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a b s t r a c t

This paper studies a variation of domination in graphs called rainbow domination. For a
positive integer k, a k-rainbow dominating function of a graph G is a function f from V (G)
to the set of all subsets of {1, 2, . . . , k} such that for any vertex v with f (v) = ∅ we
have ∪u∈NG(v) f (u) = {1, 2, . . . , k}. The 1-rainbow domination is the same as the ordinary
domination. The k-rainbowdomination problem is to determine the k-rainbowdomination
number γrk(G) of a graph G, that is the minimum value of

∑
v∈V (G) |f (v)| where f runs

over all k-rainbow dominating functions of G. In this paper, we prove that the k-rainbow
domination problem is NP-complete even when restricted to chordal graphs or bipartite
graphs. We then give a linear-time algorithm for the k-rainbow domination problem on
trees. For a given tree T , we also determine the smallest k such that γrk(T ) = |V (T )|.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Domination and its variations in graphs are natural models for the location problems in operations research. They have
been extensively studied in the literature; see [4,7,8]. A dominating set of a graph G is a subset D of V (G) such that every
vertex not inD is adjacent to some vertex inD. The domination number γ (G) of G is theminimum cardinality of a dominating
set of G. The following variation of domination was introduced by Brešar, Henning and Rall [2].
For a positive integer k, we use [k] to denote the set {1, 2, . . . , k}, and 2[k] the set of all subsets of [k]. A k-rainbow

dominating function of G is a function f : V (G) → 2[k] such that for every vertex v, either f (v) 6= ∅ or f (NG(v)) = [k],
where NG(v) = {u ∈ V (G) : uv ∈ E(G)} and f (S) = ∪x∈S f (x) for any subset S of V (G). The weight of f is defined as
w(f ) =

∑
v∈V (G) |f (v)|. The k-rainbow domination number γrk(G) of G is the minimum weight of a k-rainbow dominating

function. A k-rainbow dominating function f of G is optimal if w(f ) = γrk(G). The k-rainbow domination problem is to
determine the k-rainbow domination number of a given graph. Notice that the ordinary domination is the same as the
1-rainbow domination if we view a dominating set D as a 1-rainbow dominating function f defined by f (v) = {1} when
v ∈ D and f (v) = ∅ otherwise.
The Cartesian product of two graphs G and H is the graph G�H with vertex set V (G�H) = V (G) × V (H) and edge set

E(G�H) = {(u, v)(u′, v′) : u = u′ with vv′ ∈ E(H) or uu′ ∈ E(G)with v = v′}. Rainbow domination of a graph G coincides
with the ordinary domination of the Cartesian product of G with the complete graph, that is γrk(G) = γ (G�Kk) (see [2]).
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Hartnell and Rall [6] established several results on rainbow domination. In particular, it was proved in [6] that

min{|V (G)|, γ (G)+ k− 2} ≤ γrk(G) ≤ kγ (G)

for any k ≥ 2 and any graph G. Their attempt to characterize graphs with γ (G) = γr2(G) was inspired by the following
famous conjecture by Vizing [9].
Vizing’s Conjecture. For any graph G and H , we have γ (G�H) ≥ γ (G)γ (H).

One of the related problems posted by Hartnell and Rall [5] is to find classes of graphs that achieve the equality. They
showed that γ (G�H) = γ (G)γ (H) if G is a graph with γ (G) = γr2(G) and H is a so-called generalized comb.
Brešar, Henning and Rall [2] introduced rainbow domination to study the relation with paired-domination; also see

[1]. They gave a linear-time algorithm for finding a minimum weighted 2-rainbow dominating function of a tree. On the
other hand, Brešar and Šumenjak [3] proved that the 2-rainbow domination problem is NP-complete even when restricted
to chordal graphs or bipartite graphs. They also established exact values of the 2-rainbow domination numbers for paths,
cycles and suns, and upper and lower bounds for the generalized Petersen graphs.
The purpose of this paper is to study k-rainbow domination for a general k. In Section 2, we prove that the k-rainbow

domination problem is NP-complete even when restricted to chordal graphs or bipartite graphs, and then give a linear-time
algorithm for the k-rainbow domination problem on trees. For a graph G on n vertices, γri(G) ≤ γri+1(G) ≤ n for any i and
γrn(G) = n. In Section 3, we determine the minimum k such that γrk(T ) = |V (T )| for any tree T .

