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The minimum number of colors needed to properly color the vertices and edges of a graph
G is called the total chromatic number of G and denoted by χ ′′(G). It is known that if
a planar graph G has maximum degree � � 9, then χ ′′(G) = � + 1. Recently Hou et al.
(Graphs and Combinatorics 24 (2008) 91–100) proved that if G is a planar graph with
maximum degree 8 and with either no 5-cycles or no 6-cycles, then χ ′′(G) = 9. In this
Note, we strengthen this result and prove that if G is a planar graph with maximum
degree 8, and for each vertex x, there is an integer kx ∈ {3,4,5,6,7,8} such that there
is no kx-cycle which contains x, then χ ′′(G) = 9.

© 2010 Elsevier B.V. All rights reserved.
1. Introduction

A total-k-coloring of a graph G = (V , E) is a coloring of
V ∪ E using k colors such that no two adjacent or incident
elements get the same color. The total chromatic number
of G , denoted by χ ′′(G), is the smallest integer k such that
G has a total-k-coloring. It is clear that χ ′′(G) � � + 1
where � is the maximum degree of G . Behzad [1] and
Vizing [6] conjectured independently that χ ′′(G) � � + 2
for every graph G . This conjecture was verified for general
graphs with � � 5. For planar graphs of large maximum
degree, there is a stronger result. It is known that a pla-
nar graph G with � � 9 has χ ′′(G) = � + 1 [2,7,4]. This
stronger result does not hold for planar graphs of maxi-
mum degree at most 3. For � = 4,5,6,7,8, it is unknown
if every planar graph with maximum degree � is total-
(� + 1)-colorable. Shen et al. [5] proved that a planar
graph G with maximum degree 8, and with no intersect-
ing triangles has χ ′′(G) = 9. Hou et al. [3] proved that a
planar graph G with maximum degree 8, and with either
no 5-cycle or no 6-cycle has χ ′′(G) = 9. In this paper, we
strengthen this result and prove the following result:
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Theorem 1. Assume G is a planar graph with maximum de-
gree 8. If for each vertex x, there is an integer kx ∈ {3,4,5,6,

7,8} such that G has no kx-cycle which contains x, then
χ ′′(G) = 9.

2. Proof of Theorem 1

Suppose the theorem is false. Let H be a planar graph
with maximum degree 8, such that for each vertex x ∈
V (H), there is an integer kx ∈ {3,4,5,6,7,8} such that H
has no kx-cycle containing x. H is called a counterexample
to the theorem if χ ′′(H) > 9. Among all the counterexam-
ples, take a graph G with minimum sum of its number
of vertices and edges. G is called a minimum counterex-
ample. For a vertex v of G , the degree d(v) of v is the
number of edges incident to v , and for a face f , the de-
gree d( f ) of f is the number of edges on the boundary
of f . A vertex of G of degree i (respectively, at most i or
at least i) is called an i-vertex (respectively, i−-vertex or
i+-vertex). A face of degree at least i (respectively, at most
i or at least i) is called an i-face (respectively, i−-face or
i+-face). The following remark is an easy observation:

Remark 2. The graph G is 2-connected, and hence has no
vertices of degree 1.
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The following lemma is adapted from the original
proofs found in [3,2].

Lemma 3. The graph G is 2-connected and has the following
properties:

(1) If uv is an edge of G with d(u) � 4, then d(u) + d(v) �
� + 2 = 10 (and so 2-vertices of G are adjacent only to
�-vertices).

(2) There is no cycle C in which half of its vertices are 2-ver-
tices.

(3) The graph of all edges joining 2-vertices to �-vertices is a
forest (and so there is an injective function Φ from the set of
2-vertices of G to the set of �-vertices of G such that Φ(v)

is adjacent to v. The vertex Φ(v) is called the master of v).
(4) If {v, v1, u1} induces a triangle and v1 is a 2-vertex, then

v is not adjacent to another 2-vertex v2 .

