Total coloring of planar graphs of maximum degree eight

Nicolas Roussel *, Xuding Zhu
National Sun Yat-Sen University, Kaohsiung, Taiwan

A R T I CLE IN F O

Article history:

Received 21 October 2008
Received in revised form 30 September 2009
Accepted 24 February 2010
Available online 25 February 2010
Communicated by J.L. Fiadeiro

Keywords:

Combinatorial problems
Total coloring
Planar graphs

Abstract

The minimum number of colors needed to properly color the vertices and edges of a graph G is called the total chromatic number of G and denoted by $\chi^{\prime \prime}(G)$. It is known that if a planar graph G has maximum degree $\Delta \geqslant 9$, then $\chi^{\prime \prime}(G)=\Delta+1$. Recently Hou et al. (Graphs and Combinatorics 24 (2008) 91-100) proved that if G is a planar graph with maximum degree 8 and with either no 5 -cycles or no 6 -cycles, then $\chi^{\prime \prime}(G)=9$. In this Note, we strengthen this result and prove that if G is a planar graph with maximum degree 8 , and for each vertex x, there is an integer $k_{x} \in\{3,4,5,6,7,8\}$ such that there is no k_{x}-cycle which contains x, then $\chi^{\prime \prime}(G)=9$.

(c) 2010 Elsevier B.V. All rights reserved.

1. Introduction

A total-k-coloring of a graph $G=(V, E)$ is a coloring of $V \cup E$ using k colors such that no two adjacent or incident elements get the same color. The total chromatic number of G, denoted by $\chi^{\prime \prime}(G)$, is the smallest integer k such that G has a total-k-coloring. It is clear that $\chi^{\prime \prime}(G) \geqslant \Delta+1$ where Δ is the maximum degree of G. Behzad [1] and Vizing [6] conjectured independently that $\chi^{\prime \prime}(G) \leqslant \Delta+2$ for every graph G. This conjecture was verified for general graphs with $\Delta \leqslant 5$. For planar graphs of large maximum degree, there is a stronger result. It is known that a planar graph G with $\Delta \geqslant 9$ has $\chi^{\prime \prime}(G)=\Delta+1[2,7,4]$. This stronger result does not hold for planar graphs of maximum degree at most 3 . For $\Delta=4,5,6,7,8$, it is unknown if every planar graph with maximum degree Δ is total-$(\Delta+1)$-colorable. Shen et al. [5] proved that a planar graph G with maximum degree 8 , and with no intersecting triangles has $\chi^{\prime \prime}(G)=9$. Hou et al. [3] proved that a planar graph G with maximum degree 8 , and with either no 5 -cycle or no 6 -cycle has $\chi^{\prime \prime}(G)=9$. In this paper, we strengthen this result and prove the following result:

[^0]Theorem 1. Assume G is a planar graph with maximum degree 8. If for each vertex x, there is an integer $k_{x} \in\{3,4,5,6$, $7,8\}$ such that G has no k_{x}-cycle which contains x, then $\chi^{\prime \prime}(G)=9$.

2. Proof of Theorem 1

Suppose the theorem is false. Let H be a planar graph with maximum degree 8 , such that for each vertex $x \in$ $V(H)$, there is an integer $k_{x} \in\{3,4,5,6,7,8\}$ such that H has no k_{x}-cycle containing x. H is called a counterexample to the theorem if $\chi^{\prime \prime}(H)>9$. Among all the counterexamples, take a graph G with minimum sum of its number of vertices and edges. G is called a minimum counterexample. For a vertex v of G, the degree $d(v)$ of v is the number of edges incident to v, and for a face f, the degree $d(f)$ of f is the number of edges on the boundary of f. A vertex of G of degree i (respectively, at most i or at least i) is called an i-vertex (respectively, i^{-}-vertex or i^{+}-vertex). A face of degree at least i (respectively, at most i or at least i) is called an i-face (respectively, i^{-}-face or i^{+}-face). The following remark is an easy observation:

Remark 2. The graph G is 2-connected, and hence has no vertices of degree 1 .