2. Complexity in k-rainbow domination

In this section, we prove that the k-rainbow domination problem is NP-complete even when restricted to chordal graphs
or bipartite graphs. We then give a linear-time algorithm for the k-rainbow domination problem on trees.
The domination problem is known to beNP-complete not only for general graphs but also for chordal graphs and bipartite

graphs and many other classes of graphs; see [4]. This is also the case for the k-rainbow domination problem.

Theorem 1. For any positive integer k, the k-rainbow domination problem is NP-complete for general graphs.

Proof. We shall prove the theorem by reducing the k-rainbow domination problem to the domination problem. Given a
graph G on n vertices, consider the graph G′ with the vertex set V (G′) = V (G) ∪ {v2, v3, . . . , vk : v ∈ V (G)} and edge set
E(G′) = E(G)∪ {vvi : v ∈ V (G), 2 ≤ i ≤ k}. Namely, we add n(k− 1) leaves to G by joining k− 1 leaves to each vertex of G
(we call a degree-1 vertex of G a leaf of G). We claim that G has a dominating set of cardinality at most s if and only if G′ has
a k-rainbow dominating function of weight at most s+ n(k− 1).
Suppose G has a dominating set D of cardinality at most s. Consider the function f from V (G′) to 2[k] defined by

f (u) =

{
{1}, if u ∈ D,
∅, if u ∈ V (G)− D,
{i}, if u = vi for some v ∈ V (G) and 2 ≤ i ≤ k.

Suppose f (u) = ∅. By the definition of f , u ∈ V (G) − D and so u has a neighbor v ∈ D. Since f (v) = {1} and f (ui) = {i}
for 2 ≤ i ≤ k, we have f (NG′(u)) = [k]. Therefore, f is a k-rainbow dominating function of G′. Also, the weight of f is
|D| + n(k− 1) ≤ s+ n(k− 1).
On the other hand, suppose G′ has a k-rainbow dominating function f of weight at most s+ n(k− 1). For each v ∈ V (G),

we may assume that
∑
2≤i≤k |f (vi)| ≤ k − 1 for otherwise if

∑
2≤i≤k |f (vi)| ≥ k then we replace each f (vi) by {i} and

add 1 to the set f (v) to obtain a k-rainbow dominating function of weight at most s + n(k − 1). Now, consider the set
D = {v ∈ V (G) : f (v) 6= ∅}. For any vertex v ∈ V (G)−D, we have f (v) = ∅ and so f (NG′(v)) = [k]. As

∑
2≤i≤k |f (vi)| ≤ k−1,

we have f (u) 6= ∅ for some u ∈ NG(v) which implies u ∈ D. Therefore, D is a dominating set of G. Next, we calculate the
cardinality of D. Suppose there are n′ vertices v ∈ V (G) such that f (vi) = ∅ for some i. For these n′ vertices v we have
f (v) = [k]. Therefore, the weight of f is at least n′k + (|D| − n′) + n′0 + (n − n′)(k − 1) = |D| + n(k − 1) implying
|D| + n(k− 1) ≤ s+ n(k− 1) and so |D| ≤ s. �

Notice that if G is chordal or bipartite, then so is G′ in the proof above. We thus have

Corollary 2. For any positive integer k, the k-rainbow domination problem is NP-complete for chordal graphs and for bipartite
graphs.

In the rest of this section, we establish a linear-time algorithm for the k-rainbow domination problem on trees. For
technical reasons, we in fact dealing with a more general problem. A k-rainbow assignment is a mapping L that assigns each
vertex v a label L(v) = (av, bv)with av, bv ∈ {0} ∪ [k]. A k-L-rainbow dominating function is a function f : V (G)→ 2[k] such
that for every vertex v in Gwe have

(L1) |f (v)| ≥ av , and
(L2) |f (NG(v))| ≥ bv whenever f (v) = ∅.
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The k-L-rainbow domination number γrkL(G) of G is the minimum weight of a k-L-rainbow dominating function. A k-L-
rainbow dominating function f of G is optimal if w(f ) = γrkL(G). Notice that k-rainbow domination is the same as k-L-
rainbow domination if L(v) = (0, k) for each v ∈ V (G).