(1) If G contains an edge uv with d(u) � 4 and d(u) +
d(v) � � + 1, then we can totally color G \ {uv} with
� + 1 colors (by the minimality of G), erase the color
on u, and then color uv and u in turn, since the
number of colors that we may not use is at most
(� − 1) + 1 = � for uv and 4 + 4 = 8 < � + 1 for u.
This contradicts the choice of G as a counterexample.

(2) This is an easy consequence of the previous statement.
(3) Suppose the statement is false then G contains a cycle

C = v1 v2 . . . v2k v1 of even length such that d(v1) =
d(v3) = · · · = d(v2k−1) = 2. Then, by the minimal-
ity of G , we can totally color G \ {v1, v3, . . . , v2k−1}
with � + 1 colors. Each edge of C now has at most
(� − 2) + 1 = � − 1 colors that may not be used on
it, hence at least two that may, and so the problem of
coloring the edges of C is equivalent to coloring the
vertices of an even cycle, given a choice of two colors
at each vertex; it is well known that this is possible.
The 2-vertices of C are now easily colored, and that
contradicts the choice of G as a counterexample to the
theorem.

(4) On the contrary, suppose v v1u1 is a triangle with
d(v1) = 2 and v is adjacent to a 2-vertex v2. The other
neighbor of v2 is u2. Then, by minimality of G , we
can totally color G \ u1 v1. Let φ be the coloring ob-
tained, then erase the color on v1, v2. Assume that
φ(v v1) = 1, φ(vu1) = 2 and φ(v v2) = 3. It is easy to
verify that color 1 does not appear at u1. Since oth-
erwise, there must be a color α that does not appear
at u1. We color v1u1 with α. The elements incident or
adjacent to vertices v1 and v2 use at most four colors.
So we can color v1, v2 properly. It follows that φ is ex-
tended to a total-(�+1)-coloring of G . If φ(v2u2) �= 2,
then recolor v v2 with 2, vu1 with 1, v v1 with 3, and
color v1u1 with 2. Otherwise recolor v v1 with 3, v v2
with 1, and color v1u1 with 1. Next color vertices
v1, v2 properly. In any case, φ can be extended to a
total-(� + 1)-coloring of G . This contradicts the mini-
mality of G .

Let V , E , F be the vertex set, edge set and face set of G ,
respectively. By Euler’s formula,
∑

v∈V

(
2d(v) − 6

) +
∑

f ∈F

(
d( f ) − 6

) = −6
(|V | − |E| + |F |)

= −12 < 0 (1)

We shall use discharging method to derive a contradiction.
First, define the initial charge c(x) for each x ∈ V ∪ F as
follows: If v is a vertex, then c(v) = 2d(v) − 6; if f is a
face then c( f ) = d( f ) − 6. The total initial charge is neg-
ative. We shall use a discharging procedure to lead to a
nonnegative charge for every vertex and face.

A face is small if its length is less than 6, and is large
if its length at least 7. We define the following two rounds
of discharging. First round:

• If a 2-vertex is incident to a 3-face, then it receives 1
charge from each of its neighbors.

• Each large face f distributes its charge d( f )−6 evenly
among those 2-vertices that are incident to f .

• Each 4-vertex and 5-vertex sends 1/2 charge to each
incident 4-face, 1/3 charge to each incident 5-face,
and distribute the remaining extra charge evenly
among all incident 3-faces.

We denote by c′(x) the charge of a face or a vertex x
after the first round. A small face or a 2-vertex that still
has negative charge after the first round is called deficient.
Second round:

• Each deficient small face f receives |c′( f )| charge,
evenly from its 6+-boundary vertices.

• Each deficient 2-vertex x receives |c′(x)| charge from
its master.

We denote by c∗(x) the charge of a face or a vertex
x after the second round. We shall prove that all the faces
and all the vertices have nonnegative charge c∗(x) after the
second round.

