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of �l(G) for the following values of k:

�l (G)≤

⎧⎪⎨
⎪⎩

4 if k∈{3,4,5}
5 if k=6

6 if k=7
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1. INTRODUCTION

Motivated by the four color problem, coloring problems on graphs embedded on various
surfaces have been studied extensively in the literature. In this article, we study list
colorings of toroidal graphs, i.e., graphs that can be drawn on the torus without crossing
edges. The concept of list coloring, a generalization of vertex coloring, was introduced
by Vizing [23] and independently by Erdős et al. [6]. For each vertex of a graph G,
let L(v) denote a list of available colors for v. An L-coloring of G is a vertex coloring
� that colors each vertex v by a color �(v)∈L(v) so that no adjacent vertices receive
the same color. A graph G is L-colorable if it admits an L-coloring, and k-choosable
(or k-list-colorable) if it is L-colorable for every assignment of k-element lists to the
vertices. An L-coloring � for G with every vertex v satisfying |L(v)|=k is also called
a k-list-coloring. The list chromatic number (or the choice number) �l(G) of a graph
G is the smallest k for which G is k-choosable.

Thomassen [18] proved that every planar graph is 5-choosable, whereas Voigt [24]
gave a planar graph that is not 4-choosable. Lam et al. [16, 17], independently Wang
and Lih [26, 27], showed that for any k∈{3,4,5,6}, every planar graph G without k-
cycles is 4-choosable. More recently, Farzad [7] showed that a planar graph without
7-cycles is 4-choosable. Several researchers [3, 4, 9, 12, 15, 22, 28] have also studied
the choosability of graphs embedded on various surfaces.

In this article, we study list chromatic numbers of toroidal graphs without cycles
of specific lengths. We note that there are quite a few papers in the literature
[5, 10, 11, 13, 14, 19] dealing with vertex colorings of toroidal graphs. Let k≥3 be an
integer and G a toroidal graph without k-cycles. In this article, we establish tight upper
bounds of �l(G) for the following values of k:

�l(G)≤

⎧⎪⎪⎨
⎪⎪⎩

4 if k∈{3,4,5}
5 if k=6

6 if k=7

Journal of Graph Theory DOI 10.1002/jgt



CHOOSABILITY OF TOROIDAL GRAPHS 3

Our main tool is the discharging method, which is used to obtain structural properties
of toroidal graphs without k-cycles in Section 2. We use these results to obtain the
upper bounds of �l(G) in Section 3, and discuss open problems in Section 4.

2. STRUCTURAL PROPERTIES

In this section, we consider structural properties of toroidal graphs without k-cycles,
which will be used in the next section to establish upper bounds of list chromatic
number of such toroidal graphs.

A graph G is k-degenerate if every subgraph H of G contains a vertex of degree
at most k. Equivalently, a k-degenerate graph admits a linear ordering such that the
forward degree of every vertex is at most k. Obviously, a k-degenerate graph is (k+1)-
choosable. It is well-known that every planar graph is 5-degenerate, every toroidal graph
is 6-degenerate, and every planar graph without 3-cycles is 3-degenerate. Wang and
Lih [26] proved that every planar graph without 5-cycles is 3-degenerate, and Fijavž
[8] et al. showed that every planar graph without 6-cycles is 3-degenerate. Here we
will investigate degeneracies of toroidal graphs when some short cycles are excluded
from the graphs.

An embedding of G is a 2-cell embedding if each face of the embedded graph is
homeomorphic to the open unit disc. A cycle C of G is noncontractible if it separates
the torus into two components with one being homeomorphic to a disc; otherwise, C
is noncontractible. We assume that all embeddings considered in this article are 2-cell
embeddings, and use F(G) to denote the set of faces of G for a given embedding of G
on the torus.

Suppose that G is a graph embedded on the torus. For x∈V(G)∪F(G), let dG(x)
(simply d(x)) denote the degree of x in G. A vertex (or a face) of degree k is
called a k-vertex (or k-face). Let �(G) and �(G) denote the maximum degree and
the minimum degree of the vertices of G, respectively. For a face f ∈F(G), we use
b(f ) to denote the closed boundary walk of f and write f = [u1u2 . . .un] if u1,u2, . . . ,un

are the vertices on the boundary walk in the clockwise order. The set of boundary
vertices of f is denoted by V(f ). A face f of G is called a simple face if b(f )
forms a cycle. Obviously, when �(G)≥2, for k≤5, each k-face is a simple face. For
v∈V(G), let N(v) denote the set of neighbors of v in G. Furthermore, let T(v) and
Q(v) denote, respectively, the set of 3-faces and 4-faces incident with v. If S⊆V(G),
we use G[S] to denote the subgraph of G induced by S, and simply write G−S
=G[V(G)\S].

