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Abstract Independent component analysis (ICA) is a mod-
ern computational method developed in the last two decades.
The main goal of ICA is to recover the original indepen-
dent variables by linear transformations of the observations.
In this study, a copula-based method, called COPICA, is
proposed to solve the ICA problem. The proposed COP-
ICA method is a semiparametric approach, the marginals are
estimated by nonparametric empirical distributions and the
joint distributions are modeled by parametric copula func-
tions. The COPICA method utilizes the estimated copula
parameter as a dependence measure to search the optimal
rotation matrix that achieves the ICA goal. Both simulation
and empirical studies are performed to compare the COP-
ICA method with the state-of-art methods of ICA. The re-
sults indicate that the COPICA attains higher signal-to-noise
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ratio (SNR) than several other ICA methods in recovering
signals. In particular, the COPICA usually leads to higher
SNRs than FastICA for near-Gaussian-tailed sources and is
competitive with a nonparametric ICA method for two di-
mensional sources. For higher dimensional ICA problem,
the advantage of using the COPICA is its less storage and
less computational effort.

Keywords Blind source separation · Canonical maximum
likelihood method · Givens rotation matrix · Signal/noise
ratio · Simulated annealing algorithm

1 Introduction

Independent component analysis (ICA) is a recently devel-
oped multivariate statistical method, and can be treated as a
generalization of principal component analysis (PCA). PCA
is based on the eigenvalue decomposition of the covariance
matrix, and projects data onto the eigenvectors of the co-
variance matrix. Although an eigenvalue decomposition of
covariance yields only uncorrelated factors, together with
Gaussian distributional assumption, the principal compo-
nents are independent. However, the “independent” property
will not hold if Gaussianity is violated. Non-Gaussianity of
the independent components is a fundamental restriction of
ICA, since one can only estimate the ICA model of Gaus-
sian data up to an orthogonal transformation and the mixing
matrix is not identifiable if there are more than two Gaus-
sian independent components. Thus ICA targets on non-
Gaussian samples. The main goal of ICA is to find linear
transformations that map the observed multivariate time se-
ries into independent components (ICs). To accomplish the
ICA goal, unlike the eigenvalue decomposition approach
in PCA, ICs are estimated via an optimization problem, in
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which the statistical cross dependency among the extracted
ICs is minimized. In practice, ICA has been successfully ap-
plied in blind source separation (Comon 1994), image de-
noising (Hyvärinnen 1999b), natural image patch (Bell and
Sejnowski 1995), single-trial EEG records (Tsai et al. 2006)
and many other applications (see for example Lee 1998;
Hyvärinen and Oja 2000; Abayomi et al. 2011).

There has been a wide development of interest in the
computational technique of ICA in the past two decades.
The ICA method can be formulated as optimization of an
objective function which minimizes the cross-dependency
among the components. The performance of the ICA method
depends on the choice of objective function and the algo-
rithm used for implementation of the optimization problem
determines the speed of the ICA method. Various objective
functions used in ICA include maximum likelihood, negen-
tropy, higher order cumulants, kurtosis and mutual informa-
tion. Several procedures and algorithms were proposed to
search the independent components based on different ob-
jective functions and searching algorithms. The well known
FastICA proposed by Hyvärinen and Oja (1997) was based
on maximization of non-Gaussianity via measurements such
as kurtosis and negentropy. Since the negentropy is always
nonnegative and vanishes if and only if the signal is Gaus-
sian, it can be used as a measure of distance to normality.
And an approximative Newton iteration fixed-point algo-
rithm is used to improve the computational efficiency of
the FastICA which is faster than the gradient based meth-
ods. The details of FastICA can be found in Hyvärinen and
Oja (2000). Bell and Sejnowski (1995) proposed a natu-
ral gradient ICA algorithm by minimizing the mutual infor-
mation among the outputs, which can be considered as the
Kullback-Leibler divergence (KL divergence) between the
current joint density and the product of marginal densities.
Their approach can also be treated as a maximum likeli-
hood approach. Comon (1994) gave a contrast function for
ICA by approximating the mutual information in terms of
third-order and fourth-order cumulants. CuBICA, proposed
by Blaschke and Wiskott (2004), improved Comon’s algo-
rithm by simplifying the corresponding contrast function.
Bach and Jordan (2002) proposed the kernel independent
component analysis which uses flexible kernels to model
the dependence between the variables. Gretton et al. (2005)
proposed another kernel independent criterion, the Hilbert-
Schmidt Independent Criterion (HSIC), and the HSIC-based
ICA contrast has a diagonal Hessian at independence. Then
Shen et al. (2009) introduce an optimization method for
HSIC, named FastKICA, and RADICAL (Learned-Miller
and Fisher 2003) used an estimate of univariate entropies
to find Jacobi rotations that make pairs of signals as in-
dependent as possible. Kirshner and Póczos (2008) used
Schweizer-Wolff measure of dependence to search the in-
dependent components.

In this research, a new procedure called COPICA is pro-
posed for ICA. In the COPICA procedure, the joint distri-
bution of the components is modeled by copula functions.
For better modeling of non-Gaussianity and other empirical
facts such as heavy tail behavior of financial data, copulae
have been introduced into the quantitative finance practice.
The copula technique is based on the thought that every mul-
tivariate distribution can be seen as a coupling of a distribu-
tion function (on the unit cube) operating on the marginal
distribution functions of each variable. This coupling func-
tion has been coined the name “copula” (Sklar 1959 and
1996). Copulae can be parameterized with low dimensional
parameters and fitted to multivariate data by a variety of op-
timization techniques (Nelsen 2006). Copulae also provide
a flexible family for modeling dependencies and include the
product copula as the family element representing indepen-
dence. An important property of the copula parameters is
that in some cases they are also the tail dependence parame-
ters. Hence, the estimates of the copula parameters provide
direct parametric estimates of the tail dependence. In the
proposed COPICA approach, we use the deviation between
the fitted copula parameters and the copula parameters at in-
dependence as a measure of dependence, then define the cor-
responding divergence function used as the objective func-
tion in ICA. Thus the COPICA procedure combines ICA
ideas from the engineering literature with the copula based
research in quantitative finance. For parameter estimation,
we use the historical empirical distribution in the estimation
of marginal distributions then use the canonical maximum
likelihood (CML) to estimate the copula parameters. A sim-
ulated annealing algorithm is used to minimize our diver-
gence function to find the best recovered matrix. Since the
marginal distribution is estimated by a nonparametric em-
pirical estimate and the joint distribution is modeled by a
parametric copula function, the proposed COPICA method
can be viewed as a semiparametric ICA approach.

We took the advantage of copula to separate the param-
eter space of the full likelihood function into the copula
parameter space and the marginal parameter space. If the
margins are well fitted, then an estimator on the joint part
(i.e. the copula parameters) can recover independence. In
COPICA, we estimate the marginal distribution by the non-
parametric empirical distribution. An advantage of estimat-
ing marginals using empirical distributions is that this pro-
cedure is relatively free of assumptions. And the empirical
distribution has nice asymptotic properties including con-
sistency and asymptotic normality. Since marginal distribu-
tions are estimated nonparametrically, the copula parameters
are the only unknown parameters in COPICA. Based on the
whitening data, our goal is to find the proper rotation ma-
trix to recover the independent sources. To accomplish this
goal, the divergence function is defined via the copula pa-
rameters. Given a rotation matrix, R, the estimations of cop-
ula parameters in divergence function are obtained via CML
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approach based on the current empirical marginal distribu-
tions of the rotated data. Thus the copula parameter estima-
tors and our divergence function are function of the rotation
matrix, R. However, it is difficult to express the divergence
function explicitly in terms of the rotation matrix (or rotation
angles). Hence to solve our optimization problem w.r.t. rota-
tion angles, the gradient based optimization approach cannot
be used. Simulated annealing algorithm is a stochastic opti-
mization method which does not need the gradient informa-
tion. Of course, SA is not the only optimization approach to
solve our target problem. Other possible approaches are pat-
tern search, Gold search and other stochastic optimization
approach, for example, genetic algorithm.

