is ∇f(x(1)) · r(0). Setting

3

this expression to zero, we find that α should be chosen so that r(0) and ∇f

are orthogonal.

To determine α, note that ∇f(x(1)) = −r(0), and we have

r(1) · r(0) = 0

(b− A · x(1)) · r(0) = 0

(b− A · (x(0) + αr(0))) · r(0) = 0

(b− A · x(0)) · r(0) − α(r(0) · A) · r(0) = 0

(b− A · x(0)) · r(0) = α(r(0) · A) · r(0)

r(0) · r(0) = α r(0) · A · r(0)

α =
r(0) · r(0)

r(0) · A · r(0)

.

Putting it all together, the method of Steepest Descent is:

r(i) = b− A · x(i) , (8)

αi =
r(i) · r(i)

r(i) · A · r(i)

. (9)

(10)

x(i+1) = x(i) + αir(i) (11)

The procedure continues until it converges. Note the zigzag path, which

appears because each gradient is orthogonal to the previous gradient.

The algorithm, as written above, requires two matrix vector multiplica-

tions per iteration. The computational cost of Steepest Descent is dominated

by matrix-vector products: fortunately, one can be eliminated. By premul-

tiplying both sides of Equation (11) by −A and adding b, we have

r(i+1) = r(i) − αiA · r(i). (12)

Although Equation (8) is still needed to compute r(0). Equation (12) can

be used for every iteration thereafter. The product A · r, which occurs in

both Equation (9) and (12) , need only be computed once. The disadvantage

4

of using this recurrence is that the sequence defined by Equation (12) is

generated without any feedback from the value of x(i) , so that accumulation

of floating point roundoff error may cause x(i) to converge to some point

near x. This effect can be avoided by periodically using Equation (8) to

recompute the correct residual.

4 Thinking with Eigenvectors and Eigenval-

ues

If B is symmetric, then there exists a set of n linearly independent eigenvec-

tors of B, denoted v1,v2, . . . ,vn with the corresponding eigenvalues, denoted

λ1, λ2, . . . , λn. This set of eigenvectors is not unique, because each eigenvec-

tor can be scaled by an arbitrary nonzero constant.

Any vector x can be decomposed as a linear superposition of the eigen-

vectors

x =
∑

i

vi

Repeated applying B to x yields

Blx =
∑

i

Blvi =
∑

i

λl
ivi .

If the magnitudes of all the eigenvalues are smaller than one, Blx will con-

verge to zero. If one of the eigenvalues has magnitude greater than one, x

will diverge to infinity. This is why numerical analysts attach importance to

the spectral radius ρ(B) of a matrix:

ρ(B) = max|λi|, λi is an eigenvalue of B

If we want Blx to converge to zero quickly, ρ(B) should be less than one,

and preferably as small as possible.

Here is a useful fact: the eigenvalues of a positive-definite matrix are

all positive.

5

4.1 Jacobi iterations

Consider the Jacobi Method for solving A ·x = b. The matrix A is split into

two parts: D, whose diagonal elements are identical to those of A, and whose

off-diagonal elements are zero, and E, whose diagonal elements are zero, and

whose off-diagonal elements are identical to those of A. Thus, A = D + E.

We derive the Jacobi Method:

A · x = b

D · x = −E · x + b

x = −D−1E · x + D−1 · b

x = B · x + z, where B = −D−1E, and z = D−1 · b (13)

Because D is diagonal, it is easy to invert. This identity can be converted

into an iterative method by forming the recurrence

x(i+1) = B · x(i) + z (14)

Given a starting vector x(0) this formula generates a sequence of vectors. Our

hope is that each successive vector will be closer to the solution x than the

last. x is called a stationary point of Equation (14), because if x(i) = x, then

x(i+1) will also equal x.

This derivation may seem quite arbitrary. We could have formed any

number of identities for x instead of Equation (13). In fact, simply by split-

ting A differently - that is, by choosing a different D and E - we could

have derived the Gauss-Seidel method, or the method of Successive Over-

Relaxation (SOR). Our hope is that we have chosen a splitting for which B

has a small spectral radius. The choice of the Jacobi splitting is for simplicity.