Lemma 1. Let G be a toroidal graph. If G contains no 4-cycle and �(G)≥4, then it
contains either

(a) an even cycle where each vertex is a 4-vertex, or
(b) a 6-cycle x1x2 . . . x6x1 with a chord x1x3 such that d(x1)≤5 and d(xi)=4 for

every remaining vertex xi.

Journal of Graph Theory DOI 10.1002/jgt
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FIGURE 1. Special vertex v , where black vertices are major vertices and other
vertices are 4-vertices.
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FIGURE 2. Source f and sink f ′ with vertex v being a joint-vertex from f to f ′.
Black vertices are major vertices and other vertices are 4-vertices.

Proof. By contradiction. Let G be a connected counterexample to the lemma, i.e.,
G is a connected toroidal graph such that �(G)≥4 and G contains neither 4-cycles
nor configurations in (a) or (b). Without loss of generality, we may assume that G is
embedded on the torus. We will show by the discharging method that such G does not
exist. Note that G contains no 4-faces, and thus also no two 3-faces with a common edge.

We first define a few terms. A vertex v is a major vertex if d(v)≥5, and a 5-vertex v
on a 5-face f is a special vertex for f if we have the configuration shown in Figure 1.
Note that a 5-vertex can be a special vertex for at most one face.

A face f with d(f )≥5 is a source of a 5-face f ′, and then f ′ is a sink of f , if they
have exactly the connection shown in Figure 2. The vertex v in the figure is referred
to as the joint-vertex from f to f ′. Note that f can be multiple sources of f ′ through
different joint-vertices.

We define an initial weight w for vertices and faces as follows:

w(v)=2d(v)−6 for each vertex v and w(f )=d(f )−6 for each face f .

Journal of Graph Theory DOI 10.1002/jgt
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It follows from Euler’s formula that
∑

x∈V(G)∪F(G) w(x)=0. We now use the following
discharging rules (R1), (R2), and (R3) in this order to obtain a new weight w′.

(R1) Each vertex v sends 1 to each incident 3-face, and a special vertex for a 5-face
f sends 1 to f .

(R2) Each vertex sends its remaining weight evenly to the remaining faces incident
with it.

(R3) For each joint-vertex from a source to a sink, the source transfers 1
5 to the

sink.

We now show that after discharging, the new weight w′ satisfies

w′(x)≥0 for all x∈V(G)∪F(G), and there is a face f with w′(f )>0.

This is a contradiction since the total weight, which is 0, is unchanged during the
discharging, and hence the lemma holds.

Consider the weight w′(v) of an arbitrary vertex v. Since no 3-faces in G share edges,
the number of 3-faces incident with v is at most d(v) /2, and thus v sends at most
d(v) /2 to 3-faces incident with it. Therefore the remaining weight of v after applying
rule (R1) is 1 if v is a special vertex and at least (2d(v)−6)−d(v) /2≥0 as d(v)≥4. It
follows that w′(v)=0.

We now consider the weight w′(f ) of an arbitrary face f . First we note the following
three simple facts that will be used frequently in our discussions.

Fact 1. If a 4-vertex v is incident with at most one 3-face, then it sends at least 1
3 to

every face incident with it.

Fact 2. A 5-vertex v sends every face incident with it at least 1
2 , and at least 2

3 if v
is not a special vertex.

Fact 3. A d-vertex with d≥6 sends at least 1 to each face incident with it.

If d(f )=3, then w′(f )=−3+1+1+1=0 (rule (R1)). Otherwise d(f )≥5, and we
note that the number of major vertices in V(f ) is no less than the number k of sinks
of f . It follows that w′(f )≥ (d(f )−6)+( 1

2 − 1
5 )k>0 (rule (R3) and Facts 2 and 3) unless

d(f )=6 and f has no sink. For this case, because G contains no configuration in (a),
V(f ) contains at least one major vertex and thus w′(f )≥ 1

2>0 (Facts 2 and 3).
If f is a 5-face, then w(f )=−1 and we consider three cases depending on the number

of major vertices in V(f ).

Case 1. V(f ) contains no major vertex, i.e., every vertex of V(f ) is a 4-vertex.

In this case, f is not a source. Consider an arbitrary vertex v∈V(f ). If v is incident
with at most one 3-face, then v sends at least 1

3 to f (Fact 1). Otherwise since G contains
no configuration in (b), there is a source f ′ with v being a joint-vertex from f ′ to f ,
and thus f ′ sends 1

5 to f through v (rule (R3)). It follows that at least 1
5 will be sent to

f through v, and thus w′(f )≥−1+5 · 1
5 =0. Furthermore, w′(f )=0 if and only if f has

the configuration shown in Figure 3.