If f is a small face and is incident to a 6+-vertex, then
either it becomes nonnegative in the first round of dis-
charging, or is deficient after the first round and hence
becomes nonnegative after the second round of discharg-
ing.

Assume f is a small face not incident to any 6+-vertex.
Then f is not incident to any 4−-vertex by Lemma 3(1)
and hence all the vertices incident to f are 5-vertices. If f
is a 4-face, then each incident vertex sends 1/2 charge to
f in the first round, and hence c′( f ) = c∗( f ) = 0. If f is a
5-face, then each incident vertex sends 1/3 charge to f in
the first round, and hence c′( f ) = c∗( f ) > 0.

Assume f = v1 v2 v3 is a 3-face. Recall d(v1) = d(v2) =
d(v3) = 5.

• First we consider the case that each of v1, v2, v3
is incident to at most three 3-faces. Since c(vi) = 4
and each 4+-face incident to vi receives at most 1/2
charge from vi , we conclude that each vi sends at
least 1 charge to f , and hence c′( f ) = c∗( f ) � 0.

• Next we consider the case that v1 is incident to at
least four 3-faces, and hence both v1, v2, v3 are con-
tained in cycles of length 3,4,5,6. If v2 is also inci-
dent to at least four 3-faces, then it is easy to ver-
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ify that v2 is contained in cycles of length l for l =
3,4, . . . ,8. Thus v2 is incident to at most three 3-
faces. Similarly v3 is incident to at most three 3-faces.
Moreover, if v2 (resp. v3) is incident to three 3-faces,
then the two other faces incident to v2 (resp. v3) can-
not be 7−-faces, since then v2 (resp. v3) would be
contained in 7- and 8-cycles as well, contrary to our
choice of G . Therefore v2 (resp. V 3) is also incident
to two 8+-faces. Therefore, each of v2 and v3 sends
charge at least 5/4 to f . Since v1 sends at least 4/5
charge to f , we have c′( f ) = c∗( f ) � 0.

A 6-face f does not send out any charge and hence
c∗( f ) = c( f ) = 0. A 7+-face distributes its charge d( f ) − 6
to incident 2-vertices and sends out no other charge, and
hence c∗( f ) � 0.

It remains to show that every vertex v has c∗(v) � 0.
If v is a 2-vertex, then it is clear that v receives at least
2 charge from incident faces and adjacent vertices. So
c∗(v) = 0. If v is a 3-vertex, then v does not send out
any charge and hence c∗(v) = c(v) = 0. If v is a 4-, 5-
vertex, then the only charge send out by v is by the last
rule of the first round of discharging, and it is obvious
that c′(v) = c∗(v) � 0. In the following, we consider 6+-
vertices.

Lemma 4. Suppose x is a 6+-vertex and f is a small face inci-
dent to x.

(1) If x is a 6-vertex and f is a 3-face, then f receives at most
5/4 charge from x.

(2) If x is a 7+-vertex and f is a 3-face, then f receives at most
3/2 charge from x.

(3) If x is a 6-vertex and f is a 4-face then f receives at most
2/3 charge from x.

(4) If x is a 7+-vertex and f is a 4-face, then f receives at most
1 charge from x.

(5) If f is a 5-face then f receives at most 1/3 charge from x.

Proof. (1) Assume x is a 6-vertex and f is a 3-face. If the
three boundary vertices of f are 6+-vertices, then each of
them sends 1 charge to f . If f has two 6+-boundary ver-
tices, then the other boundary vertex is a 4-vertex or a
5-vertex, and hence sends at least 1/2 charge to f , and
each of the two 6+-vertices sends at most 5/4 charge to f .
If x is the only 6+-boundary vertex of f , then the other
two vertices, say y, y′ , are 5-vertices. If one of y, y′ , say
y, is incident to a 6+-face or incident to two 4+-faces,
then y sends at least 1 charge to f , and y′ sends at least
4/5 charge to f , hence x sends at most 6/5 charge to f .
Otherwise for each of y, y′ , four of its incident faces are
3-faces and the other is a 5−-face. It is easy to verify that
in this case, x is contained in cycles of length l for each
l = 3,4, . . . ,8.