The following lemma is adapted from the original proofs found in [3,2].

Lemma 3. The graph G is 2-connected and has the following properties:
(1) If $u v$ is an edge of G with $d(u) \leqslant 4$, then $d(u)+d(v) \geqslant$ $\Delta+2=10$ (and so 2 -vertices of G are adjacent only to Δ-vertices).
(2) There is no cycle C in which half of its vertices are 2-vertices.
(3) The graph of all edges joining 2-vertices to Δ-vertices is a forest (and so there is an injective function Φ from the set of 2-vertices of G to the set of Δ-vertices of G such that $\Phi(v)$ is adjacent to v. The vertex $\Phi(v)$ is called the master of v).
(4) If $\left\{v, v_{1}, u_{1}\right\}$ induces a triangle and v_{1} is a 2-vertex, then v is not adjacent to another 2-vertex v_{2}.
(1) If G contains an edge $u v$ with $d(u) \leqslant 4$ and $d(u)+$ $d(v) \leqslant \Delta+1$, then we can totally color $G \backslash\{u v\}$ with $\Delta+1$ colors (by the minimality of G), erase the color on u, and then color $u v$ and u in turn, since the number of colors that we may not use is at most $(\Delta-1)+1=\Delta$ for $u v$ and $4+4=8<\Delta+1$ for u. This contradicts the choice of G as a counterexample.
(2) This is an easy consequence of the previous statement.
(3) Suppose the statement is false then G contains a cycle $C=v_{1} v_{2} \ldots v_{2 k} v_{1}$ of even length such that $d\left(v_{1}\right)=$ $d\left(v_{3}\right)=\cdots=d\left(v_{2 k-1}\right)=2$. Then, by the minimality of G, we can totally color $G \backslash\left\{v_{1}, v_{3}, \ldots, v_{2 k-1}\right\}$ with $\Delta+1$ colors. Each edge of C now has at most $(\Delta-2)+1=\Delta-1$ colors that may not be used on it, hence at least two that may, and so the problem of coloring the edges of C is equivalent to coloring the vertices of an even cycle, given a choice of two colors at each vertex; it is well known that this is possible. The 2 -vertices of C are now easily colored, and that contradicts the choice of G as a counterexample to the theorem.
(4) On the contrary, suppose $v v_{1} u_{1}$ is a triangle with $d\left(v_{1}\right)=2$ and v is adjacent to a 2-vertex v_{2}. The other neighbor of v_{2} is u_{2}. Then, by minimality of G, we can totally color $G \backslash u_{1} v_{1}$. Let ϕ be the coloring obtained, then erase the color on v_{1}, v_{2}. Assume that $\phi\left(v v_{1}\right)=1, \phi\left(v u_{1}\right)=2$ and $\phi\left(v v_{2}\right)=3$. It is easy to verify that color 1 does not appear at u_{1}. Since otherwise, there must be a color α that does not appear at u_{1}. We color $v_{1} u_{1}$ with α. The elements incident or adjacent to vertices v_{1} and v_{2} use at most four colors. So we can color v_{1}, v_{2} properly. It follows that ϕ is extended to a total-($\Delta+1)$-coloring of G. If $\phi\left(v_{2} u_{2}\right) \neq 2$, then recolor $v v_{2}$ with $2, v u_{1}$ with $1, v v_{1}$ with 3 , and color $v_{1} u_{1}$ with 2 . Otherwise recolor $v v_{1}$ with $3, v v_{2}$ with 1 , and color $v_{1} u_{1}$ with 1 . Next color vertices v_{1}, v_{2} properly. In any case, ϕ can be extended to a total-($\Delta+1$)-coloring of G. This contradicts the minimality of G.

Let V, E, F be the vertex set, edge set and face set of G, respectively. By Euler's formula,

$$
\begin{align*}
\sum_{v \in V}(2 d(v)-6)+\sum_{f \in F}(d(f)-6) & =-6(|V|-|E|+|F|) \\
& =-12<0 \tag{1}
\end{align*}
$$

We shall use discharging method to derive a contradiction. First, define the initial charge $c(x)$ for each $x \in V \cup F$ as follows: If v is a vertex, then $c(v)=2 d(v)-6$; if f is a face then $c(f)=d(f)-6$. The total initial charge is negative. We shall use a discharging procedure to lead to a nonnegative charge for every vertex and face.