Theorem 3. Suppose x is a leaf adjacent to y in a graph G with a k-rainbow assignment L. Let G′ = G− x and L′ be the restriction
of L on V (G′), except that when ax > 0 we let b′y = max{0, by − ax}. Then the following hold.

(1) If ax > 0, then γrkL(G) = γrkL′(G′)+ ax.
(2) If ax = 0 and ay ≥ bx, then γrkL(G) = γrkL′(G′).

Proof. (1) Suppose f is an optimal k-L-rainbowdominating function ofG. By condition (L1), |f (x)| ≥ ax > 0.Wemay assume
that |f (x)| = ax. Otherwise, if |f (x)| > ax, then let f̂ be the same as f except that f̂ (x) is a subset of f (x) of cardinality ax and
f̂ (y) = f (y)∪ {1}. It is easy to verify that f̂ is a k-L-rainbow dominating function andw(f̂ ) ≤ w(f ). So, we may replace f by
f̂ .
Now, let f ′ be the restriction of f on V (G′). We shall check that f ′ is a k-L′-rainbow dominating function of G′. First,

condition (L1) for f implies condition (L1) for f ′, since f ′(v) = f (v) and a′v = av for all vertices v in G
′. Secondly, condition

(L2) holds for f ′ on vertex y, since |f ′(NG′(y))| ≥ max{0, |f (NG(y))| − ax} ≥ max{0, by − ax} = b′y. Also, condition (L2) for f
implies condition (L2) for f ′ onverticesv inG′−y, since f ′(NG′(v)) = f (NG(v)) and b′v = bv . Therefore,γrkL(G)−ax ≥ γrkL′(G

′).
On the other hand, suppose f ′ is an optimal k-L′-rainbow dominating function of G′. Extend f ′ to f by letting f (x) be an

ax-subset of [k] that contains as many elements in [k] − ∪v∈NG′ (y) f (v) as possible. We shall check that f is a k-L-rainbow
dominating function of G. First, condition (L1) for f ′ implies condition (L1) for f , since |f (x)| = ax and for all vertices v in G′
we have |f (v)| = |f ′(v)| ≥ a′v = av . Secondly, condition (L2) holds for f on vertex y, since |f (NG(y))| = |f (NG′(y))| + ax ≥
b′y + ax ≥ by. Also, condition (L2) for f

′ implies condition (L2) for f on vertices v in G′ − y, since f ′(NG′(v)) = f (NG(v)) and
b′v = bv . Therefore, γrkL′(G

′)+ ax ≥ γrkL(G).
(2) Suppose f is an optimal k-L-rainbow dominating function of G. Wemay assume that f (x) = ∅. Otherwise, if f (x) 6= ∅,

then let f̂ be the same as f except that f̂ (x) = ∅ and f̂ (y) = f (y)∪ {1}. It is easy to verify that f̂ is a k-L-rainbow dominating
function andw(f̂ ) ≤ w(f ). So, we may replace f by f̂ .
Now, let f ′ be the restriction of f on V (G′). We shall check that f ′ is a k-L′-rainbow dominating function of G′. First,

condition (L1) for f implies condition (L1) for f ′, since f ′(v) = f (v) and a′v = av for all vertices v in G′. Secondly,
condition (L2) for f implies condition (L2) for f ′, since f ′(NG′(v)) = f (NG(v)) and b′v = bv for all vertices v in G

′. Therefore,
γrkL(G) ≥ γrkL′(G′).
On the other hand, suppose f ′ is an optimal k-L′-rainbow dominating function of G′. Extend f ′ to f by letting f (x) = ∅.

