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Abstract. In this paper, we study a class of semilinear elliptic equations in
RN
+ with nonlinear boundary condition and sign-changing weight function. By

means of the Lusternik-Schnirelman category, multiple positive solutions are
obtained.

1. Introduction. In this paper, we consider the multiplicity results of positive
solutions for the following semilinear elliptic equation:





−∆u+ u = gµ(x) |u|
p−2

u in RN
+ ,

∂u

∂n
= fλ(x) |u|

q−2 u in ∂RN
+ ,

(Efλ,gµ)

where 1 < q < 2 < p < 2∗ (2∗ = 2N
N−2 if N ≥ 3, 2∗ = ∞ if N = 2), the parameters

λ, µ ≥ 0 and RN
+ =

{
(x′, xN ) ∈ RN−1 × R | xN > 0

}
is an upper half space in

RN . We assume that fλ(x) = λf+(x) + f−(x) and gµ(x) = a(x) + µb(x) where the
functions f±, a and b satisfy the following conditions:

(D1) f ∈ Lq∗(∂RN
+ ) (q∗ = p

p−q ) with f±(x) = ±max{±f(x), 0} 6≡ 0 and there

exists a positive number rf− such that

f−(x) ≥ −ĉ exp(−rf− |x|) for some ĉ > 0 and for all x ∈ ∂RN
+ ;

(D2) a, b ∈ C(RN
+ ) and there are positive numbers ra, rb with rb < min

{
rf− , ra, q

}

such that

1 ≥ a(x) ≥ 1− c0 exp(−ra |x|) for some c0 < 1 and for all x ∈ RN
+

and

b(x) ≥ d0 exp(−rb |x|) for some d0 > 0 and for all x ∈ RN
+ ;

(D3) b(x) → 0 and a(x) → 1 as |x| → ∞.
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The semilinear elliptic equations in bounded domains with nonlinear boundary
condition has been the focus of a great deal of research in recent years. Garcia-
Azorero, Peral and Rossi [15] have investigated the following equation:





−∆u+ u = |u|p−2
u in Ω,

∂u

∂ν
= λ |u|q−2 u on ∂Ω,

(Ẽλ)

where 1 < q < 2 < p < 2∗, Ω is a bounded domain in R
N with smooth boundary

and the parameter λ > 0. They found that there exist positive numbers Λ1,Λ2 with

Λ1 ≤ Λ2 such that the equation (Ẽλ) admits at least two positive solutions for
λ ∈ (0,Λ1) and no positive solution exists for λ > Λ2. Also see Chipot, Shafrir and
Fila [8], Flores and del Pino [13], Hu [16], Pierrotti and Terracini [20] and Terraccini

[22] where equations similar to the equation (Ẽλ) are studied. Generalizations of

the result of equation (Ẽλ) (involving sign-changing weight) were done by Brown
and Wu [5] and Wu [25]. However, little has been done for this type problems in
unbounded domains. We are only aware of the works Chipot, Chlebik, Fila and
Shafrir [7] which studied existence of solutions for some related semilinear elliptic
equations in RN

+ with nonlinear boundary condition (not involving sign-changing
weight). Furthermore, we do not know of any results for semilinear elliptic equations
in R

N
+ with nonlinear boundary condition and sign-changing weight function. In this

paper, we will study this issue.
Note that the sublinear boundary condition in equation (Efλ,gµ) is homogeneous

of the same degree q − 1 and so the equation (Efλ,gµ) is similar to the Ambrosetti,
Brezis and Cerami problem [2] (a semilinear elliptic equation involving concave and
convex nonlinearities). Thus, the existence of more than one nontrivial solution for
the equation (Efλ,gµ) is expected. Our main result in the paper is the following.

Theorem 1.1. Suppose that the functions f±, a and b satisfy the conditions (D1)−

(D3). Let Λ0 = (2− q)2−q( p−2
‖f+‖

Lq∗
)p−2(

Sp

p−q )
p(2−q)

2 (
Cp

p−q )
q(p−2)

2 , where Sp and Cp the

best Sobolev embedding and trace constants for the operators H1(RN
+ ) →֒ Lp(RN

+ )

and H1(RN
+ ) →֒ Lp(∂RN

+ ), respectively. Then
(i) for each λ > 0 and µ > 0 with λp−2(1 + µ ‖b‖∞)2−q < ( q2 )

p−2Λ0, the equation
(Efλ,gµ) has at least two positive solutions;

(ii) there exist positive numbers λ0, µ0 with λp−2
0 (1+µ0 ‖b‖∞)2−q < ( q2 )

p−2Λ0 such
that for λ ∈ (0, λ0) and µ ∈ (0, µ0), the equation (Efλ,gµ) has at least three positive
solutions.