A face is small if its length is less than 6, and is large if its length at least 7 . We define the following two rounds of discharging. First round:

- If a 2 -vertex is incident to a 3-face, then it receives 1 charge from each of its neighbors.
- Each large face f distributes its charge $d(f)-6$ evenly among those 2 -vertices that are incident to f.
- Each 4 -vertex and 5 -vertex sends $1 / 2$ charge to each incident 4 -face, $1 / 3$ charge to each incident 5 -face, and distribute the remaining extra charge evenly among all incident 3 -faces.

We denote by $c^{\prime}(x)$ the charge of a face or a vertex x after the first round. A small face or a 2 -vertex that still has negative charge after the first round is called deficient. Second round:

- Each deficient small face f receives $\left|c^{\prime}(f)\right|$ charge, evenly from its 6^{+}-boundary vertices.
- Each deficient 2-vertex x receives $\left|c^{\prime}(x)\right|$ charge from its master.

We denote by $c^{*}(x)$ the charge of a face or a vertex x after the second round. We shall prove that all the faces and all the vertices have nonnegative charge $c^{*}(x)$ after the second round.

If f is a small face and is incident to a 6^{+}-vertex, then either it becomes nonnegative in the first round of discharging, or is deficient after the first round and hence becomes nonnegative after the second round of discharging.

Assume f is a small face not incident to any 6^{+}-vertex. Then f is not incident to any 4^{-}-vertex by Lemma 3(1) and hence all the vertices incident to f are 5 -vertices. If f is a 4 -face, then each incident vertex sends $1 / 2$ charge to f in the first round, and hence $c^{\prime}(f)=c^{*}(f)=0$. If f is a 5 -face, then each incident vertex sends $1 / 3$ charge to f in the first round, and hence $c^{\prime}(f)=c^{*}(f)>0$.

Assume $f=v_{1} v_{2} v_{3}$ is a 3-face. Recall $d\left(v_{1}\right)=d\left(v_{2}\right)=$ $d\left(v_{3}\right)=5$.

- First we consider the case that each of v_{1}, v_{2}, v_{3} is incident to at most three 3-faces. Since $c\left(v_{i}\right)=4$ and each 4^{+}-face incident to v_{i} receives at most $1 / 2$ charge from v_{i}, we conclude that each v_{i} sends at least 1 charge to f, and hence $c^{\prime}(f)=c^{*}(f) \geqslant 0$.
- Next we consider the case that v_{1} is incident to at least four 3 -faces, and hence both v_{1}, v_{2}, v_{3} are contained in cycles of length $3,4,5,6$. If v_{2} is also incident to at least four 3 -faces, then it is easy to ver-
ify that v_{2} is contained in cycles of length l for $l=$ $3,4, \ldots, 8$. Thus v_{2} is incident to at most three 3faces. Similarly v_{3} is incident to at most three 3 -faces. Moreover, if v_{2} (resp. v_{3}) is incident to three 3-faces, then the two other faces incident to v_{2} (resp. v_{3}) cannot be 7^{-}-faces, since then v_{2} (resp. v_{3}) would be contained in 7 - and 8 -cycles as well, contrary to our choice of G. Therefore v_{2} (resp. V_{3}) is also incident to two 8^{+}-faces. Therefore, each of v_{2} and v_{3} sends charge at least $5 / 4$ to f. Since v_{1} sends at least $4 / 5$ charge to f, we have $c^{\prime}(f)=c^{*}(f) \geqslant 0$.

A 6 -face f does not send out any charge and hence $c^{*}(f)=c(f)=0$. A 7^{+}-face distributes its charge $d(f)-6$ to incident 2 -vertices and sends out no other charge, and hence $c^{*}(f) \geqslant 0$.