(2) Assume x is a 7+-vertex and f is a 3-face. If the
other two boundary vertices of f are 5-vertices, then x
sends 7/5 charge to f . If one of the other two boundary
vertices of f is a 6-vertex, then the third boundary vertex
of f is a 4+-vertex, and hence x sends at most 5/4 charge
to f . Otherwise f has at least two 7+-boundary vertices,
and x sends at most 3/2 charge to f .
(3) Assume x is a 6-vertex and f is a 4-face. If f has
a 3−-boundary vertex u, then the two neighbors of u in
the boundary of f are 7+-vertices. So the boundary of f
has three 6+-vertices, and hence each of them sends 2/3
charge to f . Otherwise each boundary vertex of f sends
1/2 charge to f .

(4) Assume x is a 7+-vertex and f is a 4-face. If f has
two 6+-boundary vertices, then each 6+-vertex sends at
most 1 charge to f . Assume x is the only 6+-boundary
vertex of f . By Lemma 3(1), the other three boundary ver-
tices of f are 5-vertices. Each of them sends 1/2 charge to
f and hence x also sends 1/2 charge to f .

(5) If f is a 5-face, then f has at least three 5+-
boundary vertices. Hence each of them sends at most 1/3
charge to f . �
Final charge of 6-vertices. Assume x is a 6-vertex, and let
xi be its neighbors for i = 1,2, . . . ,6. By Lemma 3(1), each
xi has degree at least 4. This is important since this will
allow us to avoid faces that share more than one edge. The
only charges sent out by x are to the small faces incident
to x.

If x is incident to five or six 3-faces, then x is contained
in cycles of lengths 3,4,5,6,7. Thus x is not contained in
any 8-cycle. This implies that each of the 3-faces incident
to x is adjacent to a 8+-face. So each xi is incident to at
least two 8+-faces. If xi has degree 4 or 5, then xi sends
at least 1 charge to each of its incident 3-faces. Therefore
x sends at most 1 charge to its incident faces, and hence
c∗(x) � 0.

If x is incident to four 3-faces, then x is not incident to
a 4-face, for otherwise x is contained in cycles of length
l for l = 3,4, . . . ,8. As each 3-face receives at most 5/4
charge from x by Lemma 4 and each 5-face incident to
x receives at most 1/3 charge from x, we conclude that
c∗(x) � 6 − 4 × 5/4 − 2 × 1/3 � 0.

If x is adjacent to at most three 3-faces, then c∗(x) �
6 − 3 × 5/4 − 3 × 2/3 � 0.

Final charge of 7-vertices. Assume x is a 7-vertex. Recall
that the neighbors of x have degree at least 3. Again this
is important to prevent some faces from sharing more than
one edge. If among the faces incident to x, one is a 6+-face
and another is a 5+-face, then x sends at most 1/3 charge
to these two faces, and at most 3/2 charge to any other
face. Hence c∗(x) � 8 − 15/2 − 1/3 � 0. If x is incident to
at least three 5-faces, then x sends at most 1 charge to
these three faces, and at most 3/2 charge to any other face.
Hence c∗(x) � 8 − 4 × 3/2 − 1 � 0. If x is incident to at
most two 3-faces, then x sends at most 1 charge to any
other face, so c∗(x) � 8 − 2 × 3/2 − 5 � 0. So among the
seven faces incident to x, at least six are 5−-faces, at least
five are 4−-faces and at least three are 3-faces. A case by
case analysis shows that x is contained in cycles of length
l for l = 3,4, . . . ,8 in that case.

Final charge of 8-vertices. Assume x is an 8-vertex. If x is
not the master of any 2-vertex, then an argument similar
to that in the previous paragraph shows that c∗(x) � 0. As-
sume x is a master of a 2-vertex y and c∗(x) < 0.
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If x is incident to at least three 6+-faces, then these
three faces do not receive any charge from x, hence c∗(x) �
10−2−5×3/2 � 0. Thus we assume that among the eight
faces incident to x, at most two are 6+-faces.