Express each iterate x(i) as the sum of the exact solution x and the

error term e(i). Then, Equation (14) becomes

x(i+1) = B · xi + z

6

= B · (x + ei) + z

= B · x + z + B · ei

= x + B · ei (by Equation (13)),

ei+1 = B · ei. (15)

Each iteration does not affect the ”correct part” of x(i) (because x is a sta-

tionary point); but each iteration does affect the error term. It is apparent

from equation (15) that if ρ(B) < 1, then the error term e(i) will converge to

zero as i approaches infinity. Hence, the initial vector x(0) has no effect on

the inevitable outcome!

Thus the spectral radius ρ(B) determines the speed of convergence.

Suppose that vj is the eigenvector of B with the largest eigenvalue (so that

ρ(B) = λj). If the initial error e(0) , expressed as a linear combination of

eigenvectors, includes a component in the direction of vj, this component

will be the slowest to converge.

B is not generally symmetric (even if A is); and may even be defective.

However, the rate of convergence of the Jacobi Method depends largely on

ρ(B), which depends on A. Unfortunately, the Jacobi Method does not

converge for every A, or even for every positive-definite A.

5 Convergence Analysis of Steepest Descent

5.1 Instant Results

Let’s first consider the case where e(i) is an eigenvector with eigenvalue λe.

Then, the residual r(i) = −A · e(i) = −λee(i) is also an eigenvector. Thus

e(i+1) = e(i) +
r(i) · r(i)

r(i) · A · r(i)

r(i)

= e(i) +
r(i) · r(i)

λer(i) · r(i)
(−λee(i))

= 0.

7

The point x(i) lies on one of the axes of the ellipsoid, and so the residual

points directly to the center of the ellipsoid. Choosing αi = λ−1 gives us

instant convergence.

For a more general analysis, we must express e(i) as a linear combination

of eigenvectors. If A is symmetric, we can choose the eigenvectors vi to be

orthonormal:

vi · vj = δi,j (16)

We can now express the error term as a linear combination of eigenvectors:

e(i) =
n
∑

j=1

ξjvj , (17)

We then have the following identities:

r(i) = −A · e(i) = −
n
∑

j=1

ξjλjvj , (18)

|e(i)|
2 = e(i) · e(i) =

n
∑

j=1

ξ2
j , (19)

e(i) · A · e(i) =
n
∑

j=1

ξ2
j λj, (20)

|r(i)|
2 = r(i) · r(i) =

n
∑

j=1

ξ2
j λ

2
j , (21)

r(i) · A · r(i) =
n
∑

j=1

ξ2
j λ

3
j , (22)

Equation (18) shows that r(i) too can be expressed as a sum of eigenvector

components, and the length of these components are −ξjλj .

Now we can proceed with the analysis.

e(i+1) = e(i) +
r(i) · r(i)

r(i) · A · r(i)

r(i)

= e(i) +

∑n
j=1 ξ2

j λ
2
j

∑n
j=1 ξ2

j λ
3
j

r(i) (23)

We saw in the last example that, if e(i) has only one eigenvector component,

then convergence is achieved in one step by choosing αi = λ−1. Now let’s

8

examine the case where all the eigenvalues are equal to λ. We have

e(i+1) = e(i) +
λ2∑n

j=1 ξ2
j

λ3
∑n

j=1 ξ2
j

(−λ e(i))

= 0

Once again, there is instant convergence. Because all the eigenvalues are

equal, the ellipsoid is spherical; hence, no matter what point we start at, the

residual must point to the center of the sphere.

However, if there are several unequal, nonzero eigenvalues, then no

choice of αi will eliminate all the eigenvector components, and our choice

becomes a sort of compromise.