Journal of Graph Theory DOI 10.1002/jgt
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FIGURE 3. The configuration with w ′(f )=0 for Case 1.
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y'y

FIGURE 4. The situation for Case 2 when v is not a special vertex and both x and
y are incident with two 3-faces. Thick lines indicate configuration (b).

Case 2. V(f ) contains exactly one major vertex v.

In this case, f is not a source either. If d(v)≥6 or v is a special vertex for f , then
v sends at least 1 to f , implying w′(f )≥0. Otherwise, v cannot be a special vertex
for other 5-faces and thus it sends 2

3 to f (Fact 2). If both neighbors x and y of v
in V(f ) are incident with two 3-faces, then we have the situation in Figure 4. Since
v is not a special vertex for f , one of the two vertices x′ and y′, say x′, must be a
4-vertex; but this yields a configuration in (b), a contradiction. Therefore one of x and
y is incident with at most one 3-face and hence sends at least 1

3 to f (Fact 1). Therefore
w′(f )≥−1+ 2

3 + 1
3 ≥0.

Case 3. V(f ) contains at least two major vertices.

First note that f can be a source of at most two sinks. If V(f ) has more than two
major vertices, then w′(f )≥−1+3 · 1

2 −2 · 1
5>0 (Facts 2 and 3). Otherwise V(f ) has

exactly two major vertices. If neither is a special vertex for a 5-face other than f , then
each major vertex sends at least 2

3 to f and thus w′(f )≥−1+2 · 2
3 − 1

5>0 as f has at
most one sink. Otherwise one major vertex v is a special vertex for a 5-face other than
f , and thus the other major vertex is adjacent with v and f has no sink (see Figures
1 and 2). Let u be the 4-vertex in V(f ) adjacent with v. Then edge uv in not in the
boundary of any 3-face and therefore u is incident with at most one 3-face. It follows

Journal of Graph Theory DOI 10.1002/jgt
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FIGURE 5. The situation when V (f ) has exactly one major vertex. Thick lines
indicate configuration (b).

that these two major vertices together send at least 1 to f (Facts 2 and 3) and u sends
at least 1

3 to f , and thus w′(f )>0. We conclude that w′(f )>0 for Case 3.
We have shown so far that w′(x)≥0 for every x∈V(G)∪F(G), and we prove now

that there is a face f with w′(f )>0. Suppose that w′(f )=0 for every face f . From
previous arguments we know that w′(f )>0 for any 5-face with at least two major
vertices (Case 3) or any face f with d(f )≥6. Therefore G has the following additional
property:

Every face is either a 3-face or 5-face, and every 5-face has at most one major
vertex, which implies that G has no special vertex, neither source nor sink.
Let f be a 5-face of G. If f has no major vertex, then f has the configuration in

Figure 3 which is impossible as it contains sources. Therefore f has exactly one major
vertex v.

Note that if d(v)≥7 then v sends f more than 1, which makes w′(f )>0. Therefore
we may assume that d(v)≤6. If d(v)=5, then v sends at least 2

3 to f . By Fact 1 and the
fact that w′(f )=0, we deduce that all but one 4-vertex y in V(f ) are incident with two
3-faces, which implies that y is adjacent with v and we have the situation in Figure 5.
Since every 5-face has exactly one major vertex, vertex x′ in Figure 5 is a 4-vertex,
which yields configuration (b) in G, a contradiction.

Otherwise d(v)=6. Let v0, v1, v2, v3, v4, v5 be the neighbors of v ordered clockwisely,
and let Pi be the (vi,vi+1)-path (modulo 6) along the boundary of the face containing
vertices vi, v, vi+1. Since every 5-face has exactly one major vertex and no 3-faces have
common edges, all vertices in each Pi are 4-vertices. Furthermore, all internal vertices
of Pi’s are distinct as �(G)≥4 and G has no 4-cycles, and therefore P0P1P2P3P4P5

is an even cycle consisting of 4-vertices only as each Pi contains an odd number of
edges. This contradicts the assumption that G has no configuration (a). It follows that
such G does not exist, and hence the truth of the lemma. �

Lemma 2. Let G be a toroidal graph without 5-cycles. Then �(G)≤4; and �(G)=4
if and only if G is 4-regular.