In the following sections, we proceed to prove Theorem 1.1. We use the varia-
tional methods to find the positive solutions of equation (Efλ,gµ). Associated with

the equation (Efλ,gµ), we consider the energy functional Jfλ,gµ in H1(RN
+ )

Jfλ,gµ(u) =
1

2
‖u‖2H1 −

1

q

∫

∂RN
+

fλ |u|
q
dσ −

1

p

∫

R
N
+

gµ |u|
p
dx,

where dσ is the measure on the boundary and ‖u‖H1 = (
∫
R

N
+
|∇u|2+u2dx)1/2 is the

standard norm in H1(RN
+ ). It is well known that the solutions of equation (Efλ,gµ)

are the critical points of the energy functional Jfλ,gµ in H1(RN
+ )(see Rabinowitz

[21]).
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This paper is organized as follows. In Section 2, we give some notations and
preliminaries. In Section 3, we discussion some concentration behavior in the Nehari
manifold. In Section 4, we prove Theorem 1.1.

2. Notations and Preliminaries. Throughout this section, we denote by Sp, Cp

the best Sobolev embedding and trace constants for the operators H1(RN
+ ) →֒

Lp(RN
+ ), H1(RN

+ ) →֒ Lp(∂RN
+ ), respectively. In particular,

(

∫

R
N
+

|u|p dx)
1
p ≤ S

−1
2

p ‖u‖H1 for all u ∈ H1(RN
+ )\ {0} (1)

and

(

∫

∂RN
+

|u|p dσ)
1
p ≤ C

−1
2

p ‖u‖H1 for all u ∈ H1(RN
+ )\ {0} .

We define the Palais–Smale (simply (PS)–) sequences, (PS)–values, and (PS)–
conditions in H1(RN

+ ) for Jfλ,gµ as follows.

Definition 2.1. (i) For β ∈ R, a sequence {un} is a (PS)β–sequence in H1(RN
+ )

for Jfλ,gµ if Jfλ,gµ(un) = β + o(1) and J ′
fλ,gµ

(un) = o(1) strongly in H−1(RN
+ ) as

n → ∞.
(ii) Jfλ,gµ satisfies the (PS)β–condition in H1(RN

+ ) if every (PS)β–sequence in

H1(RN
+ ) for Jfλ,gµ contains a convergent subsequence.

As the energy functional Jfλ,gµ is not bounded below on H1(RN
+ ), it is useful to

consider the functional on the Nehari manifold

Nfλ,gµ =
{
u ∈ H1(RN

+ )\ {0} |
〈
J ′
fλ,gµ(u), u

〉
= 0

}
.

Thus, u ∈ Nfλ,gµ if and only if

‖u‖2H1 −

∫

∂RN
+

fλ |u|
q dσ −

∫

R
N
+

gµ |u|
p dx = 0.

Furthermore, we have the following results.

Lemma 2.2. The energy functional Jfλ,gµ is coercive and bounded below on Nfλ,gµ .

Proof. If u ∈ Nfλ,gµ , then, by the Hölder and Sobolev trace inequalities,

Jfλ,gµ(u) =
p− 2

2p
‖u‖2H1 −

p− q

pq

∫

∂RN
+

(λf+ + f−) |u|
q
dσ

≥
p− 2

2p
‖u‖2H1 − λ(

p− q

pq
)

∫

∂RN
+

f+ |u|q dσ

≥
p− 2

2p
‖u‖2H1 − λ(

p− q

pq
) ‖f+‖Lq∗ C

− q
2

p ‖u‖qH1 . (2)

Thus, Jfλ,gµ is coercive and bounded below on Nfλ,gµ .

The Nehari manifold Nfλ,gµ is closely linked to the behavior of the function of
the form hu : t → Jfλ,gµ(tu) for t > 0. Such maps are known as fibering maps and
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were introduced by Drábek and Pohozaev in [10] and are also discussed in Brown
and Zhang [6] and Brown and Wu [5]. If u ∈ H1(RN

+ ), we have

hu(t) =
t2

2
‖u‖2H1 −

tq

q

∫

∂RN
+

fλ |u|
q
dσ −

tp

p

∫

R
N
+

gµ |u|
p
dx;

h′
u(t) = t ‖u‖2H1 − tq−1

∫

∂RN
+

fλ |u|
q dσ − tp−1

∫

R
N
+

gµ |u|
p dx;

h′′
u(t) = ‖u‖2H1 − (q − 1)tq−2

∫

∂RN
+

fλ |u|
q
dσ − (p− 1)tp−2

∫

R
N
+

gµ |u|
p
dx.