5.2 General Convergence

We shall define the energy norm:

||e||A = (e · A · e)1/2

Examination shows that minimizing ||e||A is equivalent to minimizing f(x(i)).

with this norm we have

||e(i+1)||
2
A = e(i+1) · A · e(i+1)

= (e(i) + αi r(i)) · A · (e(i) + αi r(i))

= e(i) · A · e(i) + 2αi r(i) · A · e(i) + α2
i r(i) · A · r(i)

= ||e(i)||
2
A + 2

r(i) · r(i)

r(i) · A · r(i)
(−r(i) · r(i)) +

(

r(i) · r(i)

r(i) · A · r(i)

)2

r(i) · A · r(i)

= ||e(i)||
2
A −

(r(i) · r(i))
2

r(i) · A · r(i)

= ||e(i)||
2
A

(

1 −
(r(i) · r(i))

2

(r(i) · A · r(i))(e(i) · A · e(i))

)

= ||e(i)||
2
A

(

1 −

∑n
j=1(ξ

2
j λ

2
j)

2

(
∑n

j=1 ξ2
j λ

3
j)(
∑n

j=1 ξ2
j λj)

)

= ||e(i)||
2
A ω2

9

where

ω2 = 1 −

∑n
j=1(ξ

2
j λ

2
j)

2

(
∑n

j=1 ξ2
j λ

3
j)(
∑n

j=1 ξ2
j λj)

(24)

The analysis depends on finding an upper bound for ω. Take n = 2.

Assume that λ1 ≤ λ2. The spectral condition number of A is defined to be

κ = λ1/λ2 ≥ 1. The slope of e(i) (relative to the coordinate system defined by

the eigenvectors), which depends on the starting point, is denoted µ = ξ2/ξ1.

We have

ω2 = 1 −
(ξ2

1λ
2
1 + ξ2

2λ
2
2)

2

(ξ2
1λ1 + ξ2

2λ2)(ξ2
1λ

3
1 + ξ2

2λ
3
2)

= 1 −
(κ2 + µ2)2

(κ + µ2)(κ3 + µ2)
(25)

An upper bound for ω(corresponding to the worst-case starting points)

is found by setting µ2 = κ2:

ω2 ≤ 1 −
4κ4

κ5 + 2κ4 + κ3
=

(κ − 1)2

(κ + 1)2

or

ω =
κ − 1

κ + 1
. (26)

Equation (26) can be proved to be valid for n > 2, where the condition

number of a symmetric, positive-definite matrix is defined as

κ = λmax/λmin,

the ratio of the largest to smallest eigenvalue. The more ill-conditioned the

matrix(that is, the larger its condition number κ), the slower the convergence

of Steepest Descent. The convergence results for Steepest Descent are

||e(i)||A ≤ ω =
(

κ − 1

κ + 1

)i

||e(0)||A (27)

In other word,

f(x(i)) − f(x)

f(x(0)) − f(x)
=

1
2

e(i) · A · e(i)

1
2

e(0) · A · e(0)

=
(

κ − 1

κ + 1

)i

.

10

6 The Method of Conjugate Directions

6.1 Conjugacy

Steepest Descent often finds itself taking steps in the same direction as earlier

steps. An obvious solution is to pick a set of orthogonal search directions

d(0),d(1), . . . ,d(n−1). In each search direction, we’ll take exactly one step,

After n steps, we’ll be done. In general, for each step we choose a point

x(i+1) = x(i) + αid(i) . (28)

To find the value of αi, use the fact that e(i+1) should be orthogonal to d(i),

so that we need never step in the direction of d(i) again. Using this condition,

we have

d(i) · d(i+1) = 0

d(i) · (e(i) + αi d(i)) = 0

αi = −
d(i) · e(i)

d(i) · d(i)

. (29)

Unfortunately, we can’t compute αi without knowing e(i).

The solution is to make the search directions A-orthogonal instead of

orthogonal. Two vectors d(i) and d(j) are A-orthogonal, or conjugate, if

d(i) · A · d(j) = 0 .