In addition to our COPICA method, copula based inde-
pendent component analysis approach has also been pro-
posed in Ma and Sun (2007), Abayomi et al. (2008, 2011).
Abayomi et al. (2008, 2011) considered the objective func-
tion based on the mutual information via copula, which mea-
sures a norm between the estimator and the oracular value.
Specifically, Abayomi et al. (2008) provided a theoretical
foundation of mutual information based approach and a ver-
sion of their norm was utilized in Abayomi et al. (2011).
Their rotation matrix is obtained by minimizing the mu-
tual information (distance) between parametric copula and
independent marginals. In addition to the full parametric ap-
proach, they also proposed a semiparametric approach by
using the empirical distributions for marginals. Two numer-
ical approaches were introduced to obtain their rotation ma-
trix. In their full model method, the mutual information is
used as the objective function and the gradient type approach
is applied to obtain the rotation matrix numerically. In their
partite model approach, they use Singular Value Decompo-
sition of the bivariate mutual information matrix, which is
constructed via pairwise copula, to find the orthogonal trans-
formation matrix.

Although, the COPICA method and Abayomi et al.’s ap-
proach both use copula to model the joint distributions of the
components, the objective function and optimization algo-
rithm are different, which are the two major components de-
termining the performance and speed of the ICA method. In
Abayomi et al. (2008, 2011), mutual information was used
as the dependent measurement. For the ICA problem when
independent signals are obtained, the joint density function
is equal to the product of the marginal densities and the mu-
tual information is zero. And the copula parameter (no mat-
ter which copula is fitted) equals to its independent parame-
ter, consequently our COPICA objective function equals to
zero which is the same as the mutual information. Hence al-
though our norm is not generated directly from the mutual
information, yet it achieves the same optimal point when in-
dependence are obtained.

In the next section, the detail procedure of COPICA is
introduced. In Sect. 3, blind source separation examples are

demonstrated to illustrate the performance of our method.
In Sect. 4, we compare the performance of COPICA with
FastICA in terms of their signal to noise ratios (SNR) on
the recovered signals for blind source separation problems.
In Sect. 5, we compare COPICA method with nonparamet-
ric rank-based approaches. Both simulation and empirical
studies will be performed to compare the COPICA method
with the state-of-art methods of ICA. Our numerical results
and empirical study also support the applicability of the pro-
posed COPICA method. In summary, the comparison results
show that:

(1) The computational burden in determining the ICA
transformation are the same for the COPICA and the
FastICA.

(2) The COPICA method attains higher SNR than the
FastICA for near-Gaussian-tail sources on the recov-
ered signals for the blind source separation problems.
We also noted that the FastICA method sometimes fails
to converge for near-Gaussian-tail sources.

(3) The COPICA method is competitive with the ICA
method via a nonparametric measure, Schweizer-Wolff
σSW for bivariate sources. For higher dimensional case,
the COPICA method attains higher SNR than the ICA
method via Schweizer-Wolff σSW on the average and
reduces significantly the storage space.

Finally conclusion is given in Sect. 6.

2 COPICA procedure

Assume we observe the n linear mixtures

X = (x1, x2, . . . , xn)
�

of the n independent components S = (s1, s2, . . . , sn)
�, that

is X = AS, where A = (aij ) is the n × n mixing matrix.
Here we assume that A is full rank. The independent compo-
nents sj ’s are latent random variables with zero mean which
cannot be observed directly and the mixing matrix A is un-
known. The goal of ICA is to find linear combination of the
observed data X, Y = BX such that the components of Y ,
yi ’s, are as independent as possible. Here unlike PCA to ob-
tain uncorrelated linear combination of xi , to achieve the in-
dependence among yi ’s, the possible measurements are re-
lated to nonlinear transformations of yi , for example, non-
linear correlation, E(f (yi)g(yj )), where f and g are two
function and at least one is nonlinear (Hyvärinen and Oja
2000). Thus ICA can be treated as to remove the nonlinear
dependence by using the linear transformation of data.

In addition to centralize the observed data, most of the
ICA procedures, such as FastICA, whiten the observations
first by the matrix W = Σ−1/2, where Σ is the covariance
matrix of X. That is, the components of Z = WX are uncor-
related with unit norm, i.e. Cov(Z) = In. The independent
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components are obtained by multiplying the pre-whitened
observations with an orthogonal matrix R such that the out-
puts Y = RZ are nearly statistically independent.

In this section, we first introduce the copula modeling
of the joint dependence structure of the transformed com-
ponents, then define the copula parameters as a measure of
dependence. A rotation matrix representation of the orthog-
onal matrix R is also given. Finally, the COPICA procedure
is introduced.

2.1 Copula model

According to Nelsen (2006), an n-dimensional copula is de-
fined as follows.

Definition 1 An n-dimensional copula C(u), where u =
(u1, . . . , un), is a function from [0,1]n → [0,1] with the fol-
lowing properties:

1. C(u) is grounded, that is,

C(u1, . . . , ui−1,0, ui+1, . . . , un) = 0,

which means that the copula is zero if one of the argu-
ments is zero, and C(1, . . . ,1, u,1, . . . ,1) = u, which
means that the copula is equal to u if one argument is
u and all others are 1.

2. C(u) is n-increasing, that is, for each hyperrectangle B =∏n
i=1[xi, yi] ⊆ [0,1]n,

∫

B

dC(u) =
∑

z∈×n
i=1{xi ,yi }

(−1)N(z)C(z) ≥ 0,

where z = (z1, . . . , zn), ×n
i=1{xi, yi} denotes the set of

the vertices of B , and N(z) is the number of {k : zk = xk}.

Copula has recently become the most significant new tool
to handle co-movement between markets in the field of fi-
nance and the analysis of current status data in biostatistics,
because it provides a flexible way to connect the marginal
distributions of individual component to their multivariate
joint distribution. Sklar’s theorem provides the theoretical
foundation for the application of copulae. Let FXj

(xj ) de-
note the marginal distribution of Xj , j = 1, . . . , n. Based on
the work of Sklar (1959), there exists a copula function C

such that

FX(x1, . . . , xn) = C
{
FX1(x1), . . . ,FXn(xn); θ

}
, (1)

where FX(x1, . . . , xn) is the joint distribution of X =
(X1, . . . ,Xn) and θ = (θ1, . . . , θd) denotes the copula pa-
rameters. In the case of independence, the joint distribu-
tion is the product of the marginal distributions, that is
FX(x1, . . . , xn) = FX1(x1) · · ·FXn(xn). This corresponds to
the product (independence) copula C(u) = u1 · · ·un. In the
following, we introduce some well-known copula families
which will be considered in this work as an illustration.

(1) Gumbel copula:

C(u1, . . . , un; θ) = exp

[

−
{

n∑

j=1

(− loguj )
θ

} 1
θ
]

,

θ ≥ 1.

When the Gumbel parameter θ = 1, it is the indepen-
dence copula. The Gumbel copula is motivated by limit
theorems for joint extremes (Kotz and Nadarajah 2000)
and has for long played an important role in model-
ing distributions of extremes. The Gumbel copula can
model upper tail dependence. For instance the bivariate
Gumbel copula, the upper tail dependence of two ran-
dom variables X1 and X2 is defined as

λU = lim
v→1− P

(
FX2(X2) > v | FX1(X1) > v

)

= lim
v→1−

(
1 − 2v + C(v, v)

)
/(1 − v) = 2 − 21/θ , (2)

which is always positive for θ > 1. In addition, the
Gumbel copula can be rotated to change the direc-
tion of the tail dependence. For example, in the
2-dimensional case, the survival Gumbel copula, de-
noted by Ĉ(u1, u2; θ), can be obtained by rotating a
Gumbel copula by 180 degrees, that is,

Ĉ(u1, u2; θ) = u1 + u2 − 1 + C(1 − u1,1 − u2; θ),

where C(u1, u2; θ) is the 2-dimensional Gumbel cop-
ula. Thus, the survival Gumbel copula can be used to
model lower tail dependence.

(2) Clayton copula:

C(u1, . . . , un; θ) =
(

n∑

j=1

u−θ
j − n + 1

)−1/θ

, θ > 0.

As the copula parameter θ → 0, the Clayton copula ap-
proaches to the independence copula. The Clayton cop-
ula can model multivariate lower tail dependence. For
instance the bivariate Clayton copula, the lower tail de-
pendence of two random variables X1 and X2 is defined
as

λL = lim
v→0+ P

(
FX2(X2) ≤ v | FX1(X1) ≤ v

)

= lim
v→0+ C(v, v)/v = 2−1/θ , (3)

which is positive for all θ > 0. Similar to the Gumbel
copula, the Clayton copula can also be used to depict
the upper tail dependence by rotation.