Proof. Suppose that the lemma is false. Let G be a connected counterexample which
is embedded on the torus. Thus, �(G)≥4, �(G)≥5 and without 5-cycles. In particular,
G contains neither 5-face, nor 3-face adjacent with a 4-face, nor three consecutive

Journal of Graph Theory DOI 10.1002/jgt
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adjacent 3-faces. For each vertex x∈V(G), let w(x)=2d(x)−6 and, for each face x∈
F(G), let w(x)=d(x)−6. By applying Euler’s formula,

∑
x∈V(G)∪F(G) w(x)=0. Similarly

as the proof of Lemma 1, we use the discharging method to derive a contradiction.
The discharging rule is the following:

(R) If v is a vertex of degree at least 4, then we, from v, transfer 1 to each incident
3-face and 1

2 to each incident 4-face.

Let w′ denote the resulting weight function after discharging. Suppose f ∈F(G).
Then d(f ) �=5. If d(f )=6, then w′(f )=w(f )=0. If d(f )≥7, then w′(f )=w(f )≥1. If
d(f )=3, then f receives the amount 1 from each of its boundary vertices and hence
w′(f )≥−3+3=0. If d(f )=4, f receives 1

2 from each of its boundary vertices and
w′(f )≥−2+4 · 1

2 =0.
Next suppose v∈V(G). Then d(v)≥4 by the assumption. Assume d(v)=4. Then

|T(v)|≤2 (as G has no three consecutive 3-faces). If |T(v)|=0, then w′(v)≥2−4 · 1
2 =0.

If |T(v)|=1, then |Q(v)|≤1 (otherwise G contains a 3-face adjacent with a 4-face).
Thus w′(v)≥2−1− 1

2 = 1
2 . If |T(v)|=2, then |Q(v)|=0 and hence w′(v)=2−1−1=

0. Assume d(v)=5. Then |T(v)|≤3. If |T(v)|≤2, then w′(v)≥4−2−3 · 1
2 = 1

2 . If
|T(v)|=3, then |Q(v)|=0 and hence w′(v)≥4−3=1. Finally, assume that d(v)≥6.
Note that |T(v)|≤	2d(v) /3
≤2d(v) /3 and |Q(v)|≤d(v)−|T(v)|. It follows that w′(v)≥
w(v)−|T(v)|− 1

2 |Q(v)|≥2d(v)−6−|T(v)|− 1
2 (d(v)−|T(v)|)= 3

2 d(v)− 1
2 |T(v)|−6≥

3
2 d(v)− 1

2 · 2
3 d(v)−6= 7

6 d(v)−6>0.
The preceding argument shows actually that w′(x)>0 if x is either a face of degree at

least 7 or a vertex of degree at least 5, and w′(x)≥0 for all other vertices and faces x.
Since G is not a 4-regular graph and �(G)≥4, it follows that

∑
x∈V(G)∪F(G)

w(x)= ∑
x∈V(G)∪F(G)

w′(x)>0,

a contradiction. �

Lemma 3. If G is a toroidal graph without 6-cycles, then �(G)≤4.

Proof. Assume to the contrary that G is a connected graph embedded on the torus
without 6-cycles such that �(G)≥5. Let w(x)=d(x)−4 for all x∈V(G)∪F(G). Then∑

x∈V(G)∪F(G) w(x)=0. Apply the following discharging rule:

(R) Every vertex v transfers 1
3 to each incident 3-face.

Let w′ denote the new weight function after discharging. Suppose v∈V(G). Then
d(v)≥5. Since G contains no 6-cycles, v is not incident with four consecutive adjacent 3-
faces. If d(v)≥6, then |T(v)|≤d(v)−2 and hence w′(v)=d(v)−4− 1

3 |T(v)|≥d(v)−4−
1
3 (d(v)−2)= 2

3 (d(v)−5)>0. Assume d(v)=5, so w(v)=1 and |T(v)|≤3. When |T(v)|≤
2, w′(v)≥1−2 · 1

3 = 1
3 . When |T(v)|=3, w′(v)=1−3 · 1

3 =0.
Suppose f ∈F(G). If d(f )=3, then w′(f )≥−1+3 · 1

3 =0. If d(f )=4, then w′(f )=
w(f )=0. If d(f )≥5, then w′(f )=w(f )=d(f )−4≥1.

Journal of Graph Theory DOI 10.1002/jgt
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Therefore, it follows that w′(x)≥0 for every x∈V(G)∪F(G). Since
∑

x∈V(G)∪F(G)
w′(x)=∑

x∈V(G)∪F(G) w(x)=0, we conclude that w′(x)=0 for every x∈V(G)∪F(G).
The above argument implies that G is a 5-regular graph with each vertex being incident
with exactly three 3-faces and two 4-faces. We shall show such graphs always have
6-cycles, which contradicts our assumption.