We shall check that f is a k-L-rainbow dominating function of G. First, condition (L1) for f ′ implies condition (L1) for f , since
|f (x)| = ax and for all vertices v in G′ we have |f (v)| = |f ′(v)| ≥ a′v = av . Secondly, condition (L2) holds for f on vertex
x, since |f (NG(x))| = |f (y)| ≥ a′y = ay ≥ bx. Also, condition (L2) for f

′ implies condition (L2) for f on vertices v in G′, since
f ′(NG′(v)) = f (NG(v)) and b′v = bv . Therefore, γrkL′(G

′) ≥ γrkL(G). �

Theorem 4. Suppose NG(x) = {z, x1, x2, . . . , xs} such that x1, x2, . . . , xs are leaves in a graph G with a k-rainbow assignment
L. Assume axi = 0 for 1 ≤ i ≤ s and bx1 ≥ bx2 ≥ · · · ≥ bxs > ax. Let b

∗
= min{bxi + i− 1 : 1 ≤ i ≤ s+ 1} = bxi∗ + i

∗
− 1,

where bxs+1 = ax and i
∗ is chosen as small as possible. If G′ = G − {x1, x2, . . . , xs} and L′ is the restriction of L on V (G′) with

modifications that a′x = bxi∗ and b
′
x = max{0, bx − i

∗
+ 1}, then γrkL(G) = γrkL′(G′)+ i∗ − 1.

Remarks. For the case when the component of G containing x is a star, the vertex z is null. There in fact one does not have
the vertex xs+1. The assignment of bxs+1 = ax is for the purpose of convenience. In the case of i

∗
= s + 1, this just means

that a′x is the same as ax.

Proof. Suppose f is an optimal k-L-rainbow dominating function of G such that |f (x)| is as large as possible.Wemay assume
that |f (xi)| ≤ 1 for 1 ≤ i ≤ s. Otherwise, if |f (xi)| ≥ 2, then let f̂ be the sameas f except that f̂ (xi) = {1} and f̂ (x) = f (x)∪{1}.
It is easy to verify that f̂ is a k-L-rainbow dominating function andw(f̂ ) ≤ w(f ). So, we may replace f by f̂ .
We may also assume that |f (xi+1)| ≤ |f (xi)| for 1 ≤ i ≤ s− 1. Otherwise, if f (xi) = ∅ and f (xi+1) 6= ∅, then let f̂ be the

same as f except that f̂ (xi) = f (xi+1) and f̂ (xi+1) = ∅. It is easy to verify that f̂ is a k-L-rainbow dominating function and
w(f̂ ) = w(f ). So, we may replace f by f̂ .
Now, let f ′ be the restriction of f on V (G′). We shall check that f ′ is a k-L′-rainbow dominating function of G′. First,

condition (L1) for f implies condition (L1) for f ′ for each vertex v 6= x in G′. Assume that i is the largest index such that
|f (xj)| = 1 for all j < i. Then, |f (x)| = f (NG(xi)) ≥ bxi . Hence |f (NG[x] \ z)| ≥ bxi + i−1 ≥ bxi∗ + i

∗
−1. If |f (x)| < bxi∗ , then

i∗ ≤ s. In this case, let f̂ be the same as f , except that we add some labels to f (x) so that |f̂ (x)| = bxi∗ , and that f̂ (xj) = ∅ for
all j ≥ i∗. It is easy to verify that f̂ is a k-L-rainbow dominating function of G, with w(f̂ ) ≤ w(f ) (because |f̂ (NG[x] \ z)| =
bxi∗ + i

∗
− 1) and |f̂ (x)| > |f (x)|, in contradiction to the choice of f . Hence we have |f ′(x)| = |f (x)| ≥ bxi∗ = a

′
x. These prove

condition (L1) for f ′. Condition (L2) for f implies condition (L2) for f ′ on vertices v 6= x. To see condition (L2) for f ′ on vertex
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x, we assume f (x) = ∅. This is possible only when bxi∗ = 0 and so i
∗
= s+1. Then, |f ′(NG′(x))| ≥ |f (NG(x))|−s ≥ bx− i∗+1

and so condition (L2) holds for f ′ on vertex x. Therefore, γrkL(G)− i∗ + 1 ≥ γrkL′(G′).
On the other hand, suppose f ′ is an optimal k-L′-rainbow dominating function of G′. Assume that [k] − f ′(NG′(x)) =