It is easy to see that

th′
u(t) = ‖tu‖2H1 −

∫

∂RN
+

fλ |tu|
q
dσ −

∫

R
N
+

gµ |tu|
p
dx

and so, for u ∈ H1(RN
+ )\ {0} and t > 0, h′

u(t) = 0 if and only if tu ∈ Nfλ,gµ ,
i.e., positive critical points of hu correspond to points on the Nehari manifold. In
particular, h′

u(1) = 0 if and only if u ∈ Nfλ,gµ . Thus, it is natural to splitNfλ,gµ into
three parts corresponding to local minima, local maxima and points of inflection.
Accordingly, we define

N+
fλ,gµ

=
{
u ∈ Nfλ,gµ | h′′

u(1) > 0
}
;

N0
fλ,gµ

=
{
u ∈ Nfλ,gµ | h′′

u(1) = 0
}
;

N−
fλ,gµ

=
{
u ∈ Nfλ,gµ | h′′

u(1) < 0
}
.

We now derive some basic properties of N+
fλ,gµ

,N0
fλ,gµ

and N−
fλ,gµ

.

Lemma 2.3. Suppose that u0 is a local minimizer for Jfλ,gµ on Nfλ,gµ and that

u0 /∈ N0
fλ,gµ

. Then J ′
fλ,gµ

(u0) = 0 in H−1(RN
+ ).

Proof. The proof is essentially the same as that in Brown and Zhang [6, Theorem
2.3] (or see Binding, Drábek and Huang [4]).

For each u ∈ Nfλ,gµ we have

h′′
u(1) = ‖u‖2H1 − (q − 1)

∫

∂RN
+

fλ |u|
q
dσ − (p− 1)

∫

R
N
+

gµ |u|
p
dx

= (2− p) ‖u‖2H1 − (q − p)

∫

∂RN
+

fλ |u|
q
dσ (3)

= (2− q) ‖u‖2H1 − (p− q)

∫

R
N
+

gµ |u|
p
dx. (4)

Then we have the following result.

Lemma 2.4. (i) For any u ∈ N+
fλ,gµ

∪N0
fλ,gµ

, we have
∫
∂RN

+
fλ |u|

q dσ > 0.

(ii) for any u ∈ N−
fλ,gµ

, we have
∫
R

N
+
gµ |u|

p
dx > 0.

Proof. The results now follows immediately from (3) and (4).

Let

Λ0 = (2− q)2−q(
p− 2

‖f+‖Lq∗

)p−2(
Sp

p− q
)

p(2−q)
2 (

Cp

p− q
)

q(p−2)
2 .

Then we have the following results.
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Lemma 2.5. For each λ > 0 and µ ≥ 0 with λp−2(1 + µ ‖b‖∞)2−q < Λ0, we have
N0

fλ,gµ
= ∅.

Proof. Suppose the contrary. Then there exist λ > 0 and µ ≥ 0 with

λp−2(1 + µ ‖b‖∞)2−q < Λ0

such that N0
fλ,gµ

6= ∅. Then for u ∈ N0
fλ,gµ

, by (3) and the Hölder and Sobolev

trace inequalities, we have

‖u‖2H1 =
p− q

p− 2

∫

∂RN
+

fλ |u|
q
dσ ≤ λC

−q
2

p
p− q

p− 2
‖f+‖Lq∗ ‖u‖

q
H1

and so

‖u‖2H1 ≤ C
q

q−2
p

[
λ ‖f+‖Lq∗

p− q

p− 2

] 2
2−q

.

Similarly, using (4) and the Sobolev inequality we have

2− q

p− q
‖u‖2H1 =

∫

R
N
+

[a+ µb] |u|p dx ≤ (1 + µ ‖b‖∞)S
−p
2

p ‖u‖pH1 ,

which implies

‖u‖2H1 ≥ S
p

p−2
p

[
2− q

(1 + µ ‖b‖∞)(p− q)

] 2
p−2

for all µ ≥ 0.

Hence, we must have

λp−2(1 + µ ‖b‖∞)2−q

≥ (2− q)2−q(
p− 2

‖f+‖Lq∗

)p−2(
Sp

p− q
)

p(2−q)
2 (

Cp

p− q
)

q(p−2)
2 = Λ0

which is a contradiction. This completes the proof.

In order to get a better understanding of the Nehari manifold and fibering maps,
we consider the function mu : R+ → R defined by

mu(t) = t2−q ‖u‖2H1 − tp−q

∫

R
N
+

gµ |u|
p dx for t > 0.

Clearly tu ∈ Nfλ,gµ if and only if mu(t) =
∫
∂RN

+
fλ |u|

q dσ. Moreover,

m′
u(t) = (2 − q)t1−q ‖u‖2H1 − (p− q)tp−q−1

∫

R
N
+

gµ |u|
p
dx (5)

and so it is easy to see that, if tu ∈ Nfλ,gµ , then tq−1m′
u(t) = h′′

u(t). Hence

tu ∈ N+
fλ,gµ

( or N−
fλ,gµ

) if and only if m′
u(t) > 0( or < 0).