Let f = [x1x2x3x4] be a 4-face. For i=1,2,3,4, let fi denote the adjacent face of
f with xixi+1 as a boundary edge, where the indices are taken modulo 4. If f is
adjacent with two consecutive 3-faces, say f1, f2, then it is easy to see that the vertices
in V(f )∪V(f1)∪V(f2) give rise to a 6-cycle. If f is adjacent with two consecutive
4-faces, say f3, f4, then the vertex x3 is incident with at least three 4-faces, contradicting
the previous paragraph. Without loss of generality, we may assume that f1 = [x1y1x2]
and f3 = [x3y2x4] are 3-faces, and f2 = [x2u1u2x3] and f4 are 4-faces. If y1 �=y2, then
x1y1x2x3y2x4x1 is a 6-cycle. If y1 =y2, then either u1 �=x4 or u2 �=x1. When u1 �=x4 and
u2 �=x1, x1x2u1u2x3x4x1 is a 6-cycle. When u1 =x4 and u2 �=x1, x1y1x2x3u2x4x1 is a
6-cycle. When u1 �=x4 and u2 =x1, x1u1x2x3y2x4x1 is a 6-cycle. �

Lemma 4. Let G be a toroidal graph without 7-cycles. If �(G)≥6 and K6 �⊆G, then
�(G)≤4.

Proof. By contradiction. Assume that G is a connected counterexample, which
is embedded on the torus. Again, let w(x)=d(x)−4 for all x∈V(G)∪F(G), so∑

x∈V(G)∪F(G) w(x)=0. Before introducing the discharging rules, we need a new
concept. Let f be a face adjacent with a 3-face f ′ = [xyz] such that xy∈b(f )∩b(f ′).
Then the vertex z is called a leaf of the face f . The discharging rules are as follows:

(R1) Every vertex v transfers 1
3 to each incident 3-face.

(R2) Every face f of degree at least 6 transfers 1
3 to each of its leaves.

Let w′ be the new weight function. Let f ∈F(G). If d(f )=3, then f receives 1
3 from

each of its boundary vertices by (R1), and thus w′(f )≥−1+3 · 1
3 =0. If 4≤d(f )≤5,

then w′(f )=w(f )≥0. If d(f )≥6, then, since f has at most d(f ) leaves, w′(f )≥d(f )−
4− 1

3 d(f )= 2
3 (d(f )−6)≥0.

Next let v∈V(G). If d(v)≥6, then f is incident with at most d(v)−1 3-faces for
otherwise the induced subgraph G[N(v)∪{v}] contains a 7-cycle. Therefore, w′(v)≥
d(v)−4− 1

3 (d(v)−1)= 1
3 (2d(v)−11)>0. Finally assume that d(v)=5. Then w(v)=1. If

|T(v)|≤3, then w′(v)≥1−3 · 1
3 =0 by (R1). Suppose |T(v)|≥4. Let x1,x2, . . . ,x5 denote

the neighbors of v in clockwise order and let f1 = [vx1x2], f2 = [vx2x3], f3 = [vx3x4],
f4 = [vx4x5], and f5 denote the faces of G incident with the vertex v. For i=1,2,3,4,
let gi denote the adjacent face of fi with xixi+1 ∈b(fi)∩b(gi). If |T(v)|=5, we further
denote by g5 the adjacent face of f5 with x5x1 ∈b(f5)∪b(g5).

Claim 1. d(gi) �=5 for all i∈{1,2,3,4}.
Assume to the contrary that some gi is a 5-face. We shall show that G contains a

7-cycle, contrary to our assumption. Note that the boundary of a 5-face is a simple

Journal of Graph Theory DOI 10.1002/jgt
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cycle. By symmetry, it suffices to consider two cases as follows.

(i) g1 = [x1y1y2y3x2]. Since �(G)≥5, it is easy to derive that v /∈{y1,y2,y3} and
|{y1,y2,y3}∩{x3,x4,x5}|≤1. In particular, since d(x2)≥5, we have x3 �=y3. If
x3 /∈{y1,y2}, then G contains a 7-cycle vx1y1y2y3x2x3v. If x3 =y2, then G contains
a 7-cycle vx1x2y3x3x4x5v. If x3 =y1, then G contains a 7-cycle vx1x2y3y2x3x4v.
A contradiction is always established.

(ii) g2 = [x2y1y2y3x3]. Similarly, we first note that v �=y1,y2,y3. Furthermore, at most
one of x1,x4 belongs to {y1,y2,y3}. Consequently, a 7-cycle is contained in the
induced subgraph G[(V(g2)∪N(v))\{x5}]. This proves Claim 1.