(3) Gaussian copula: for a given correlation matrix
Σ ∈ Rn×n, the Gaussian copula with parameter matrix
Σ can be written as

C(u1, . . . , un;Σ) = ΦΣ

{
Φ−1(u1), . . . ,Φ

−1(un)
}
,
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Fig. 1 Bivariate plots of Clayton and Gumbel copulae with θ = 3 and
N(0,1) marginals (Color figure online)

where ΦΣ is the joint cumulative distribution function
of a multivariate normal distribution with mean vec-
tor zero and covariance matrix equal to the correlation
matrix Σ and Φ−1 is the inverse cumulative distribu-
tion function of N(0,1). In particular, if the correlation
matrix is the identity matrix, then Gaussian copula is
the independence copula. Furthermore, if the Xj ’s are
normally distributed, then the Gaussian copula is corre-
spond to the multivariate normal distribution. Gaussian
copula is a popular and convenient type of copula, es-
pecially when the dimension is large. Since Gaussian
copula depends only on the pairwise rank correlations
between the marginals when the marginal are continu-
ous (Mardia 1970), it continues to capture the depen-
dence structure of the Normal-To-Anything (NORTA)
distribution with arbitrary continuous marginal distribu-
tions (Ghosh and Henderson 2003). The bivariate Gaus-
sian copula can model neither upper nor lower tail de-
pendence, unless the correlation coefficient ρ = 1, since
λU = λL = 0 for ρ < 1 and λU = λL = 1 for ρ = 1.

In Fig. 1, we give the bivariate plots of random samples gen-
erated from Clayton and Gumbel copulae with parameter
θ = 3 and N(0,1) marginal distributions, respectively. Al-
though the marginal distributions of the two cases are the
same, different tail dependencies are displayed. Yet there
are modeling limitations for the Gumbel and Clayton cop-
ulae (in general the family of Archimedean copulae) in
higher-dimensions, as they imply exchangeability and hence
equicorrelated ranks, which is obviously untenable in real
application. For general reference of copulae, please refer
to Nelsen (2006). For generalization of Archimedean cop-
ula models, see for example, McNeil and Nešlehová (2010)
and Genest et al. (2011). For applications of copula in data
mining, see Yu et al. (2011). For more discussion of the tail
dependence parameters and the Gaussian copula, we refer to
Schweizer and Wolff (1981) and Genest et al. (2011).

Let {φ(·|θ)}θ∈Θ be a family of copula densities, where
Θ ⊂ 	q is the parameter space. In this work, we use the

canonical maximum likelihood (CML) estimator to esti-
mate the copula parameter θ defined as below. Let {Xt =
(x1t , x2t , . . . , xnt )

�}Tt=1 is a realization of length T of the
linear mixture X.

Step 1: Obtain F̂Xi
(·), i = 1, . . . , n are the empirical mar-

ginal distributions, and then

Step 2:

θ̂ = arg max
θ∈Θ

T∑

t=1

ln
(
φ
((

F̂Xi
(xit ), i = 1,2, . . . , n

)∣
∣θ

))
, (4)

Therefore, the fitted copula φ(.|θ̂ ) with the CML estimator
can be treated as the best approximation for the true cop-
ula ψ in the copula family {φ(·|θ)}θ∈Θ based on {Xt =
(x1t , x2t , . . . , xnt )

�}, t = 1, . . . , T . In the proposed COP-
ICA method, we consider the best approximations of the
transformed data in the three copula families, Gumbel, Clay-
ton and Gaussian copulae to capture its different dependence
structure.

2.2 Representation of orthogonal matrices

In an ICA model, the following two ambiguities are well
known to hold. Firstly because we can freely change the or-
der of the components si ’s, and call any of the independent
components the first one, we cannot determine the order of
the independent components. This ambiguity is insignificant
in most applications though. Secondly we cannot determine
the variances of the independent components. Thus, with-
out loss of generality, we assume that each component of
Y = RZ has unit variance. Then by independence assump-
tion of Y , we have Cov(Y ) = In. Therefore the transforma-
tion matrix R satisfies

RR� = R Cov(Z)R� = Cov(RZ) = Cov(Y ) = In.

That is, the transformation matrix R is an orthogonal matrix
which can be represented as the following product of the
Givens rotation matrices,

R =
∏

1≤i<j≤n

Gij (βij ).

The matrix Gij (βij ) is an n-dimensional Givens rota-
tion matrix which represents a rotation in the plane spanned
by the axes xi and xj , i < j , with angle βij . Specifically,
Gij (βij ) is obtained by modifying the identity matrix so
that the (i, i), (i, j), (j, i) and (j, j) elements of this ma-
trix are respectively cosβij , sinβij , − sinβij , and cosβij ,
where βij ∈ [0,2π). This Givens matrix representation of R

has been used in ICA algorithms, such as Comon (1994),
Blaschke and Wiskott (2004), Kirshner and Póczos (2008)
and so on. The product of the orthogonal matrix R and the
whitening matrix W , B = RW , is our objective transforma-
tion matrix of the observed data X to achieve independence.
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The major task is to search the rotation angles, βij , to make
the components of

Y = RZ = (RW)X = (RW)(AS)

nearly independent. In the bivariate case, n = 2, the Givens
matrix is derived in the following proposition.

Theorem 1 Assume S = (s1, s2)
� is a random vector of

two independent random variables with unit variance. Let
X = AS where

A =
(

a b

c d

)

is a non-degenerated mixing matrix. Let Z = WX and W =
(AA�)−1/2 is the whitening matrix of X. Then the following
Givens matrix of order 2,

G(β) =
(

cosβ12 sinβ12

− sinβ12 cosβ12

)

(5)

is the objective rotation matrix, that is

G(β)Z =
{

(s1, s2)
�, if ad − bc > 0,

(s2, s1)
�, if ad − bc < 0,

where
⎧
⎨

⎩

cosβ12 = (a+d) sign(ac+bd)√
(a+d)2+(b−c)2

,

sinβ12 = (−b+c) sign(ac+bd)√
(a+d)2+(b−c)2

,
if ad − bc > 0,

or
⎧
⎨

⎩

cosβ12 = (b+c) sign(ac+bd)√
(a−d)2+(b+c)2

,

sinβ12 = (−a+d) sign(ac+bd)√
(a−d)2+(b+c)2

,
if ad − bc < 0.

Proof First, consider the case ad − bc > 0. Since

G(β)Z = G(β)WX = G(β)
(
AA�)−1/2

AS = S,

it implies G(β) = A−1(AA�)1/2. Let U = ( u11 u12
u12 u22

)
be the

positive definite matrix satisfying U2 = AA�. We have
⎧
⎪⎨

⎪⎩

u2
11 + u2

12 = a2 + b2,

u11u12 + u12u22 = ac + bd,

u2
12 + u2

22 = c2 + d2.

(6)

Combining with the constrains of ad − bc > 0 and U be the
positive definite matrix, the solutions of (6) are

u11 = (a2 + b2 + ad − bc) sign(ac + bd)
√

(a + d)2 + (b − c)2
,

u12 = |ac + bd|
√

(a + d)2 + (b − c)2
,

u22 = (c2 + d2 + ad − bc) sign(ac + bd)
√

(a + d)2 + (b − c)2
.

Thus,

G(β) = A−1(AA�)1/2 = A−1U

=
⎛

⎝

(a+d) sign(ac+bd)√
(a+d)2+(b−c)2

(−b+c) sign(ac+bd)√
(a+d)2+(b−c)2

(b−c) sign(ac+bd)√
(a+d)2+(b−c)2

(a+d) sign(ac+bd)√
(a+d)2+(b−c)2

⎞

⎠ .

Similarly, if ad − bc < 0, then G(β)Z = JS, where
J = ( 0 1

1 0

)
. The solutions of (6) are

u11 = (a2 + b2 + bc − ad) sign(ac + bd)
√

(a − d)2 + (b + c)2
,

u12 = |ac + bd|
√

(a − d)2 + (b + c)2
,

u22 = (c2 + d2 + bc − ad) sign(ac + bd)
√

(a − d)2 + (b + c)2
.