It remains to show that every vertex v has $c^{*}(v) \geqslant 0$. If v is a 2-vertex, then it is clear that v receives at least 2 charge from incident faces and adjacent vertices. So $c^{*}(v)=0$. If v is a 3-vertex, then v does not send out any charge and hence $c^{*}(v)=c(v)=0$. If v is a 4-, 5vertex, then the only charge send out by v is by the last rule of the first round of discharging, and it is obvious that $c^{\prime}(v)=c^{*}(v) \geqslant 0$. In the following, we consider 6^{+}vertices.

Lemma 4. Suppose x is a 6^{+}-vertex and f is a small face incident to x.
(1) If x is a 6-vertex and f is a 3-face, then f receives at most $5 / 4$ charge from x.
(2) If x is a 7^{+}-vertex and f is a 3-face, then f receives at most $3 / 2$ charge from x.
(3) If x is a 6-vertex and f is a 4-face then f receives at most $2 / 3$ charge from x.
(4) If x is a 7^{+}-vertex and f is a 4 -face, then f receives at most 1 charge from x.
(5) If f is a 5 -face then f receives at most $1 / 3$ charge from x.

Proof. (1) Assume x is a 6 -vertex and f is a 3 -face. If the three boundary vertices of f are 6^{+}-vertices, then each of them sends 1 charge to f. If f has two 6^{+}-boundary vertices, then the other boundary vertex is a 4 -vertex or a 5 -vertex, and hence sends at least $1 / 2$ charge to f, and each of the two 6^{+}-vertices sends at most $5 / 4$ charge to f. If x is the only 6^{+}-boundary vertex of f, then the other two vertices, say y, y^{\prime}, are 5 -vertices. If one of y, y^{\prime}, say y, is incident to a 6^{+}-face or incident to two 4^{+}-faces, then y sends at least 1 charge to f, and y^{\prime} sends at least $4 / 5$ charge to f, hence x sends at most $6 / 5$ charge to f. Otherwise for each of y, y^{\prime}, four of its incident faces are 3 -faces and the other is a 5^{-}-face. It is easy to verify that in this case, x is contained in cycles of length l for each $l=3,4, \ldots, 8$.
(2) Assume x is a 7^{+}-vertex and f is a 3 -face. If the other two boundary vertices of f are 5-vertices, then x sends $7 / 5$ charge to f. If one of the other two boundary vertices of f is a 6 -vertex, then the third boundary vertex of f is a 4^{+}-vertex, and hence x sends at most $5 / 4$ charge to f. Otherwise f has at least two 7^{+}-boundary vertices, and x sends at most $3 / 2$ charge to f.
(3) Assume x is a 6 -vertex and f is a 4 -face. If f has a 3^{-}-boundary vertex u, then the two neighbors of u in the boundary of f are 7^{+}-vertices. So the boundary of f has three 6^{+}-vertices, and hence each of them sends $2 / 3$ charge to f. Otherwise each boundary vertex of f sends $1 / 2$ charge to f.
(4) Assume x is a 7^{+}-vertex and f is a 4 -face. If f has two 6^{+}-boundary vertices, then each 6^{+}-vertex sends at most 1 charge to f. Assume x is the only 6^{+}-boundary vertex of f. By Lemma 3(1), the other three boundary vertices of f are 5 -vertices. Each of them sends $1 / 2$ charge to f and hence x also sends $1 / 2$ charge to f.
(5) If f is a 5 -face, then f has at least three $5^{+}{ }^{-}$ boundary vertices. Hence each of them sends at most $1 / 3$ charge to f.

Final charge of 6-vertices. Assume x is a 6-vertex, and let x_{i} be its neighbors for $i=1,2, \ldots, 6$. By Lemma 3(1), each x_{i} has degree at least 4 . This is important since this will allow us to avoid faces that share more than one edge. The only charges sent out by x are to the small faces incident to x.

If x is incident to five or six 3 -faces, then x is contained in cycles of lengths $3,4,5,6,7$. Thus x is not contained in any 8 -cycle. This implies that each of the 3 -faces incident to x is adjacent to a 8^{+}-face. So each x_{i} is incident to at least two 8^{+}-faces. If x_{i} has degree 4 or 5 , then x_{i} sends at least 1 charge to each of its incident 3 -faces. Therefore x sends at most 1 charge to its incident faces, and hence $c^{*}(x) \geqslant 0$.