{p1, p2, . . . , pt}. Extend f ′ to f by letting f (xj) = {pmin{j,t}} for all j < i∗ and f (xj) = ∅ for all j ≥ i∗. We shall check that
f is a k-L-rainbow dominating function of G. First, condition (L1) for f ′ implies condition (L1) for f , since |f (xi)| ≥ 0 = axi
for all i and for all vertices v in G′ we have |f (v)| = |f ′(v)| ≥ a′v ≥ av . Secondly, condition (L2) holds for f on vertex xi for
i ≥ i∗, since |f (NG(xi))| ≥ |f (x)| ≥ bxi∗ ≥ bxi . Condition (L2) holds for f on vertex xi for i < i

∗, since f (xi) 6= ∅. Condition
(L2) holds for f on vertex x, since either |f (NG(x))| = k or |f (NG(x))| ≥ |f ′(NG′(x))| + i∗ − 1 ≥ b′x + i

∗
− 1 ≥ bx. Also,

condition (L2) for f ′ implies condition (L2) for f on vertices v in G′ − x, since f ′(NG′(v)) = f (NG(v)) and b′v = bv . Therefore,
γrkL′(G′)+ i∗ − 1 ≥ γrkL(G). �

On the basis of the theorem above, we have the following linear-time algorithm for the k-L-rainbow domination problem
on trees.

Algorithm.

Input. A tree T = (V , E) in which each vertex v is labeled by L(v) = (av, bv).
Output. The minimum k-L-rainbow dominating number r of T .
Method.

r ← 0;
get a Breadth First Search ordering v1, v2, . . . , vn for the tree T rooted at v1;
for j = 1 to n do sj ← 0; {number of children vi with avi = 0 and bvi > avj}
for j = n to 1 step by−1 do

s← sj;
x← vj;
if s > 0 then {apply Theorem 4}

let x1, x2, . . . , xs, b∗, i∗ be as described in Theorem 4;
r ← r + i∗ − 1;
ax ← bxi∗ ;
bx ← max{0, bx − i∗ + 1};

if j 6= 1 then {apply Theorem 3}
let y = xj′ be the parent of x;
if ax > 0 then { by ← max{0, by − ax}; r ← r + ax };
else if bx > ay then sj′ ← sj′ + 1;

end do;
if av1 > 0 then r ← r + av1 ;
else if bv1 > 0 then r ← r + 1;

3. The smallest integer k with γrk(G) = |V (G)|

For any graph G, γrk(G) is a non-decreasing function of k, as γrk(G) = γ (G�Kk) ≤ γ (G�Kk+1) = γrk+1(G). However,
γrk(G) is bounded from above by |V (G)|.

Proposition 5. If G is a graph on n vertices, thenmin{k, n} ≤ γrk(G) ≤ n. In particular, γrn(G) = n

Proof. Suppose f is an optimal k-rainbow dominating function of G. If there is some vertex v such that f (v) = ∅, then
f (NG(v)) = [k] and so k ≤ γrk(G). If f (v) is nonempty for all vertices v, then n ≤ γrk(G). These give the first inequality.
Next, consider the function g defined by g(v) = {1} for all vertices v. Then, g is a k-rainbow dominating function of

weight n. Thus, γrk(G) ≤ n. �

Definem(G) to be the minimum k such that γrk(G) = |V (G)|. In this section, we give a simple bound ofm(T ) for any tree
T . Combined with the algorithm in the previous section, this also provides a linear-time algorithm that determinesm(T ) for
any tree T .
In a graph G, for any vertex x and any nonempty subset S of NG(x) define d∗(x, S) to be |S|+min{d(y) : y ∈ S}; and d∗(G)

to be the maximum of d∗(x, S)where x runs over all vertices and S runs over all nonempty subset of NG(x).
We may determine d∗(G) in linear time as follows. For each vertex xwith NG(x) = {x1, x2, . . . , xs}, we may use a bucket

sort to assume that d(x1) ≥ d(x2) ≥ · · · ≥ d(xs). Then, max1≤i≤s(i+ d(xi)) is equal to the maximum value of d∗(x, S) for S
runs over all nonempty subset S of NG(x). Then, d∗(G) can be obtained by taking maximum of above mentioned value for all
vertices x.