Thus,

G(β) = JA−1(AA�)1/2 = JA−1U

=
⎛

⎝

(b+c) sign(ac+bd)√
(a−d)2+(b+c)2

(−a+d) sign(ac+bd)√
(a−d)2+(b+c)2

(a−d) sign(ac+bd)√
(a−d)2+(b+c)2

(b+c) sign(ac+bd)√
(a−d)2+(b+c)2

⎞

⎠ .

This completes the proof. �

Geometrically speaking, the rotation angle β12 represents
the angle between one of the column vectors in the matrix
(AA�)−1/2A and the x1-axis. In general for higher dimen-
sional case, we have G(β) = A�(AA�)−1/2, where β is the
vector of the Givens rotation angles, βij . However the for-
mula is not practically applicable, due to the fact that the
matrix A is unknown in real applications. In order to deter-
mine the rotation angles of the Givens matrix, we will adopt
a criterion based on copula parameter.

2.3 Divergence function based on copula parameter

Suppose X = (X1, . . . ,Xn) comes from the joint distribu-
tion, FX . Then according to Eq. (1), we have that dC(x) =

dFX(x)∏
i {dFXi

(xi )} , where FXi
is the marginal distribution of Xi .

That is that the derivative of the copula is the ration of the
joint density function and the product of the marginal den-
sity functions. Therefore, the copula parameters contain the
information of the dependence among X. Furthermore, the
mutual information for X can be re-presented via given cop-
ula C and its copula density φ by

MI(X) =
∫

log
dFX(x)

∏
i{dFXi

(xi)}dFX(x)

=
∫

In

log
(
dC(u)

)
dC(u)

=
∫

In

φ(u|θ) log
(
φ(u|θ)

)
du,

where In = [0,1]n. Once the independent copula param-
eters are obtained, the value of the mutual information is
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zero. Thus the copula parameter θ could be used as the mea-
surement of the dependency. The similar idea was also men-
tioned in Abayomi et al. (2008). Another point comes from
the relation of the tail dependence and copula parameters. As
shown by (2) and (3), both the upper tail dependence λU of
the bivariate Gumbel copula and the lower tail dependence
λL of the bivariate Clayton copula are monotonic function
of their copula parameters θ . Therefore the copula parame-
ters of the Gumbel copula and of the Clayton copula are also
their tail dependence parameters. This is also supported us
to use the copula parameters as the measure of dependence.

In ICA approach, we need to define an objective func-
tion for the source separation such that if the minimal value
of this objective function is attended, then the recovered
sources are independent. Since the copula parameters are
used as the dependence measurement, we illustrate by the
bivariate case in the following about how to choose the cor-
responding objective function for ICA problem. For a given
(demean) realization {Xt = (x1t , x2t )

�}Tt=1, select a copula
function and a rotation angle β12. Transform the whitening
data Z = WX by the Givens rotation matrix R = G of the
form given in (5), then compute the CML estimator θ̂ based
on transformed data. Let θ0 denote the copula parameter at
independence of the selected copula, for example θ0 = 1 for
the Gumbel copula. The magnitude

o(θ̂ |β) = ‖θ̂ − θ0‖
is used as a measure of deviation from independence be-
tween x1t and x2t for this rotation angle β12. Then search
the angle β12 to minimize o(θ̂ |β) which is regarded as
the optimal solution of the Givens rotation matrix to make
RZ = R(WX) nearly independent. In brief, we first find the
best approximation of the true copula of the transformed
data in a copula family, then measure the deviation from
independence by the fitted copula (dependence) parameter.
The objective rotation angle is obtained by minimizing the
deviation from independence defined via copula parame-
ters. In this study, we consider the best approximations of
the true copula in the three copula families: Gumbel, Clay-
ton and Gaussian. The three families are used to model up-
per tail, lower tail dependence structure and pairwise rank
correlation between the marginals of the transformed com-
ponents, respectively. Accordingly, the divergence function
based on the three copula families is defined by the follow-
ing weighted sum,

O(θ̂1, θ̂2, θ̂3|β) =
3∑

i=1

wioi(θ̂i |β), (7)

where oi(θ̂i ) = ‖θ̂ − θi0‖, θ̂i and θi0 are respectively the fit-
ted copula parameter and the independent parameter value
of the i-th copula model, and wi ’s are the positive weights.
In our simulation and empirical studies, we set the weights
wi ’s to be inverse proportional to the standard deviations of

the CML estimators. In the implementation we will rotate
the transformed components by the angles iπ/2, i = 1,2,3
to identify possible dependent structure, and include the cor-
responding measure of deviation from independence in the
divergence function O .

The idea can be extended to higher dimensional case. For
n-dimensional random variables Y1, . . . , Yn (n ≥ 2), mutual
independence implies that any subset random variables of
Y1, . . . , Yn are also mutually independent. Therefore, the di-
vergence function measuring multivariate dependence of a
selected copula function can be defined as

O(θ̂ |β) =
∑

{i,j}⊂N
wijo(θ̂ij |β)

+
∑

{i,j,k}⊂N
wijko(θ̂ijk|β) + · · · + wN o(θ̂N |β),

(8)

where the vector parameter

θ̂ = (θ̂12, . . . θ̂(n−1)n, θ̂123, . . . , θ̂N ),

denote the copula parameter estimations of the transformed
(pre-whitening and rotated via the rotation angle vector β)
data of

(Y1, Y2), . . . , (Yn−1, Yn), (Y1, Y2, Y3), . . . , (Y1, . . . , Yn),

respectively. The divergence function O(θ̂ |β) measure all
multivariate dependence of dimensionality greater then or
equal to 2. The components of the data are deemed nearly
independent when O(θ̂ |β) is close to zero. Similarly, multi-
ple copula families can be included in the divergence func-
tion (8) as in (7).

Based on the chosen copulae and the pre-whitening data
Z, the magnitude of the divergence function O(θ̂ |β) given
the rotation angle vector β , is computed in the following
steps:

(1) Rotate the data according to the rotation angle vector β;
(2) Find the currently empirical marginal distributions, F̂Yi

;
(3) Obtain CML estimator θ̂ by minimizing Eq. (4) based

on F̂Yi
;

(4) Compute O(θ̂ |β).

Thus the CML estimator θ̂ is the function of the ro-
tation angles βij , 1 ≤ i < j ≤ n. And the independent
components are identified once O(θ̂ |β) attains its mini-
mum value in the rotation angle vector β . For brevity, we
use O(β12, . . . , β(n−1)n) to denote the objective function
O(θ̂ |β), and then our ICA problem is equivalent to the min-
imization problem

min
βij ,1≤i<j≤n

O(β12, . . . , β(n−1)n), (9)

which means that we find the rotation angles β ′
ij s to mini-

mize the divergence function O(θ̂ |β) at the CML estimator
θ̂ with respect to β .
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Algorithm 1 COPICA by simulated annealing algorithm

(I) [Initialization]

(1) Center the data X to make its mean zero, and obtain its
sample covariance matrix Σ̂ .

(2) Whiten the data by setting Z = WX where W = Σ̂−1/2.

(3) Choose the copula families and define the objective
function O(β).

(II) [Optimization by simulated annealing algorithm]

(1) Select initial angles, β
(0)
i ; Choose the decreasing function

T (t) and set t = 1.

(2) Repeat until t is large enough

(2.1) Run Nt iterations of the Gibbs sampler with πT (t)(β)

as its target distribution. Pass the final sample as β(t).

(2.2) t = t + 1.

(3) Identify the optimal angle vector β∗ for O(β).

(III) [Transformation matrix]

(1) Compute R = ∏
1≤i<j≤n Gij (β

∗
ij )

(2) The optimal transformation matrix B = RW .

2.4 The details of the COPICA procedure

The COPICA procedure used to find the independent com-
ponents of a given data set X is given in Algorithm 1, in
which the optimization step is by the simulated annealing
method.

There are two crucial steps in Algorithm 1: selection of
the copulae models, and estimation of the copula parameter
and search the best rotation angles. Discussion of the two
steps are given below.