Suppose u ∈ H1(RN
+ )\ {0} . Then by (5), mu has a unique critical point at

t = tmax,µ(u) where

tmax,µ(u) = (
(2− q) ‖u‖2H1

(p− q)
∫
R

N
+
gµ |u|

p
dx

)
1

p−2 > 0 (6)
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and clearly mu is strictly increasing on (0, tmax,µ(u)) and strictly decreasing on
(tmax,µ(u),∞) with limt→∞ mu(t) = −∞. Moreover, if λp−2(1 + µ ‖b‖∞)2−q < Λ0,
then

mu(tmax,µ(u)) =

[
(
2 − q

p− q
)

2−q
p−2 − (

2− q

p− q
)

p−q
p−2

]
‖u‖

2(p−q)
p−2

H1

(
∫
R

N
+
gµ |u|

p
dx)

2−q
p−2

= ‖u‖qH1 (
p− 2

p− q
)(
2 − q

p− q
)

2−q
p−2 (

‖u‖pH1∫
R

N
+
gµ |u|

p
dx

)
2−q
p−2

≥
Λ0

λp−2(1 + µ ‖b‖∞)2−q

∫

∂RN
+

fλ |u|
q dσ

>

∫

∂RN
+

fλ |u|
q
dσ.

Thus, we have the following lemma.

Lemma 2.6. For each u ∈ H1(RN
+ )\ {0} we have the following.

(i) If
∫
∂RN

+
fλ |u|

q
dσ ≤ 0, then there is a unique t− = t−(u) > tmax,µ(u) such that

t−u ∈ N−
fλ,gµ

and mu is increasing on (0, t−) and decreasing on (t−,∞). Moreover,

Jfλ,gµ(t
−u) = sup

t≥0
Jfλ,gµ(tu). (7)

(ii) If
∫
∂RN

+
fλ |u|

q
dσ > 0, then there are unique 0 < t+ = t+(u) < tmax,µ(u) < t−

such that t+u ∈ N+
fλ,gµ

, t−u ∈ N−
fλ,gµ

, mu is decreasing on (0, t+), increasing on

(t+, t−) and decreasing on (t−,∞). Moreover,

Jfλ,gµ(t
+u) = inf

0≤t≤tmax,µ(u)
Jfλ,gµ(tu); Jfλ,gµ(t

−u) = sup
t≥t+

Jfλ,gµ(tu). (8)

(iii) t−(u) is a continuous function for u ∈ H1(RN
+ );

(iv) N−
fλ,gµ

=
{
u ∈ H1(RN

+ ) | 1
‖u‖H1

t−( u
‖u‖H1

) = 1
}
.

Proof. Fix u ∈ H1(RN
+ )\ {0} .

(i) Suppose
∫
∂RN

+
fλ |u|

q
dσ ≤ 0. Then mu(t) =

∫
∂RN

+
fλ |u|

q
dσ has a unique solution

t− > tmax,µ(u) and m′
u(t

−) < 0. Hence, by tq−1m′
u(u) = h′′

u(t), hu has a unique

critical point at t = t− and h′′
u(t

−) < 0. Thus, t−u ∈ N−
fλ,gµ

and (7) holds.

(ii) Suppose
∫
∂RN

+
fλ |u|

q
dσ > 0. Since mu(tmax,µ(u)) >

∫
∂RN

+
fλ |u|

q
dσ, the equa-

tion mu(t) =
∫
∂RN

+
fλ |u|

q
dσ has exactly two solutions t+ < tmax,µ(u) < t− such

that m′
u(t

+) > 0 and m′
u(t

−) < 0. Hence, there are exactly two multiples of u lying
in Nfλ,gµ , that is, t+u ∈ N+

fλ,gµ
and t−u ∈ N−

fλ,gµ
. Thus, by tq−1m′

u(u) = h′′
u(t),

hu has critical points at t = t+ and t = t− with h′′
u(t

+) > 0 and h′′
u(t

−) < 0. Thus,
hu is decreasing on (0, t+), increasing on (t+, t−) and decreasing on (t+,∞). There-
fore, (8) must hold.
(iii) By the uniqueness of t−(u) and the extremal property of t−(u), we have t−(u)
is a continuous function for u ∈ H1(RN

+ )\ {0} .

(iv) For u ∈ N−
fλ,gµ

. Let v = u
‖u‖H1

. By parts (i), (ii), there is a unique t−(v) > 0

such that t−(v)v ∈ N−
fλ,gµ

or t−( u
‖u‖H1

) 1
‖u‖H1

u ∈ N−
fλ,gµ

. Since u ∈ N−
fλ,gµ

, we have
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t−( u
‖u‖H1

) 1
‖u‖H1

= 1, and this implies

N−
fλ,gµ

⊂

{
u ∈ H1(RN

+ ) |
1

‖u‖H1

t−(
u

‖u‖H1

) = 1

}
.

Conversely, let u ∈ H1(RN
+ ) such that 1

‖u‖H1
t−( u

‖u‖H1
) = 1. Then

t−(
u

‖u‖H1

)
u

‖u‖H1

∈ N−
fλ,gµ

.