Claim 2. d(gi) �=4 for i=2,3.

Assume the Claim is false, and without loss of generality, assume that g2 = [x2y1y2x3]
is a 4-face. Note that v �=y1, y2 and at most one of y1, y2 is identical to some vertex
in {x1,x4,x5}. If y1 =x4, then vx1x2x3y2x4x5v is a 7-cycle. If y1 =x5 or y2 =x5, then
vx1x2y1y2x3x4v is a 7-cycle. If y2 =x1, then vx1y1x2x3x4x5v is a 7-cycle. This proves
Claim 2.

The remaining part of the proof is split into two cases.

Case 1. |T(v)|=5.

By Claims 1 and 2, d(gi)=3 or d(gi)≥6 for all i=1,2, . . . ,5. First consider the case
that there exist four gi’s of degree 3, say gi = [xizixi+1] for i=1,2,3,4. If there is some
zi /∈N(v), then vxizixi+1xi+2 . . .xi−1xiv is a 7-cycle. Thus assume that {z1,z2,z3,z4}⊆
N(v). It is easy to observe that z1 =x4, z2 =x5, z3 =x1, and z4 =x2. It follows that
the edges x1x4, x4x2, x2x5, x5x3, x3x1 ∈E(G) and G[{v,x1,x2,x3,x4,x5}] induces a K6,
contrary to our assumption. Thus we may assume that there exist k �= j such that d(gk)≥6
and d(gj)≥6. Since both gk and gj have the same leaf v, w′(v)≥1+2 · 1

3 −5 · 1
3 =0 by

(R1) and (R2).

Case 2. |T(v)|=4.

In this case, d(f5)≥4. If either d(g2)≥6 or d(g3)≥6, then v receives at least 1
3

from g2 and g3 by (R2) and hence w′(v)≥1+ 1
3 −4 · 1

3=0. Otherwise, by Claims 1 and
2, we may assume that d(g2)=d(g3)=3. Similarly to the proof of Case 1, we derive
that g2 = [x2x3x5] and g3 = [x1x3x4]. It follows that x1x3,x1x4,x2x5,x3x5 ∈E(G). This
implies that the 3-cycles vx2x5v, vx3x5v, vx1x3v, and vx1x4v are all noncontractible. By
Claim 1, d(g1) �=5. Also d(g1) �=3 by the embedding property of G on the torus. Assume
that g1 = [x1u1u2x2] is a 4-face. Thus v �=u1,u2 and at most one of u1,u2 is identical to
some of x3,x4,x5. If u1,u2 /∈{x3,x4,x5}, G has a 7-cycle vx1u1u2x2x3x4v. If u1 =x4, G
has a 7-cycle vx1x2u2x4x5x3v. If u1 =x5, G has a 7-cycle vx1x2u2x5x4x3v. If u2 =x4, G
has a 7-cycle vx1u1x4x5x3x2v. If u2 =x5, G has a 7-cycle vx1u1x5x4x3x2v. So we have
d(g1)≥6, i.e., v is a leaf of g1. By (R2), w′(v)≥1+ 1

3 −4 · 1
3 =0.

We have proved that w′(x)≥0 for all x∈V(G)∪F(G). Hence w′(x)=0 for all x∈
V(G)∪F(G). This implies that �(G)≤5, contrary to our assumption. This completes
the proof of the lemma. �
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Obviously, if a graph G embedded on the torus satisfies d(x)=4 for all x∈V(G)∪
F(G), then G can be expressed as a p×q grid, where p, q≥3.

Lemma 5. If G is a toroidal graph without 3-cycles, then �(G)≤4; and moreover
�(G)=4 if and only if G is a grid.

This lemma is easily proved by taking the weight assignment w(x)=d(x)−4 for all
x∈V(G)∪F(G).

It is easy to see that every subgraph of a graph G without k-cycles is a graph without
k-cycles. Note that each of the subgraphs (a) and (b) in Lemma 1 contains a vertex of
degree 4 in the original graph G. These facts, altogether with Lemmas 1 to 5, imply
the following result.

Theorem 6. Let G be a toroidal graph without k-cycles. Then the following statements
hold.

(a) For k=3, G is 3-degenerate unless it contains an induced grid.
(b) For k=5, G is 3-degenerate unless it contains an induced 4-regular subgraph.
(c) For k∈{4,6}, G is 4-degenerate.
(d) For k=7, G is 5-degenerate.
(e) For k≥8, G is 6-degenerate.