Copula selection It is well known that copulae are invari-
ant with respect to strictly increasing transformations but
not necessary to general linear transformation. Hence even
if we can find the “true” copula family of the whiten ran-
dom vector Z, the “true” copula after rotation might still
fall in another family. Therefore, the key is not to find the
“true” copula but to choose the proper copulae whose best
approximations are useful in providing dependence measure
under mis-specification situation. In general, prior informa-
tion of the data or selection criteria are helpful to choose
the copulae, for example, the Copula Information Criterion
(CIC in short) proposed by Grønneberg and Hjort (2008).
Due to the characteristic of the signals/sources in engineer-
ing or finance applications, heavy-tailed source is a widely
used assumption in blind source separation (BSS) problems,
for example, Kidmose (2001) and Chen and Wu (2007). In
addition to BSS, the heavy-tailed assumption is also popu-
lar in the analysis of EEG signal (Tsai et al. 2006), natu-
ral image representation (Olshausen and Field 1996) and so
on. The existence of tail dependence is a special feature of
heavy-tailed signals/sources as well as an indication of non-
independence. In this study, we utilize the tail dependence

feature of the Gumbel and Clayton copulae to estimate the
dependency of the transformed data. The Gaussian copula
is also considered to capture pairwise rank correlations be-
tween the marginals. In an extensive simulation study, we
compare the copula based dependence measure with the
nonparametric Kendall’s τ in various settings of misspeci-
fied models. For the reason of concision, we only report the
summary results here without detailed description. The re-
sults show that the dependence measured by the copula pa-
rameters is in good accordance with the Kendall’s τ . And
under misspecified models, the copula-based measure still
provide valuable dependence information. The advantages
of the copula based criterion over the Kendall’s τ is its faster
convergence rate and higher SNR values in ICA applica-
tion. In addition, we will demonstrate the effectiveness of
the three copula based dependency measure by blind source
separation (BSS) examples in next section.

Optimization procedure for identifying best rotation angles
Recall from Eq. (4), we estimate the copula parameters by
the CML estimator which gives the best approximation to
the “true” copula in its family based on the transformed
data. Due to the constraints of copula parameter estimation
method, it is in general difficult to have closed form solu-
tion of the CML estimators. As a result there is no explicit
form of the objective function O(β12, . . . , β(n−1)n) even for
low dimensional case. Derivative-free optimization meth-
ods, such as genetic algorithm, simulated annealing algo-
rithm, direct search method and so on, can aid to solve the
minimization problem defined in Eq. (9). Herein, the sim-
ulated annealing (SA) algorithm, proposed by Metropolis
et al. (1953) and introduced as an optimization technique by
Kirkpatrick et al. (1983), is used as an illustration to search
these optimal angles. For simplicity of notation, we denote
the rotation angels β12, . . . , β(n−1)n by β1, . . . , βq , where
q = n(n − 1)/2. First define a density

πT (t)(β) ∝ exp
{−O(β)/T (t)

}
,

where O(β) is the objective function, β = (β1, . . . , βq)�
and T (t) is the “temperature” at time t which is a decreasing
function from initial temperature, T (0) > 0, to 0+. The key
step of the SA algorithm is that for t , we run Nt iterations
of the Gibbs sampler with πT (t)(β) as its target distribution,

and then choose the final sample as β(t) = (β
(t)
1 , . . . , β

(t)
q )�

that denotes β at time t . In order to speed up our optimiza-
tion process, we use exp(O(β)) in the SA algorithm instead
of O(β) directly. For more details about the SA algorithm,
please refer to Liu (2001).

In implementing the COPICA with SA algorithm, the
data is rotated by each sampled angles βij , and the cop-
ula parameter vector θ are re-estimated based on the rotated
data to compute the magnitude of the divergency function.
And in the Gibbs sampler, the simple inversion method is
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employed by using discretization of the continuous cumu-
lative distribution function. Note here for this discretization
method, suppose that we approximate the cumulative distri-
bution function of πT (t)(βi) by K points, β

j
i , j = 1, . . . ,K .

Then for each point, β
j
i , CML approach is used to obtain

the copula parameter estimator based on the rotated data
with respect to β

j
i , and evaluate the corresponding objec-

tive function values. Finally we can have the approximated
cumulative distribution function for βi .

When we implement SA algorithm, we need to set the
initial values of rotation angles, β , and the temperature,
T (t). For the initial β , we can simply set the β = 0 for
the initial angles or we can set β based on our prior infor-
mation, for example, the angles obtained by the FastICA.
Consider the temperature T (t). In order to get the global
optimal point, the temperature T (t) of the SA should de-
crease slowly such as O(log(t)−1), for details we refer to
Liu (2001). However in practice, it is too slow to get the
global optimal point and instead the linear or exponential
temperature decreasing is used. In our COPICA, the tem-
perature is chosen as O(t−1/4) which would lead to a rea-
sonable convergent area quickly. From our simulations and
real example results, it seems that this T (t) works well in
our approach.

The complexity of Algorithm 1 can be analyzed as fol-
lows. First we consider the 2-dimensional situation and there
is only one angle β1 needed to identify via SA algorithm.
Then in each iteration of Gibbs sampler in SA algorithm,
the complexity of the inversion method is O(KSCT log(T )),
where K is the number of points to obtain the approxima-
tion cumulative distribution function, T log(T ) is the com-
plexity to sort each marginal source, C is the cost for max-
imization in CML method, and S is the number of the cop-
ula parameters used in our divergence function. Finally for
general n-dimensional problem, the complexity of sweeping
q = n(n − 1)/2 angles in each iteration of the Gibbs sample
is O(n2KSCT log(T )).

3 COPICA for blind source separation

We illustrate the performance of the proposed COPICA
method by solving blind source separation (BSS) problems.
Recently, blind source separation by ICA has received lots
of attention because of its potential applications in signal
processing such as in speech recognition systems, telecom-
munications and medical signal processing. In BSS prob-
lems, the observations xt = (x1t , . . . , xnt )

� are assumed
to be mixtures of n mutually independent sources, st =
(s1t , . . . , snt )

� at time t , that is

xt = Ast , t = 1, . . . , T , (10)

where A is an n × n invertible mixing matrix. The goal of
the BSS problem is to estimate the mixing matrix A and

recover the original sources st , for given mixtures, xt , t =
1, . . . , T simultaneously. If the matrix A is invertible and
known, then the independent sources can be recovered by
A−1xt , t = 1, . . . , T . While applying ICA methods to solve
the BSS problems, the optimal transformation matrix will
be the inverse matrix, A−1, multiplying by a permutation
matrix or a scaler.

In the following examples, we generate the sources
{st }Tt=1 independently from a mixture normal distribution
or from natural sound signals. The observation vectors are
then generated by Eq. (10) for a given mixing matrix, A. In
order to measure the performance of the COPICA method,
we consider the following signal/noise ratio (SNR) value

SNRsi (ŝi )[B] = 10 log10
(‖si‖2/‖si − ŝi‖2) (11)

where si = (sit , t = 1, . . . , T ), i = 1, . . . , n, are the origi-
nal signals from the sources, ŝi = (ŝit , t = 1, . . . , T ), i =
1, . . . , n, are the recovered signals transformed by the ma-
trix B found by the COPICA method, and ‖ · ‖ denote
the L2-norm. Note that the columns of the inverse of the
transformation matrix, B , will be proportional to the true
mixing matrix A, and the signals are normalized for SNR
computation. By the definition of SNR in Eq. (11), larger
value of SNR indicates better performance. We consider
SNR ≥ 10 as a threshold of high SNR value, see also
Sodoyer et al. (2003). By its definition, SNR ≥ 10 is equiv-
alent to ‖si − ŝi‖2/‖si‖2 ≤ 10 %, which implies approxi-
mately at least 90 % of the signals are recovered by ŝi .
Statistical reasoning of using 10 as high SNR value is also
given below. If under independent and normal assumptions,
we have roughly ‖si‖2 ∼ χ2

T and ‖si − ŝi‖2 ∼ χ2
T −m, where

T � m, hence ‖si‖2/T

‖si−ŝi‖2/(T −m)
∼ FT,T −m. Since the proba-

bility of the event {‖si − ŝi‖2/‖si‖2 ≤ 10 %}(≡ SNR ≥ 10)

is very small for large T , it is reasonable to consider 10 as a
large SNR value.