Thus,

N−
fλ,gµ

=

{
u ∈ H1(RN

+ ) |
1

‖u‖H1

t−(
u

‖u‖H1

) = 1

}
.

This completes the proof.

Remark 1. (i) If λ = 0, then by Lemma 2.6 (i), N+
f0,gµ

= ∅, and soNf0,gµ = N−
f0,gµ

for all µ ≥ 0.
(ii) If λp−2(1 + µ ‖b‖∞)2−q < Λ0, then, by (3), for each u ∈ N+

fλ,gµ
we have

‖u‖2H1 <
p− q

p− 2

∫

∂RN
+

fλ |u|
q dσ ≤ λ

p− q

p− 2

∫

∂RN
+

f+ |u|q dσ

≤ Λ
1/(p−2)
0 C

−q
2

p
p− q

p− 2
‖f+‖Lq∗ ‖u‖

q
H1 ,

and so

‖u‖H1 ≤ (Λ
1/(p−2)
0 C

−q
2

p
p− q

p− 2
‖f+‖Lq∗ )

1/(2−q) for all u ∈ N+
fλ,gµ

. (9)

We remark that it follows from Lemma 2.5 that Nfλ,gµ = N+
fλ,gµ

∪N−
fλ,gµ

for all

λ > 0 and µ ≥ 0 with λp−2(1 + µ ‖b‖∞)2−q < Λ0. Furthermore, by Lemma 2.6 it

follows that N+
fλ,gµ

and N−
fλ,gµ

are non-empty and by Lemma 2.2, we may define

α+
fλ,gµ

= inf
u∈N

+
fλ,gµ

Jfλ,gµ(u) and α−
fλ,gµ

= inf
u∈N

−

fλ,gµ

Jfλ,gµ(u).

Then we have the following results.

Theorem 2.7. We have the following:
(i) α+

fλ,gµ
< 0 for all λ > 0 and µ ≥ 0 with λp−2(1 + µ ‖b‖∞)2−q < Λ0.

(ii) If λp−2(1 + µ ‖b‖∞)2−q < ( q2 )
p−2Λ0, then α−

fλ,gµ
> c0 for some c0 > 0.

In particular, for each λ > 0 and µ ≥ 0 with λp−2(1 + µ ‖b‖∞)2−q < ( q2 )
p−2Λ0, we

have α+
fλ,gµ

= infu∈Nfλ,gµ
Jfλ,gµ(u).

Proof. (i) Let u ∈ N+
fλ,gµ

. Then, by (3),

‖u‖2H1 <
p− q

p− 2

∫

∂RN
+

fλ |u|
q
dσ.

Hence, by Lemma 2.4

Jfλ,gµ(u) =
p− 2

2p
‖u‖2H1 −

p− q

pq

∫

∂RN
+

fλ |u|
q dσ

< −
(p− q)(2 − q)

2pq

∫

∂RN
+

fλ |u|
q
dσ < 0
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and so α+
fλ,gµ

< 0.

(ii) Let u ∈ N−
fλ,gµ

. Then, by (4) and the Sobolev inequality,

2− q

p− q
‖u‖2H1 <

∫

R
N
+

gµ |u|
p
dx ≤ (1 + µ ‖b‖∞)S

−p
2

p ‖u‖pH1 ,

which implies

‖u‖H1 > (
(2− q)S

p
2
p

(1 + µ ‖b‖∞)(p− q)
)

1
p−2 for all u ∈ N−

fλ,gµ
. (10)

By (2) and (10), we have

Jfλ,gµ(u) > (
(2− q)S

p
2
p

(1 + µ ‖b‖∞)(p− q)
)

q
p−2

·(
p− 2

2p
(

(2− q)S
p
2
p

(1 + µ ‖b‖∞)(p− q)
)

2−q
p−2 − λ ‖f+‖Lq∗ C

− q
2

p (
p− q

pq
)).

Thus, if λp−2(1 + µ ‖b‖∞)2−q < ( q2 )
p−2Λ0, then

α−
fλ,gµ

> c0 for some c0 > 0.

This completes the proof.

Now, we consider the following elliptic problems:



−∆u+ u = |u|p−2
u in RN

+ ,
∂u

∂n
= 0 on ∂RN

+ .
(E∞)

and {
−∆u+ u = |u|p−2 u in RN ,
lim|x|→∞ u = 0.

(Ẽ∞)

Associated with the equations (E∞) and (Ẽ∞), we consider the energy functionals

J∞ in H1(RN
+ ) and J̃∞ in H1(RN )

J∞(u) =
1

2

∫

R
N
+

|∇u|2 + u2dx−
1

p

∫

R
N
+

|u|p dx

and

J̃∞(u) =
1

2

∫

RN

|∇u|2 + u2dx−
1

p

∫

RN

|u|p dx,

respectively. Consider minimizing problems:

inf
u∈N∞

J∞(u) = α∞ and inf
u∈Ñ∞

J̃∞(u) = α̃∞

where
N∞ =

{
u ∈ H1(RN

+ )\ {0} | 〈(J∞)′(u), u〉 = 0
}

and

Ñ∞ =
{
u ∈ H1(RN )\ {0} |

〈
(J̃∞)′(u), u

〉
= 0

}
.