For a fixed n∈{4,5,6,7}, Kn is a toroidal graph with �(Kn)=n−1 and without
(n+1)-cycles. Observe that the line graph of a dodecahedron is a 4-regular toroidal
graph without 4-cycles. Indeed, this graph also is a planar graph. In addition, there exist
infinitely many toroidal graphs without 3-cycles and having the minimum degree 3.
These examples illustrate that Theorem 6 is best possible in certain sense.

3. CHOOSABILITY

In this section, we give tight upper bounds of �l(G) when the toroidal graph G contains
no k-cycles for some 3≤k≤7. First we note the following two results due to Erdős
et al. [6] and Böhme et al. [4], respectively.

Lemma 7. If a connected graph G is neither a complete graph nor an odd cycle,
then �l(G)≤�(G).

Theorem 8. For any toroidal graph G, �l(G)≤7 with �l(G)=7 if and only if K7 ⊆G.

Our main result in the paper is the following tight upper bounds for �l(G) when the
toroidal graph G contains no k-cycles for some 3≤k≤7. For the tightness of the bound,
we note that the Mycielski graph of a 5-cycle is a (nonplanar) toroidal graph without
3-cycles and having list chromatic number 4. Aksionov and Mel’nikov [1] constructed
many planar graphs without 4-cycles that have list chromatic number 4. For n=4,5,6,
Kn is a toroidal graph with �l(Kn)=n but without (n+1)-cycles. Moreover, it should
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be noted that excluding cycles of length eight does not forbid the complete graph K7

and thus the values of k between 3 and 7 are of the most interest.

Theorem 9. Let k≥3 be a fixed integer and G a toroidal graph without k-cycles.
Then the following statements hold.

(1) If 3≤k≤5, then �l(G)≤4.
(2) If k=6, then �l(G)≤5.
(3) If k=7, then �l(G)≤6 with �l(G)=6 if and only if K6 ⊆G.

Proof. First assume that k=6. By Theorem 6(c), G is 4-degenerate and thus is
5-choosable. This proves (2).

Assume next that k=7. By Theorem 6(d), G is 5-degenerate and thus �l(G)≤6.
If G contains a subgraph K6, then it is obvious that �l(G)=�(K6)=6. Conversely,
we suppose that K6 �⊆G. To prove that �l(G)≤5, we use induction on the vertex
number |V(G)|. The result holds clearly if |V(G)|≤5. Let G be a toroidal graph without
7-cycles that satisfies K6 �⊆G and |V(G)|≥6. If �(G)≤5, it is easy to derive �l(G)≤5
by Lemma 7. If �(G)≥6, then �(G)≤4 by Lemma 4. According to the induction
hypothesis, G−v is 5-choosable, where v is a vertex of minimum degree in V(G). Since
d(v)≤4, every 5-list-coloring of G−v can be extended to a 5-list-coloring of G. This
proves (3).

Assume now that k∈{3,5}. If |V(G)|≤4, it is evident that �l(G)≤4. Let G be a
toroidal graph without 3-cycles or 5-cycles and with |V(G)|≥5. We note that G �=K5.
If G is 4-regular, then Lemma 7 asserts that G is 4-choosable. Otherwise, G contains
a vertex v of degree at most 3 by Lemma 2 or Lemma 5. By the induction hypothesis,
G−v is 4-choosable. Obviously, any 4-list coloring of G−v can be easily extended to
a 4-list coloring of G.

Finally assume that k=4. The result holds trivially when |V(G)|≤4. Suppose that G
is a toroidal graph without 4-cycles such that |V(G)|≥5. Let L denote an assignment
for G such that |L(v)|=4 for all v∈V(G). If �(G)≤3, let u be a vertex of minimum
degree in G. By the induction hypothesis, G−u is L-colorable. Obviously, we can
extend any L-coloring of G−u to an L-coloring of G. If �(G)≥4, G contains the
configurations (a) or (b) by Lemma 1. Thus the proof is divided into the following
two cases.

Case 1. G contains an even cycle C=u1u2 . . .unu1 such that d(ui)=4 for all i=
1,2, . . . ,n.

Let H =G−V(C) and B=G[V(C)]. By the induction hypothesis, H has an
L-coloring �. For every vertex ui ∈V(C), define a list L′(ui)=L(ui)\{�(z)|z∈
V(H) and zui ∈E(G)}. Since |L(ui)|=dG(ui)=4, it follows that |L′(ui)|≥dG(ui)−
dH(ui)=dB(ui)≥2 for all ui ∈V(C). Since n≥4 is even and B contains no 4-cycles,
B is neither a complete graph nor an odd cycle. By Lemma 7, B is L′-colorable and
furthermore G is L-colorable.