Case 1. x is incident to exactly two 6+-faces.

If the 2-vertex y receives at most 1 charge from x, then
c∗(x) � 10 − 1 − 6 × 3/2 � 0. Thus we assume that y re-
ceives more than 1 charge from x. In particular, y is not
incident to any triangles.

If x is incident to a 5-face, then c∗(x) � 10 − 2 − 5 ×
3/2 − 1/3 � 0. If x is incident to at least two 4-faces, then
c∗(x) � 10 − 2 − 4 × 3/2 − 2 � 0. Thus x is incident to no
5-faces and incident to at most one 4-face.

If the two faces incident to y are 6+-faces, then either
all the other faces are 3-faces, or one of them is a 4-face
and the others are 3-faces. In any case, it is easy to verify
that x is contained in cycles of length l for l = 3,4, . . . ,8.
Assume the two faces incident to y are a 4-face and a
6+-face. The other faces incident to x are all 3-faces, ex-
cept one more 6+-face. If one of the 6+-faces is a 7−-face,
then it is again easy to verify that x is contained in cy-
cles of length l for l = 3,4, . . . ,8. Assume both 6+-faces
are 8+-faces. Then y receives at least 2/3 charge from
an incident 8+-face, as the surplus charge of that face is
evenly distributed among its incident 2-vertices. But then
c∗(x) � 10 − 4/3 − 5 × 3/2 − 1 � 0.

Case 2. x is incident to exactly one 6+-face.

If among the other faces incident to x, at least five are
3-faces, then it is easy to verify that x is contained in
cycles of length l for l = 3,4, . . . ,8. If there are at most
two 3-faces, then c∗(x) � 10 − 2 − 2 × 3/2 − 5 � 0. If
there are three 3-faces and at least one 5-face, c∗(x) �
10 − 2 − 3 × 3/2 − 3 − 1/3 � 0. If there are three 3-faces
and no 5-face, then it is again easy to verify that x is
contained in cycles of length l for l = 3,4, . . . ,8. Thus we
may assume that there are exactly four 3-faces incident
to x. If the other three faces are 5-faces, then c∗(x) �
10 − 2 − 4 × 3/2 − 3 × 1/3 � 0. Thus at least one of the
other faces is a 4-face. But then it is again easy to verify
that x is contained in cycles of length l for l = 3,4, . . . ,8.

Case 3. x is incident to no 6+-face.

If x is incident to four 5-faces, then c∗(x) � 10−2−4×
3/2 − 4 × 1/3 � 0. If x is incident to three 5-faces and at
least one 4-face, then c∗(x) � 10 − 2 − 4 × 3/2 − 3 × 1/3 −
1 � 0. If x is incident to three 5-faces and no 4-face then
it is again easy to verify that x is contained in cycles of
length l for l = 3,4, . . . ,8. If x is incident to two 5-faces
and at least four 4-faces, then c∗(x) � 10 − 2 − 2 × 3/2 −
2 × 1/3 − 4 � 0. If x is incident to two 5-faces and at most
three 4-faces, then x is incident to at least three 3-faces.
It is again easy to verify that x is contained in cycles of
length l for l = 3,4, . . . ,8. If x is incident to one 5-face
and at least six 4-faces, then c∗(x) � 10 − 2 − 3/2 − 1/3 −
6 � 0. If x is incident to one 5-face and at most five 4-
faces, then x is incident to at least two 3-faces. It is again
easy to verify that x is contained in cycles of length l for
l = 3,4, . . . ,8. If x is incident to no 5-face, and no 3-face,
then c∗(x) � 10 − 2 − 8 � 0. If x is incident to no 5-face
and at least one 3-face, then it is again easy to verify that
x is contained in cycles of length l for l = 3,4, . . . ,8.
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