Example 1 Three sources are generated independently from
the following mixture normal density,

f (si) = 0.7fN(0,1)(si) + 0.3fN(0,32)(si),

where fN(μ,σ 2) is the density function of the normal dis-
tribution with mean μ and variance σ 2. That is each sam-
ple is generated from N(0,1) with probability 0.7 and from
N(0,32) with probability 0.3. The mixing matrix A is set to
be
⎛

⎝
1.0000 −2.0000 1.0000

−1.0000 1.0000 2.0000
−1.0000 1.0000 1.0000

⎞

⎠ . (12)

Two copulae, Gumbel and Clayton are used to measure the
tail dependence. The objective function is set to be
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Fig. 2 The simulation results for a three dimensional blind source sep-
aration problem with mixture normal sources. The red lines are the
original sources, and the blue lines are the recovered signals (Color
figure online)

O(θ̂) = ω1 ∗ |θ̂123,Gumbel − 1|
+ ω2 ∗

∑

i<j

|θ̂ij,Gumbel − 1|

+ ω3 ∗
∑

i<j

|θ̂ij,Clayton|

+ ω4 ∗
∑

i<j

|θ̂ij,Gaussian|, (13)

where the weights (ω1,ω2,ω3,ω4) = (200,300,200,500)

are chosen to be inverse proportional to the standard devia-
tions of the CML estimators of the copula parameters. After
100 iterations of the COPICA algorithm, the inverse trans-
formation matrix found by the COPICA procedure is

B−1 =
⎛

⎝
1.9974 −3.5685 1.7266

−1.9178 1.8719 3.6426
−1.9304 1.8337 1.8368

⎞

⎠ .

Note that each column of this matrix is approximately pro-
portional to the corresponding column of the genuine mix-
ing matrix A, and the three recovered signals give high SNR
values, 25.3238, 26.0529 and 32.8434. Figure 2 shows the
original source signals and the recovered signals, which also
illustrates high similarity between the two signals. The re-
sults show that the COPICA method successfully solve this
simulated BSS problem.

Example 2 In this example we demonstrate a real case with
one near-Gaussian-tail signal. Three natural sounds of thun-
der, water and fire each containing 5000 sample points are
used as the original signals. The sample kurtosises of these
three natural sounds are 3.5323, 29.4978 and 16.6685 re-
spectively. Note that the p-values of the Jarque-Bera test for
these natural sounds are all less than 10−3, which indicates
non-Gaussianity. The first source (thunder sound) is a near-
Gaussian-tail sample since its sample kurtosis is close to 3,

Fig. 3 The numerical results for three dimensional blind source sepa-
ration problem with three natural sounds (thunder, water and fire). The
red lines are the original sounds, green lines are their mixtures, and the
blue lines are the recovered signals (Color figure online)

while the other two sources (water and fire sounds) are of
heavy-tailed distributions. Using the same mixing matrix in
Eq. (12) and the objective function defined in Eq. (13), after
100 iterations of the COPICA method, we obtained

B−1 =
⎛

⎝
1.8946 −2.0933 0.7112

−1.8875 0.9933 1.5947
−1.8888 1.0118 0.8202

⎞

⎠ ,

and the corresponding SNR values are 35.6150, 35.2765 and
32.3912. We also found great similarity in the original natu-
ral sounds and the recovered signals shown in Fig. 3.

Example 3 In this example we demonstrate a real case with
three near-Gaussian-tail signals. Three sounds with 10000
sample points, boat engine, rain and wind, are used as the
original signals. The values of their sample kurtosis are 3.20,
3.23 and 3.71, respectively. Note that the p-values of the
Jarque-Bera test for the signals are all less than 10−3, which
indicates non-Gaussianity.

The mixing matrix A and the objective function are the
same as in Example 2. After 100 iterations of the COPICA
method, we obtain

B−1 =
⎛

⎝
5.6205 −3.3402 2.1439

−6.0068 1.6872 3.4948
−5.8871 1.7050 1.6141

⎞

⎠ ,

and the SNR values are 25.8270, 35.3203 and 23.8432 re-
spectively. The time plots of the original natural sounds and
the recovered signals are given in Fig. 4, again the result
show that the COPICA method successfully separate the
original natural sounds from their mixtures.

4 Comparisons with the FastICA

The FastICA (Hyvärinen and Oja 1997; Hyvärinen 1999a)
is one widely used and efficient method for identifying in-
dependent components. The FastICA is a two-step method.
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Fig. 4 The numerical results for three dimensional blind source sepa-
ration problem with three natural sounds (boat engine, rain and wind).
The red lines are the original sounds, green lines are their mixtures,
and the blue lines are the recovered signals (Color figure online)

Table 1 The kurtoses of the mixture normal distributions with σ1 = 1
and σ2 = 3

Near-Gaussian-tailed Heavy-tailed

p = 0.1 p = 0.2 p = 0.4 p = 0.6 p = 0.7

Kur. 3.2570 3.5610 4.3698 5.6122 6.4879

After whitening the data at the first step, the FastICA find
the independent components based on a fixed-point iteration
scheme for finding a maximum of the non-Gaussianity of a
linear projection. And the kurtosis or negentropy is used as
the measure of non-Gaussianity. The computer program of
the FastICA is available at the web-site,

http://www.cis.hut.fi/projects/ica/fastica/.

In this section, we compare the performance of COPICA
and FastICA for the BSS problems via simulation study.
The original independent sources are generated from mix-
ture normal distributions with the pre-specified parame-
ters σ1, σ2 and p. The corresponding kurtosis is 3{pσ 4

1 +
(1−p)σ 4

2 }/{pσ 2
1 + (1−p)σ 2

2 }2. Thus we can generate sam-
ples with different kurtosis by choosing proper values of p,
σ1 and σ2. In the following, (σ1, σ2) is set to be (1,3) and
p = 0.1,0.2,0.4,0.6,0.7 respectively, and the correspond-
ing kurtoses are given in Table 1.

Three dimensional BSS problem is considered for com-
parison. At each replication, three original sources are gen-
erated independently from the same mixture normal distri-
bution with sample size T , and the observations are obtained
by mixing the original sources with the matrix A given in
Eq. (12). Two sample sizes T = 1000 and T = 5000 are con-
sidered and 100 replications are performed. Since there are
three signals, 300 SNR values are obtained for each sample
size. For each value of p = 0.1,0.2,0.4,0.6,0.7, we report
the medians and standard deviations of the 300 SNR val-
ues obtained respectively by the two methods. The results

Table 2 Medians and standard deviations of the SNR for the BBS
problem with three mixture-normal sources mixed by a fixed matrix,
where N1 denotes the number of sources whose COPICA SNR val-
ues are larger than the FastICA SNR values, N2 is a 3 × 1 vector
whose components denote the non-recovery numbers of FastICA for
each source, and N3 (or N4) is a 3 × 1 vector with each component
representing the number that the COPICA (or FastICA) SNR values
are less than 10 (including the number of non-recovery)

Median std. N1
N2

N3
N4

T = 1000 p = 0.1 28.05 4.78 297 (0,0,0)

(7.56) (6.14) (15,16,11) (74,64,75)

p = 0.2 27.67 4.44 290 (0,0,0)

(14.62) (6.59) (5,4,2) (19,19,26)

p = 0.4 27.73 4.66 274 (0,0,0)

(18.63) (5.77) (0,0,0) (1,3,5)

p = 0.6 27.39 4.19 219 (0,0,0)

(22.62) (6.98) (0,0,0) (1,0,1)

p = 0.7 27.05 4.08 225 (0,0,0)

(22.82) (6.25) (0,0,0) (1,1,0)

T = 5000 p = 0.1 31.81 4.51 290 (0,0,0)

(15.09) (6.52) (1,1,2) (19,13,23)

p = 0.2 32.30 4.15 280 (0,0,0)

(21.44) (6.34) (0,0,0) (0,0,1)

p = 0.4 31.43 4.90 225 (0,0,0)

(26.27) (6.11) (0,0,0) (0,0,0)

p = 0.6 30.45 4.21 162 (0,0,0)

(29.35) (5.54) (0,0,0) (0,0,0)

p = 0.7 30.98 4.93 184 (0,0,0)

(29.38) (5.69) (0,0,0) (0,0,0)

are given in the first two columns of Table 2. The reason
for reporting the medians instead of the means is to avoid
the case of non-recovery (the FastICA method sometimes
cannot recover the original sources for near-Gaussian-tailed
case). We also compute the number of sources whose COP-
ICA SNR values are larger than the FastICA SNR values
denoted by N1. And let N2 be a 3 × 1 vector whose com-
ponents denote the non-recovery numbers of FastICA for
each source, and let N3 (or N4) be a 3 × 1 vector with each
component representing the number that the COPICA (or
FastICA) SNR values are less than 10 (including the num-
ber of non-recovery). The results of N1–N4 are given in the
third and fourth columns of Table 2.