Case 2. G contains a 6-cycle C=x1x2 . . .x6x1 with a chord x1x3 such that d(x1)≤5
and d(xi)=4 for i=2,3, . . . ,6.
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Since G contains no 4-cycles, C has no other chords except x1x3. Let H =G−V(C)
and B=G[V(C)]. By the induction hypothesis, H has an L-coloring �. For each vertex
xi ∈V(C), we define the similar list L′(xi) as in the proof of Case 1. It is easy to show
that |L′(x3)|≥3 and |L′(xi)|≥2 for all i �=3. If |L′(x3)|=4, we color x1, x2, x6, x5, x4

and x3 successively. So assume that |L′(x3)|=3.
If there exists a color �∈L′(x4)\L′(x3), we assign � to x4, then color x5, x6, x1, x2

and x3 successively. If L′(x2)\L′(x3) �=∅, we have a similar proof. If |L′(xk)|≥3 for
some k �=3, an L′-coloring of B is constructed easily. Thus assume that |L′(xi)|=2 for
all i∈{1,2,4,5,6}. If L′(x4) �=L′(x5), we color x5 with a color from L′(x5)\L′(x4), then
color x6,x1,x2,x3 and x4 successively. If either L′(x5) �=L′(x6) or L′(x6) �=L′(x1), we can
form a similar coloring. Hence, in view of the above argument, we now assume that
L′(x3)={1,2,3} and L′(x1)=L′(x4)=L′(x5)=L′(x6)={1,2}. Notice that at least one of
the colors 1 and 2 belongs to L′(x2), say 1∈L′(x2). We color x2, x4, x6 with 1, x1, x5

with 2, and x3 with 3. We have succeeded in obtaining an L′-coloring of B in each
possible case. Therefore G is L-colorable. �

4. OPEN PROBLEMS

In this section, we give some open problems about the choosability of toroidal graphs.
As mentioned in Section 1, for any k∈{3,4,5,6}, every planar graph without k-cycles
is 4-choosable [16, 17, 26, 27]. In this paper, we show that for any k∈{3,4,5}, toroidal
graphs without k-cycles are also 4-choosable. Note that toroidal graphs without 6-cycles
(e.g., K5) may not be 4-choosable. However, K5 seems to be the only obstacle for
such graphs to be 4-choosable, and we propose the following conjecture, whose truth
implies the above result for planar graphs.

Conjecture 1. Let G be a toroidal graph without 6-cycles. If G is K5-free, then
�l(G)≤4.

It is known [6, 24, 25] that for every 2≤k≤4, there exist planar graphs (and hence
toroidal graphs) which are k-colorable but not k-choosable. On the other hand, every
6-colorable toroidal graph is also 6-choosable, which leads to the following question:

Problem 2. Is there a toroidal graph G with �(G)≤5 and �l(G)=6?

The girth of a graph G is the length of a shortest cycle in G. Thomassen [21] proved
that every planar graph of girth at least 5 is 3-choosable, and Voigt [25] constructed a
planar graph of girth 4 that is not 3-choosable. Alon and Tarsi [2] proved that every
bipartite planar graph is 3-choosable, and Kronk and White [14] showed that every
toroidal graph of girth at least 6 is 3-colorable (the girth requirement was later reduced
to 5 by Thomassen [20]). Here we propose the following conjecture in connection with
girth.

Conjecture 3. Every toroidal graph of girth at least 5 is 3-choosable.
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Note that the above conjecture holds if we change the girth requirement to 6.
A graph G embedded on the torus is a regular tessellation if every vertex has degree
3 and every face has degree 6.

Theorem 10. Every toroidal graph G of girth at least 6 is 3-choosable.

Proof. We first show the following claim:

(*) If G is not a regular tessellation, then �(G)≤2.

Let w(x)=d(x)−4 for each vertex or face x, and carry out the following discharging
rule on G: Every face f sends 1

3 to each of its boundary vertices.
It is easy to verify that the new weight function w′ and each vertex or face x satisfy

w′(x)≥0 with w′(x)=0 only if G is a regular tessellation, which implies that �(G)≤2
when it is not.

Lemma 7 and statement (∗) together give us the theorem. �

Finally, we consider toroidal p×q grids G, where p, q≥3. It is easy to prove by
induction that G is 3-colorable for all p, q≥3. Furthermore, using the technique of
Alon and Tarsi [2], we can prove that G is 3-choosable if either p=q=3 or both p
and q are even. However, the following question remains open.

Problem 4. Is every toroidal grid 3-choosable?
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