It is known that equation (E∞) has a least energy positive solution w(x) such that
J∞(w) = α∞ = α̃∞/2 and w(0) = maxx∈∂RN

+
w(x) (see [9, 12, 17]). We observe

that solution w(x), we can construct a solution w̃(x) of equation (Ẽ∞) by reflection
with respect to ∂RN

+ . Then we have the following proposition provides a precise
description for the (PS)–sequence of Jfλ,gµ .
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Proposition 1. If {un} is a (PS)β–sequence in H1(RN
+ ) for Jfλ,gµ with β <

α+
fλ,gµ

+ α∞, then there exist a subsequence {un} and a non-zero u0 in H1(RN
+ )

such that un → u0 strongly in H1(RN
+ ) and Jfλ,gµ(u0) = β. Moreover, u0 is a

solution of equation (Efλ,gµ).

Proof. Similarly to the argument in [25, Proposition 4.6] (or see Adachi and Tanaka
[3, Proposition 3.1]).

Then we can show that the following result.

Theorem 2.8. For each λ > 0 and µ ≥ 0 with λp−2(1 + µ ‖b‖∞)2−q < ( q2 )
p−2Λ0,

the equation (Efλ,gµ) has a positive solution u+
λ,µ ∈ N+

fλ,gµ
such that Jfλ,gµ(u

+
λ,µ) =

αfλ,gµ .

Proof. By the Ekeland variational principle [11] (or see Wu [25, Proposition 3.3]),
there exist {u+

n } ⊂ N+
fλ,gµ

such that they are (PS)α+
fλ,gµ

–sequence for Jfλ,gµ . Then,

by Theorem 2.7 and Proposition 1, there exist a subsequences {u+
n } and u+

λ,µ ∈

N+
fλ,gµ

a non-zero solution of equation (Efλ,gµ) such that u+
n → u+

λ,µ strongly in

H1(RN
+ ) and Jfλ,gµ(u

+
λ,µ) = α+

fλ,gµ
. Since Jfλ,gµ(u

+
λ,µ) = Jfλ,gµ(

∣∣∣u+
λ,µ

∣∣∣) and
∣∣∣u+

λ,µ

∣∣∣ ∈
N+

fλ,gµ
, by Lemma 2.3 and the maximum principle, we may assume that u+

λ,µ is a

positive solutions of equation (Efλ,gµ).

We need the following lemmas.

Lemma 2.9. We have

inf
u∈Nf0,g0

Jf0,g0(u) = inf
u∈N∞

J∞(u) = α∞.

Furthermore, the equation (Ef0,g0) does not admit any solution u0 such that

Jf0,g0(u0) = inf
u∈Nf0,g0

Jf0,g0(u).

Proof. Let w(x) be a least energy solution of equation (E∞) and let wl(x) = w(x+
le), where l ∈ R and e ∈ S =

{
x ∈ ∂RN

+ | |x| = 1
}
. Then, by Lemma 2.6, there is

a unique t−(wl) > ( 2−q
p−q )

1/(p−2) such that t−(wl)wl ∈ Nf0,g0 for all l > 0, that is

∥∥t−(wl)wl

∥∥2
H1 =

∫

∂RN
+

f−
∣∣t−(wl)wl

∣∣q dσ +

∫

R
N
+

g0
∣∣t−(wl)wl

∣∣p dx.

Since ∫

∂RN
+

f− |wl|
q dσ → 0 as l → ∞,

∫

R
N
+

(1 − g0) |wl|
p
dx → 0 as l → ∞

and

‖wl‖
2
H1 =

∫

R
N
+

|wl|
p
dx =

2p

p− 2
α∞ for all l ≥ 0,

we have t−(wl) → 1 as l → ∞. Thus,

lim
l→∞

Jf0,g0(t
−(wl)wl) = lim

l→∞
J∞(t−(wl)wl) = α∞.
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Then

inf
u∈Nf0,g0

Jf0,g0(u) ≤ inf
u∈N∞

J∞(u) = α∞.

Let u ∈ Nf0,g0 . Then, by Lemma 2.6 (i), Jf0,g0(u) = supt≥0 Jf0,g0(tu). Moreover,
there is a unique t∞ > 0 such that t∞u ∈ N∞. Thus,

Jf0,g0(u) ≥ Jf0,g0(t
∞u) ≥ J∞(t∞u) ≥ α∞

and so infu∈Nf0,g0
Jf0,g0(u) ≥ α∞. Therefore,

inf
u∈Nf0,g0

Jf0,g0(u) = inf
u∈N∞

J∞(u) = α∞.