We summarized the results by the tail type of the origi-
nal sources. The distribution is referred to “near-Gaussian-
tailed” if the kurtosis is less than 4, to “heavy-tailed” if the
kurtosis is greater than or equal to 4. In all cases, the COP-
ICA method gives larger SNR medians and smaller stan-
dard deviations than the FastICA method. Note that there are
300 original sources for each pair (p,T ), since all the val-
ues of N1 > 150, the COPICA method attains higher SNR

http://www.cis.hut.fi/projects/ica/fastica/
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values more than half of all time. Significant dominance in
the SNR medians and N1 of the COPICA over the FastICA
is apparent for smaller sample size (T = 1000) and near-
Gaussian-tail case p = 0.1,0.2. The non-recovered number
of the FastICA method, N2, are noted when p = 0.1,0.2,
T = 1000 and p = 0.1, T = 5000, which indicates the
FastICA method might fail to recover the near-Gaussian-
tailed signals. All the values of N3 are equal to zero, im-
plies the SNR values obtained by the COPICA are greater
than 10 for all cases. Moreover, there are significant times
(N4) that the FastICA attains small SNR (≤10) values for
the near-Gaussian-tailed case p = 0.1,0.2, T = 1000 and
p = 0.1, T = 5000. Based on the above, we conclude that
for all generated sources, COPICA successfully identifies
the three independent components, while FastICA works
well for heavy-tailed sources, but may fail for the near-
Gaussian-tailed sources. The reason might be due to the cri-
terion of the FastICA is based on the kurtosis and negen-
tropy which is not sensitive to near Gaussian-tailed distribu-
tions. However, the signals with kurtosis close to 3 do exist
in real application. Recall the sample kurtosis of thunder,
boat engine, rain and wind sounds in Examples 2 and 3 are
all close to 3. We further applied the FastICA method to
these two real sound examples. For the case with one near-
Gaussian-tailed and two heavy-tailed signals (Example 2),
the inverse matrix found by the FastICA is

B−1
FastICA =

⎛

⎝
1.8889 −2.0828 0.7548

−1.8882 1.0274 1.5716
−1.8880 1.0311 0.7970

⎞

⎠ ,

and the SNR’s are 37.0375, 51.6663 and 46.4812 which
are all larger than those obtained by the COPICA method.
While for the case with three near-Gaussian-tail signals (Ex-
ample 3), the inverse transformation matrix found by the
FastICA of is

B−1
FastICA =

⎛

⎝
5.7296 −3.3709 1.7740

−5.5537 2.1166 3.9765
−5.6351 2.0033 2.0973

⎞

⎠ ,

and the SNR’s are 18.3674, 18.3564 and 22.6044 which are
all smaller than those found by the COPICA method. The re-
sults of the real sound examples also support the aforemen-
tioned simulation findings. Finally from Table 2, one can see
that both methods improve their SNR median values when
the sample size increases from T = 1000 to T = 5000.

In addition, we also compare the performance of the
two methods by using random mixing matrix. The original
sources are generated independently from a mixture-normal
distribution with σ1 = 1, σ2 = 3 and p ∈ {0.1,0.2,0.4,

0.6,0.7}. The size of each source is set to be 1000. How-
ever, in each replication, each component of the mixing
matrix, A, is generated from [−5,5] uniformly such that
A is invertible. That is the mixing matrix is different for
each replication. The 100 simulation results are shown in

Table 3 Medians and standard deviations of the SNR for the BBS
problem with three mixture-normal sources mixed by a random matrix,
where N1, . . . ,N4 are defined the same as in Table 2

Median std. N1
N2

N3
N4

p = 0.1 27.97 4.82 298 (0,0,0)

(7.07) (6.32) (20,18,12) (72,63,66)

p = 0.2 27.95 4.31 288 (0,0,0)

(13.97) (6.15) (0,1,1) (19,21,23)

p = 0.4 27.51 4.31 260 (0,0,0)

(19.64) (6.34) (0,0,0) (4,1,4)

p = 0.6 27.90 4.16 236 (0,0,0)

(21.64) (6.37) (0,0,0) (0,0,0)

p = 0.7 27.67 4.46 241 (0,0,0)

(22.64) (6.39) (0,0,0) (1,1,0)

Table 3. From Table 3 similar conclusions are obtained
as from Table 2. That is COPICA recovers all original
sources from their mixtures but FastICA might be fail for
some near-Gaussian-tail sources, and overall COPICA at-
tains higher SNR than FastICA, especially for the cases of
near-Gaussian-tail sources.

The infomax principle, maximizing the output entropy of
a neural network with nonlinear outputs, has been applied
to develop ICA algorithm in Bell and Sejnowski (1995), and
this principle is closely related to the maximum likelihood
approach. Hyvärinen (1999a) pointed out that the fixed-
point scheme in FastICA can be directly applied to infomax
type ICA algorithm by choosing the corresponding nonlin-
earity g, for example, g(y) = −2 tanh(y) for heavy-tailed
sources. We also studied the performance of the FastICA
using the infomax principle with g(y) = −2 tanh(y) for the
three dimensional BSS problem with different mixture nor-
mal sources and the mixing matrix A given by Eq. (12).
Since the results are similar to Table 2, thus details are omit-
ted here.

5 COPICA vs. nonparametric rank-based approach

In this section, we compare the COPICA method with sev-
eral nonparametric rank-based ICA approaches via simula-
tion studies. Many non-linear dependence measures for a
pair of continuous random variables (X,Y ) are based on
ranks. Among most commonly used are Kendall’s τ and
Spearman’s ρ. Kendall’s τ , is defined as the difference be-
tween probability of concordance and probability of discor-
dance. Spearman’s ρ is defined as the Pearson’s correlation
coefficient between the ranks of the two samples and for a
given copula model. More details of these two measures can
be found in Nelsen (2006). Another nonparametric approach
for measuring the dependence is the Blomqvist’s β (Schmid
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and Schmidt 2007). Recently, Kirshner and Póczos (2008)
suggested using the Schweizer-Wolff σSW , defined as

σSW = 12
∫

[0,1]2

∣
∣C(u, v) − uv

∣
∣dudv, (14)

to measure the pairwise dependence (Schweizer and Wolff
1981). They proposed an algorithm for ICA by replacing the
copula function in (14) with empirical copula.

Most of the ICA algorithms use an approximation to mu-
tual dependence as their objective functions. And the per-
formance of an ICA algorithm depends on how accurate the
approximate dependence measure is. The above four non-
parametric dependence measures are all zero if X and Y are
independent. However, the converse is not necessary true.
Kirshner and Póczos (2008) showed that σSW is more ro-
bust than Kendall’s τ and Spearman’s ρ with added out-
liers and noise. However, to obtain the nonparametric mul-
tivariate empirical distribution requires an intensive compu-
tational effort when sample size is large or dimensionality
is high. It might even collapse when dimension is too high
say higher than 4. A semiparametric approach such as COP-
ICA, which estimates the joint distribution via copula func-
tion and one dimensional empirical distribution, can provide
an alternative to greatly relieve the computational burden.

We conduct several simulation studies to compare the
performance of COPICA with nonparametric ICA methods
based on Kendall’s τ , Spearman’s ρ, Blomqvist’s β , and
Schweizer-Wolff σSW . Basically COPICA method attains
higher SNRs than the ICA methods based on Kendall’s τ ,
Spearman’s ρ or Blomqvist’s β , and is competitive with
the ICA method via Schweizer-Wolff σSW . To save the
space, we only show comparison between COPICA and ICA
method via Schweizer-Wolff σSW (ICA_SW). Note that the
ICA-SW used here is similar to a ICA algorithm proposed
by Kirshner and Póczos (2008). In the simulation study to
compare the ICA performance of COPICA and ICA-SW,
various types of heavy-tailed sources are used to generat-
ing original independent sources. Similar to the experimen-
tal setting of Bach and Jordan (2002), we consider 12 differ-
ent one-dimensional densities with kurtosis greater than 3,
shown in Fig. 5, including those densities commonly used in
finance (a)–(d), in reliability and lifetime modeling (e)–(h)
and (k) and in communications (i), (j) and (l).