If x is incident to four 3-faces, then x is not incident to a 4 -face, for otherwise x is contained in cycles of length l for $l=3,4, \ldots, 8$. As each 3 -face receives at most $5 / 4$ charge from x by Lemma 4 and each 5 -face incident to x receives at most $1 / 3$ charge from x, we conclude that $c^{*}(x) \geqslant 6-4 \times 5 / 4-2 \times 1 / 3 \geqslant 0$.

If x is adjacent to at most three 3 -faces, then $c^{*}(x) \geqslant$ $6-3 \times 5 / 4-3 \times 2 / 3 \geqslant 0$.

Final charge of 7-vertices. Assume x is a 7-vertex. Recall that the neighbors of x have degree at least 3. Again this is important to prevent some faces from sharing more than one edge. If among the faces incident to x, one is a 6^{+}-face and another is a 5^{+}-face, then x sends at most $1 / 3$ charge to these two faces, and at most $3 / 2$ charge to any other face. Hence $c^{*}(x) \geqslant 8-15 / 2-1 / 3 \geqslant 0$. If x is incident to at least three 5 -faces, then x sends at most 1 charge to these three faces, and at most $3 / 2$ charge to any other face. Hence $c^{*}(x) \geqslant 8-4 \times 3 / 2-1 \geqslant 0$. If x is incident to at most two 3 -faces, then x sends at most 1 charge to any other face, so $c^{*}(x) \geqslant 8-2 \times 3 / 2-5 \geqslant 0$. So among the seven faces incident to x, at least six are 5^{-}-faces, at least five are 4^{-}-faces and at least three are 3 -faces. A case by case analysis shows that x is contained in cycles of length l for $l=3,4, \ldots, 8$ in that case.

Final charge of 8 -vertices. Assume x is an 8 -vertex. If x is not the master of any 2 -vertex, then an argument similar to that in the previous paragraph shows that $c^{*}(x) \geqslant 0$. Assume x is a master of a 2 -vertex y and $c^{*}(x)<0$.

If x is incident to at least three 6^{+}-faces, then these three faces do not receive any charge from x, hence $c^{*}(x) \geqslant$ $10-2-5 \times 3 / 2 \geqslant 0$. Thus we assume that among the eight faces incident to x, at most two are 6^{+}-faces.

Case 1. x is incident to exactly two 6^{+}-faces.
If the 2-vertex y receives at most 1 charge from x, then $c^{*}(x) \geqslant 10-1-6 \times 3 / 2 \geqslant 0$. Thus we assume that y receives more than 1 charge from x. In particular, y is not incident to any triangles.

If x is incident to a 5 -face, then $c^{*}(x) \geqslant 10-2-5 \times$ $3 / 2-1 / 3 \geqslant 0$. If x is incident to at least two 4 -faces, then $c^{*}(x) \geqslant 10-2-4 \times 3 / 2-2 \geqslant 0$. Thus x is incident to no 5 -faces and incident to at most one 4 -face.

If the two faces incident to y are 6^{+}-faces, then either all the other faces are 3 -faces, or one of them is a 4 -face and the others are 3 -faces. In any case, it is easy to verify that x is contained in cycles of length l for $l=3,4, \ldots, 8$. Assume the two faces incident to y are a 4 -face and a 6^{+}-face. The other faces incident to x are all 3 -faces, except one more 6^{+}-face. If one of the 6^{+}-faces is a 7^{-}-face, then it is again easy to verify that x is contained in cycles of length l for $l=3,4, \ldots, 8$. Assume both 6^{+}-faces are 8^{+}-faces. Then y receives at least $2 / 3$ charge from an incident 8^{+}-face, as the surplus charge of that face is evenly distributed among its incident 2 -vertices. But then $c^{*}(x) \geqslant 10-4 / 3-5 \times 3 / 2-1 \geqslant 0$.