Our new requirement is that e(i+1) be A-orthogonal to d(i). Not coin-

cidentally, this orthogonality condition is equivalent to finding the minimum

point along the search direction d(i), as in the Method of Steepest Descent.

d

dα
f(x(i+1) = ∇f(x(i+1)) ·

d

dα
x(i+1) = 0

− r(i+1) · d(i) = 0

d(i) · A · e(i+1) = 0

11

Following the derivation of Equation (29), when the search directions are

A-orthogonal, we have:

αi = −
d(i) · A · e(i)

d(i) · A · d(i)

(30)

=
d(i) · r(i)

d(i) · A · d(i)

(31)

Unlike Equation (29), we can calculate this expression. Note that if the search

vector were the residual, this formula would be identical to the formula used

by Steepest Descent.

To prove that this procedure really does compute x in n steps, express

the error term as a linear combination of search directions; namely,

e(0) =
n−1
∑

j=0

δj d(j) (32)

Because the search directions are A-orthogonal, we have:

d(k) · A · e(0) =
∑

j=0

δj d(k) · A · d(j) = δk d(k) · A · d(k)

δk =
d(k) · A · e(0)

d(k) · A · d(k)

=
d(k) · A · (e(0) +

∑k−1
j=0 αj d(j))

d(k) · A · d(k)
(by A-orthogonality of d vectors)

(33)

=
d(k) · A · e(k)

d(k) · A · d(k)
(34)

where we have used the relation

e(k) = x(k) − x = (x(0) +
k−1
∑

j=0

αj d(j)) − x = (e(0) +
k−1
∑

j=0

αj d(j))

which is a direct consequence of Equation (28). And from Equation (30), we

find that :

αi = − δi

This fact gives us a new way to look at the error term. The process of

building up x component by component can also be viewed as a process of

12

cutting down the error term component by component.

e(i) = e(0) +
i−1
∑

j=0

αj d(j) =
n−1
∑

j=0

δj d(j) −
i−1
∑

j=0

δj d(j)

=
n−1
∑

j=i

δj d(j) (35)

After n iterations, every component is cut away, and e(n) = 0; the proof is

complete.

6.2 Gram-Schmidt Conjugation

There is a simple way, called conjugate Gram-Schmidt process, to generate a

set of A-orthogonal search directions
{

d(j)

}

. Let u0,u1, . . . ,un−1 be a set of

n linearly independent vectors. Set d(0) = u0, and for i > 0, set

d(i) = ui +
i−1
∑

k=0

βik d(k) , (36)

where the βik are defined for i > k. To find their values, use the A-

orthogonality of d(k). We have for i > k:

0 = d(i) · A · d(j) = ui · A · d(j) +
i−1
∑

k=0

βik d(k) · A · d(j)

= ui · A · d(j) + βij d(j) · A · d(j)

Or

βij = −
ui · A · d(j)

d(j) · A · d(j)

(37)

The difficulty with using Gram-Schmidt conjugation in the method

of Conjugate Directions is that all the old search vectors must be kept in

memory to construct each new one, and furthermore O(n3) operations are

required to generate the full set. As a result, the method of Conjugate

Directions enjoyed little use until the discovery of CG - which is a method

of Conjugate Directions -cured these disadvantages.

13

6.3 Optimality of the Error Term

Conjugate Directions has an interesting property: it finds at every step the

best solution within the bounds of where it’s been allowed to explore. Let

Di be the i-dimensional subspace span
{

d(0),d(1), . . . ,d(j−1)

}

; the value e(i)

is chosen from e(0) + Di that minimizes |e(i)|A. In fact, some authors derive

CG by trying to minimize |e(i)|A within e(0) + Di. The energy norm can be

expressed as a summation:

|e(i)|A =
n−1
∑

j=i

n−1
∑

k=i

δjδk d(j) · A · d(k)

=
n−1
∑

j=i

δ2
jd(j) · A · d(j)

Each term in this summation is associated with a search direction that has

not yet been traversed. Any other vector e chosen from e(0) + Di must have

these same terms in its expansion, which proves that e(i) mush have the

minimum energy norm.