For the bivariate case, we generate two independent
sources each of size 1,000 from the same density, normal-
ize the sources, and then mix them by a matrix whose ele-
ments are randomly sampled from [−5,5]. We compute the
SNR’s of the COPICA and ICA_SW for the 12 heavy-tailed
sources, respectively. Figure 6 plots the medians of the dif-
ferences in the SNRs of COPICA and ICA_SW (COPICA-
ICA_SW) based on 100 replications. Since most of the me-
dians in Fig. 6 are around zero, the results indicate the
ICA performance of the semiparametric COPICA method is
competitive with the nonparametric ICA_SW method, Also,

Fig. 5 Probability density functions of heavy-tailed sources. (a) Stu-
dent t with 3 degrees of freedom (d.f.); (b) Student t with 5 d.f.;
(c) double exponential distribution; (d) mixture of two Gaussians,
where the density is f (x) = 0.5φ(x+0.5)+φ(2x−1); (e) exponential
distribution; (f) Chi-square distribution with 3 d.f.; (g) Chi-square dis-
tribution with 5 d.f.; (h) gamma distribution; (i) Rayleigh distribution;
(j) Nakagami distribution; (k) Weibull distribution; (l) Rician distribu-
tion (Color figure online)

Fig. 6 The medians of SNR(COPICA)-SNR(ICA_SW) absed on 100
replications, where the two original independent sources are generated
from the same density in (a)–(l) with sample size 1,000 (Color figure
online)

in Table 4 we list the numbers of SNRs greater than 10
(or 15) in recovering the 200 mixed signals (of two sources
and 100 replications) for COPICA and ICA_SW. The results
show both methods recover almost all the mixed signals with
SNRs greater 10. The SNRs of both methods increase as
the sample size increases from 1,000 to 5,000, and the re-
sult based on 5,000 samples are similar to the ones shown
in Fig. 6 and Table 4. However, the computational time of
ICA_SW increases quadratically (i.e., 25 times) while the
computational time of COPICA only increases linearly (i.e.,
5 times). In the semiparametric COPICA approach, sort-
ing is only needed for one dimensional marginal empiri-
cal distributions for each source and the joint distribution is
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Table 4 The number of SNRs greater than 10 (or 15) of COPICA and
ICA_SW in the 2-dimensional cases

Case #{SNR ≥ 10} #{SNR ≥ 15}
COPICA ICA_SW COPICA ICA_SW

(a) 200 200 197 198

(b) 200 193 188 176

(c) 199 200 191 200

(d) 200 200 200 200

(e) 200 200 200 200

(f) 200 200 200 200

(g) 200 200 200 200

(h) 200 200 198 200

(i) 200 200 195 200

(j) 200 200 200 200

(k) 200 200 200 200

(l) 200 200 197 200

Fig. 7 Box-plots of the SNR difference (COPICA - ICA_SW) for
2-dimensional (left) and 6-dimensional (right) sources generated ran-
domly from the 12 heavy tailed densities (a)–(l) (Color figure online)

linked by parametric copulae. While for the nonparametric
approach ICA_SW, sorting is required for both one dimen-
sional and two dimensional joint copulae. In sum this means
that our method is computationally lighter than their tech-
nique.

Another scenario of the experiments is to generate each
independent source randomly from the 12 heavy tailed den-
sities (a)–(l) (therefore the sources are not necessary of the
same distribution) and then mix the sources by a matrix
with elements sampled randomly from [−5,5]. We show
the SNR differences (COPICA-ICA_SW) of 2-dimensional
and 6-dimensional cases in Fig. 7. The SNR’s are obtained
after 90 iterations, the sample size of each source is 1,000,
and the numbers of replication are 1,000 and 100 for the
2-dimensional and 6-dimensional cases, respectively. The
results show that the COPICA method is still competitive

with the ICA_SW method for the random mixing bivariate
cases. Nevertheless, in the 6-dimensional case the COPICA
method attains higher SNR than the ICA_SW method on the
average.

6 Conclusions and discussions

In this article, a new ICA method, COPICA, is proposed.
Similar to the FastICA, the COPICA method is also a two-
step procedure. After whitening the data, COPICA projects
the whiten data into the n-dimensional plane simultane-
ously, and this projection is chosen in terms of the param-
eters of the pre-specified copulae. Thus in COPICA, ICA
problem is transformed to a minimization problem whose
objective function is defined by the weighted combination of
the divergence functions of copula parameters. The weights
in the objective function are chosen to be inverse propor-
tional to the standard deviations of the parameter estima-
tors. Here the copula parameters are estimated via CML ap-
proach. Thus given a rotation matrix, R and the current re-
covered data, Y = R(WX), the empirical marginal distribu-
tions of Yi are obtained first and then the copula parameter
vector, θ , is found by maximizing Eq. (4). Hence we only
have parameterized copula model assumption and do not
have other assumptions on the marginal distribution. That
is why we treat our COPICA as a semiparametric approach.

By comparing COPICA with the commonly used FastICA
method and the nonparametric ICA methods, we find that
the copula parameter based divergence function of the three
copulae Gumbel, Clayton and Gaussian provide useful de-
pendency measures when the observations come from a lin-
ear mixing model. The simulation and real data studies in-
dicate that COPICA attains higher SNR than FastICA in
BSS problems, especially when the original sources come
from near-Gaussian-tailed distributions. Also, the COPICA
is shown to have higher SNRs than the ICA_SW on the aver-
age in the 6-dimensional case. Another interesting problem
is to study the COPICA method for multi-modes densities,
which is referred to our future work.

We investigate the sensitivity of COPICA w.r.t. weights
via the BSS problem. A preliminary study is conducted here.
In addition to (ω1,ω2,ω3,ω4) = (200,300,200,500) in
Example 1, six more weight combinations (ω1,ω2,ω3,ω4)

are considered and five mixture-normal distributions with
p = 0.1,0.2,0.4,0.6,0.7 are considered. In each replica-
tion three independent sources of length T = 1000, gen-
erated from a mixture-normal distribution, are mixed by
the matrix A defined in (12). For each p, the average
SNRs of 3 × 100 independent copies are obtained for each
weight combination. The highest average SNR among the
seven weight combinations is taken as the benchmark value.
The ratios of the average SNR of each weight combina-
tion to the benchmark SNR are reported in Table 5. The
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Table 5 The average SNR ratios of COPICA for different weight com-
binations of the objective function (13)

Weights p

0.1 0.2 0.4 0.6 0.7

(200,300,200,500) 0.84 0.87 0.82 0.86 0.83

(200,200,200,200) 1.00 1.00 1.00 1.00 1.00

(0,200,200,200) 0.97 0.95 0.98 0.89 0.99

(200,200,0,200) 0.94 0.89 0.75 0.74 0.79

(200,200,0,0) 0.84 1.00 0.84 0.89 0.96

(200,0,200,0) 0.94 0.87 0.76 0.78 0.83

(200,0,0,200) 0.78 0.61 0.31 0.25 0.30

Highest ave. SNR 6.25 7.56 14.83 17.79 17.98

initial rotation angles are set to be zero and the number
of iterations in the SA algorithm are set to be 100. The
SNR ratios of the first six weight combinations range from
0.74 to 1, which indicates the COPICA is only slightly
sensitive to these six weight combinations. The weight
combinations (200,300,200,500) has relatively robust per-
formance among 7 weight cases. The weight combina-
tions (200,200,200,200) and (0,200,200,200) are the
best two obtaining the high SNRs, while the combination
(200,0,0,200) has the poorest performance in this sce-
nario. This suggest the necessity of including the Gumbel
and Clayton copulae in the objective function. Moreover,
the highest average SNR of the COPICA increases as p in-
creases (equivalently the kurtosis increases, see Table 1) af-
ter 100 iterations in the SA algorithm. To find general rules
for weight selection of high SNR further studies are still
needed.
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