Case 2. x is incident to exactly one 6^{+}-face.

If among the other faces incident to x, at least five are 3 -faces, then it is easy to verify that x is contained in cycles of length l for $l=3,4, \ldots, 8$. If there are at most two 3 -faces, then $c^{*}(x) \geqslant 10-2-2 \times 3 / 2-5 \geqslant 0$. If there are three 3 -faces and at least one 5 -face, $c^{*}(x) \geqslant$ $10-2-3 \times 3 / 2-3-1 / 3 \geqslant 0$. If there are three 3 -faces and no 5 -face, then it is again easy to verify that x is contained in cycles of length l for $l=3,4, \ldots, 8$. Thus we may assume that there are exactly four 3 -faces incident to x. If the other three faces are 5 -faces, then $c^{*}(x) \geqslant$
$10-2-4 \times 3 / 2-3 \times 1 / 3 \geqslant 0$. Thus at least one of the other faces is a 4 -face. But then it is again easy to verify that x is contained in cycles of length l for $l=3,4, \ldots, 8$.

Case 3. x is incident to no 6^{+}-face.
If x is incident to four 5-faces, then $c^{*}(x) \geqslant 10-2-4 \times$ $3 / 2-4 \times 1 / 3 \geqslant 0$. If x is incident to three 5 -faces and at least one 4 -face, then $c^{*}(x) \geqslant 10-2-4 \times 3 / 2-3 \times 1 / 3-$ $1 \geqslant 0$. If x is incident to three 5 -faces and no 4 -face then it is again easy to verify that x is contained in cycles of length l for $l=3,4, \ldots, 8$. If x is incident to two 5 -faces and at least four 4 -faces, then $c^{*}(x) \geqslant 10-2-2 \times 3 / 2-$ $2 \times 1 / 3-4 \geqslant 0$. If x is incident to two 5 -faces and at most three 4 -faces, then x is incident to at least three 3 -faces. It is again easy to verify that x is contained in cycles of length l for $l=3,4, \ldots, 8$. If x is incident to one 5 -face and at least six 4 -faces, then $c^{*}(x) \geqslant 10-2-3 / 2-1 / 3-$ $6 \geqslant 0$. If x is incident to one 5 -face and at most five 4 faces, then x is incident to at least two 3-faces. It is again easy to verify that x is contained in cycles of length l for $l=3,4, \ldots, 8$. If x is incident to no 5 -face, and no 3 -face, then $c^{*}(x) \geqslant 10-2-8 \geqslant 0$. If x is incident to no 5 -face and at least one 3 -face, then it is again easy to verify that x is contained in cycles of length l for $l=3,4, \ldots, 8$.

References

[1] M. Behzad, Graphs and their chromatic numbers, Doctoral thesis, Michigan State University, 1965.
[2] O. Borodin, A. Kostochka, D. Woodall, Total colorings of planar graphs with large maximum degree, J. Graph Theory 26 (1997) 53-59.
[3] J. Hou, Y. Zhu, G. Liu, J. Wu, M. Lan, Total colorings of planar graphs without small cycles, Graphs Combin. 24 (2008) 91-100.
[4] L. Kowalik, J.-S. Sereni, R. Škrekovski, Total-coloring of plane graphs with maximum degree nine, SIAM J. Discrete Math. 22 (2008) 14621479.
[5] L. Shen, Y. Wang, W. Wang, K.-W. Lih, On the 9-total-colorability of planar graphs with maximum degree 8 and without intersecting triangles, Appl. Math. Lett. 22 (2009) 1369-1373.
[6] V. Vizing, Some unsolved problems in graph theory, Uspekhi Mat. Nauk 23 (1968) 117-134 (in Russian). English translation in: Russian Math. Surveys 23 (1968) 125-141.
[7] W. Wang, Total chromatic number of planar graphs with maximum degree ten, J. Graph Theory 54 (2007) 91-102.

[^0]: * Corresponding author.

 E-mail addresses: nrous.kaohsiung@gmail.com (N. Roussel), zhu@math.nsysu.edu.tw (X. Zhu).