Next, we will show that equation (Ef0,g0) does not admit any solution u0 such
that Jf0,g0(u0) = infu∈Nf0,g0

Jf0,g0(u). Suppose the contrary. Then we can assume

that there exists u0 ∈ Nf0,g0 such that Jf0,g0(u0) = infu∈Nf0,g0
Jf0,g0(u). Then, by

Lemma 2.6 (i), Jf0,g0(u0) = supt≥0 Jf0,g0(tu0). Moreover, there is a unique tu0 > 0
such that tu0u0 ∈ N∞. Thus,

α∞ = inf
u∈Nf0,g0

Jf0,g0(u) = Jf0,g0(u0) ≥ Jf0,g0(tu0u0)

≥ J∞(tu0u0)−
tqu0

q

∫

∂RN
+

f− |u0|
q
dσ ≥ α∞ −

tqu0

q

∫

∂RN
+

f− |u0|
q
dσ.

This implies
∫
∂RN

+
f− |u0|

q
dσ = 0 and so u0 ≡ 0 in

{
x ∈ ∂RN

+ | f−(x) 6= 0
}
, from

the condition (D1). Therefore,

α∞ = inf
u∈N∞

J∞(u) = J∞(tu0u0).

Since |tu0u0| ∈ N∞ and J∞(|tu0u0|) = J∞(tu0u0) = α∞, by Willem [24, Theorem
4.3] and the maximum principle, we can assume that tu0u0 is a positive solution of
(E∞). This contradicts

u0 ≡ 0 in
{
x ∈ ∂RN

+ | f−(x) 6= 0
}
.

This completes the proof.

Lemma 2.10. Suppose that {un} is a minimizing sequence in Nf0,g0 for Jf0,g0 .
Then
(i)

∫
∂RN

+
f− |un|

q
dσ = o(1);

(ii)
∫
R

N
+
(1− g0) |un|

p dx = o(1).

Furthermore, {un} is a (PS)α∞–sequence for J∞ in H1(RN
+ ).

Proof. For each n, there is a unique tn > 0 such that tnun ∈ N∞, that is

t2n ‖un‖
2
H1 = tpn

∫

R
N
+

|un|
p dx.

Then, by Lemma 2.6 (i),

Jf0,g0(un) ≥ Jf0,g0(tnun)

= J∞(tnun) +
tpn
p

∫

R
N
+

(1− g0) |un|
p
dx−

tqn
q

∫

∂RN
+

f− |un|
q
dσ

≥ α∞ +
tpn
p

∫

R
N
+

(1 − g0) |un|
p
dx−

tqn
q

∫

∂RN
+

f− |un|
q
dσ.
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Since Jf0,g0(un) = α∞ + o(1) from Lemma 2.9, we have

tqn
q

∫

∂RN
+

f− |un|
q
dσ = o(1)

and
tpn
p

∫

R
N
+

(1− g0) |un|
p
dx = o(1).

We will show that there exists c0 > 0 such that tn > c0 for all n. Suppose the
contrary. Then we may assume tn → 0 as n → ∞. Since Jf0,g0(un) = α∞+ o(1), by
Lemma 2.2, ‖un‖H1 is uniformly bounded and so ‖tnun‖H1 → 0 or J∞(tnun) → 0
and this contradicts J∞(tnun) ≥ α∞ > 0. Thus,

∫

∂RN
+

f− |un|
q dσ = o(1)

and ∫

R
N
+

(1 − g0) |un|
p dx = o(1),

this implies

‖un‖
2
H1 =

∫

R
N
+

|un|
p dx+ o(1)

and

J∞(un) = α∞ + o(1).

Moreover, by Wang and Wu [23, Lemma 7], we have {un} is a (PS)α∞–sequence
for J∞ in H1(RN

+ ).

Let P : RN
+ → RN−1 be a projection defined by P (x′, xN ) = x′ for (x′, xN ) ∈ RN

+ .
Then we have the following result.

Lemma 2.11. There exists d0 > 0 such that if u ∈ Nf0,g0 with Jf0,g0(u) ≤ α∞+d0,
then

P (

∫

R
N
+

x

|x|
(|∇u|2 + u2)dx) 6= 0.

Proof. Suppose the contrary. Then there exists sequence {un} ⊂ Nf0,g0 such that
Jf0,g0(u) = α∞ + o(1) and

P (

∫

R
N
+

x

|x|
(|∇un|

2 + u2
n)dx) = 0.