Another important property is the fact that: at each step the residual

r(i) is orthogonal to Di:

d(i) · r(j) = −d(i) · A · e(j) = −
n−1
∑

j=i

δjd(i) · A · d(j) (38)

and hence by A-orthogonality of the d-vectors, we have for i < j,

d(i) · r(j) = 0 (39)

Because the search directions d(i) are constructed from the u vectors,

the subspace spanned by
{

u(0),u(1), . . . ,u(i−1)

}

is Di , and the residual r(i)

is orthogonal to these previous r vectors as well:

d(i) · r(j) = u(i) · r(j) +
i−1
∑

k=i

βik d(k) · r(j) (40)

We have for i < j:

0 = u(i) · r(j) (41)

14

From Equation (40), we have the identity which will be used later.

d(i) · r(i) = u(i) · r(i) (42)

To conclude this section, note that as with the method of Steepest

Descent, the number of matrix-vector products per iteration can be reduced

to one by using a recurrence :

r(i+1) = −A · e(i+1)

= −A · (e(i) + αid(i))

= r(i) − αiA · d(i) (43)

7 The Method of Conjugate Gradients

CG is simply the method of Conjugate Directions where the search directions

are constructed by conjugation of the residuals (that is, by setting ui = r(i)).

Because the search vectors are built from the residuals, the subspace

span
{

r(0), r(1), . . . , r(i−1)

}

is equal to Di. As each residual is orthogonal to

the previous search directions, it is also orthogonal to the previous residuals;

thus:

r(i) · r(j) = 0, i 6= j. (44)

Equation (43) shows that each new residual r(i) is just a linear combination

of the previous residual and A · d(i−1). Recalling that d(i−1) ∈ Di, this fact

implies that each new subspace Di+1 is formed from the union of the previous

subspace Di and the subspace A · Di. Hence

Di = span
{

d(0), A · d(0), A
2 · d(0), . . . , A

i−1 · d(0)

}

= span
{

r(0), A · r(0), A
2 · r(0), . . . , A

i−1 · r(0)

}

.

This subspace is called a Krylov subspace, a subspace created by re-

peatedly applying a matrix to a vector. It has a pleasing property: because

15

A · Di ⊂ Di+1, the fact that the next residual r(i+1) is orthogonal to Di+1

(Equation (39)) implies that r(i+1) is A-orthogonal to Di. Gram-Schmidt

conjugation becomes easy, because r(i+1) is already A-orthogonal to all of

the previous search directions except di!

We may simplify the Gram-Schmidt constants βij = −
r(i)·A·d(j)

d(j)·A·d(j)
, which

are defined for i > j only.

Taking the inner product of r(i) with Equation (43),

r(i) · r(j+1) = r(i) · r(j) − αj r(i) · A · d(j)

αj r(i) · A · d(j) = r(i) · r(j) − r(i) · r(j+1)

or

r(i) · A · d(j) =































r(i)·r(i)

αi
i = j

−
r(i)·r(i)

αi−1
i = j + 1

0 otherwise

Hence we obtain

βij =















1
αi−1

r(i)·r(i)

d(i−1)·A·d(i−1)
i = j + 1

0 i > j + 1

(45)

As if by magic, most of the βij terms have disappeared. It is no longer

necessary to store old search vectors. Both the space complexity and time

complexity per iteration are reduced from O(n2) to O(m), where m is the

number of nonzero entries of A. Henceforth, we shall use the abbreviation

βi = βi,i−1. We have

βi =
r(i) · r(i)

d(i−1) · r(i−1)

=
r(i) · r(i)

r(i−1) · r(i−1)

Putting all together, the method of Conjugate Gradients is:

d(0) = r(0) = b− A · x(0) (46)

16

αi =
r(i) · r(i)

d(i) · A · d(i)

(47)

x(i+1) = x(i) + αi d(i) (48)

r(i+1) = r(i) − αi A · d(i) (49)

βi+1 =
r(i+1) · r(i+1)

d(i) · r(i)
(50)

d(i+1) = r(i) + βi+1 d(i) (51)

(52)

17