Proposition 6. For any graph G, we have d∗(G) ≥ ∆(G)+ 1.

Proof. Choose a vertex y of degree∆(G) and a vertex x ∈ NG(y). Then, d∗(x, {y}) = ∆(G)+1 and so d∗(G) ≥ ∆(G)+1. �
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Theorem 7. If T is a tree, then d∗(T ) ≤ m(T ) ≤ d∗(T )+ 1.

Proof. To see d∗(T ) ≤ m(T ), let k = d∗(T )−1 and choose a vertex x and a subset S ofNT (x) such that d∗(T ) = |S|+min{d(y) :
y ∈ S}. Define a function f from V (T ) to 2[k] by letting f (x) = {1, 2, . . . , |S|} and f (y) = ∅ for all y ∈ S. For any y in S, since
|S| + d(y) ≥ d∗(T ) = k + 1 we can assign all neighbors of y other than x a subset of size 1 so that the union of all f (z)
over all neighbors of y, including x, is equal to [k]. We assign all other vertices a set of cardinality 1. This gives a k-rainbow
dominating function whose weight is |V (T )| − 1. Thus,m(T ) ≥ k+ 1 = d∗(T ).
To see m(T ) ≤ d∗(T ) + 1, let k = d∗(T ) + 1 and suppose f is an optimal k-rainbow dominating function of T . We shall

prove thatw(f ) ≤ |V (T )|.
Root T at a vertex r . We may assume that f is chosen so that there are as few vertices v with f (v) empty as possible. We

shall prove that in fact there is no such v.

Claim 1. If v is a vertex with f (v) empty but f (u) nonempty for all proper descendants u of v, then |f (u)| = 1 for all proper
descendants u of v.

Proof of Claim 1. If there is a descendant u of v having f (u) = {a, b, . . .}, then replacing f (u) by f (u)− {a} and f (v) by {a}
will give another optimal k-rainbow dominating function having fewer vertices v with empty f (v). �

Now, choose a vertex y with dT (r, y) largest and f (y) = ∅. Then, f (u) 6= ∅, and so |f (u)| = 1 by Claim 1, for all proper
descendants u of y. Since f (y) = ∅, we have f (N(y)) = [k] and so

∑
u∈N(y) |f (u)| ≥ k = d

∗(T )+ 1 ≥ ∆(T )+ 2 ≥ d(y)+ 2.
As |f (u)| = 1 for all except possibly one neighbor of y, it must be the case that y has a parent x in the rooted tree.
Let S be the set of all children z of x such that f (z) = ∅. Then, y ∈ S. Also, for any z ∈ S, we have that f (u) 6= ∅, and so

|f (u)| = 1 by Claim 1, for all proper descendants u of z. Choose a vertex z ′ ∈ S such that d(z ′) = minz∈S d(z). By f (z ′) = ∅,
we have k ≤

∑
u∈N(z′) |f (u)| = d(z

′) − 1 + |f (x)| where d(z ′) = d∗(x, S) − |S| ≤ d∗(T ) − |S| = k − 1 − |S|. Thus,
|f (x)| ≥ |S| + 2. Now, modify f to a function f ′ such that f ′(z) = f ′(x) = {1} for all z ∈ S, and if x has a parent x′ then
f ′(x′) = f (x′) ∪ {1}. Then, the resulting function f ′ is a k-rainbow dominating function of T whose weight is less than or
equal tow(f ), but has fewer vertices v with f (v) empty, a contradiction. So, in fact f (v) 6= ∅ for all vertices as desired. �

Remark that there are examples attaining both bounds in the theorem above. For instance, d∗(K1,n−1) = m(K1,n−1) = n
for any star K1,n−1. For integer p ≥ 2, consider the tree Tp rooted at r such that r has two children v1 and v2, and each vi has
p− 1 children each of which has p leaf-children. It can be shown that d∗(Tp) = 2p andm(Tp) = 2p+ 1.
Wemay determine the exact value ofm(T ) by applying the algorithm in the last section to evaluate γrk(T )with k = d∗(T ).

If the value is |V (T )|, thenm(T ) = d∗(T ); otherwisem(T ) = d∗(T )+ 1.
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