Moreover, by Lemma 2.10, we have {un} is a (PS)α∞–sequence inH1(RN
+ ) for J∞. It

follows from Lemma 2.2 that there exist a subsequence {un} and u0 ∈ H1(RN
+ ) such

that un ⇀ u0 weakly in H1(RN
+ ). By the concentration–compactness principle (see

Lions [18, 19] or del Pino and Flores [9, proof of proposition 2.1]) and α∞ = α̃∞/2,
there exist a sequence {xn} ⊂ ∂RN

+ , and a positive solution w0 ∈ H1(RN
+ ) of

equation (E∞) such that

‖un(x) − w0(x− xn)‖H1 → 0 as n → ∞. (11)
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Now we will show that |xn| → ∞ as n → ∞. Suppose the contrary. Then we may
assume that {xn} is bounded and xn → x0 for some x0 ∈ ∂RN

+ . Thus, by (11),

∫

∂RN
+

f− |un|
q
dσ =

∫

∂RN
+

f−(x) |w0(x− xn)|
q
dσ + o(1)

=

∫

∂RN
+

f−(x+ x0) |w0(x)|
q
dσ + o(1),

this contradicts the result of Lemma 2.10:
∫
∂RN

+
f− |un|

q dσ = o(1). Hence we may

assume xn

|xn|
→ e as n → ∞, where e ∈ S =

{
x ∈ ∂RN

+ | |x| = 1
}
. Then, by the

Lebesgue dominated convergence theorem, we have

0 = P (

∫

R
N
+

x

|x|
(|∇un|

2
+ u2

n)dx)

= P (

∫

R
N
+

x+ xn

|x+ xn|
(|∇w0|

2
+ w2

0)dx) + o(1)

=
2p

p− 2
α∞P (e) + o(1),

which is a contradiction. This completes the proof.

3. Concentration Behavior. First, let w(x) be a least energy positive solution
of equation (E∞) such that J∞(w) = α∞. Then by Gidas, Ni and Nirenberg [14]
and Kwong [17], for any ε > 0, there exist positive numbers Aε and B0 such that

Aε exp(−(1 + ε) |x|) ≤ w(x) ≤ B0 exp(− |x|) for all x ∈ RN
+ . (12)

Let

wl(x) = w(x + le), for l ∈ R and e ∈ S,

where S =
{
x ∈ ∂RN

+ | |x| = 1
}
. Clearly, wl is also a least energy positive solution

of equation (E∞) for all l ≥ 0, and
∫
∂RN

+
fλ |wl|

q
dσ = 0 as l → ∞. Then we have

the following result.

Proposition 2. For each λ > 0 and µ > 0 with λp−2(1 + µ ‖b‖∞)2−q < Λ0, we
have

α−
fλ,gµ

< α+
fλ,gµ

+ α∞.
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Proof. Let u+
λ,µ be a positive solution of equation (Efλ,gµ) as in Theorem 2.8. Then

Jfλ,gµ(u
+
λ,µ + twl)

≤ α+
fλ,gµ

+ J∞(tw)−
µ

p

∫

R
N
+

btpwp
l dx+

1

p

∫

R
N
+

(1− g0)t
pwp

l dx

−

∫

∂RN
+

(λf+ + f−)

{∫ twl

0

(u+
λ,µ + η)q−1 − (u+

λ,µ)
q−1dη

}
dσ

−
1

p

∫

R
N
+

[
(u+

λ,µ + twl)
p − (u+

λ,µ)
p − tpwp

l − p(u+
λ,µ)

p−1twl

]
dx

≤ α+
fλ,gµ

+ α∞ −
µtp

p

∫

R
N
+

bwp
l dx

+
tp

p

∫

R
N
+

(1− g0)w
p
l dx+

tq

q

∫

∂RN
+

|f−|w
q
l dσ

−
1

p

∫

R
N
+

[
(u+

λ,µ + twl)
p − (u+

λ,µ)
p − tpwp

l − p(u+
λ,µ)

p−1twl

]
dx. (13)

We remark that

(u+ v)p − up − vp − pup−1v ≥ 0 for all (u, v) ∈ [0,∞)× [0,∞),

this implies
∫

R
N
+

[
(u+

λ,µ + twl)
p − (u+

λ,µ)
p − tpwp

l − p(u+
λ,µ)

p−1twl

]
dx ≥ 0. (14)

Thus, by (13) and (14), we have

Jfλ,gµ(u
+
λ,µ + twl) ≤ α+

fλ,gµ
+ α∞ −

µtp

p

∫

R
N
+

bwp
l dx

+
tp

p

∫

R
N
+

(1 − g0)w
p
l dx+

tq

q

∫

∂RN
+

|f−|w
q
l dσ. (15)

Since

Jfλ,gµ(u
+
λ,µ + twl) → Jfλ,gµ(u

+
λ,µ) = α+

fλ,gµ
< 0 as t → 0

and

Jfλ,gµ(u
+
λ,µ + twl)

≤
∥∥∥u+

λ,µ

∥∥∥
2

H1
+ t2 ‖wl‖

2
H1 +

1

q

∫

∂RN
+

|f−|
∣∣∣u+

λ,µ + twl

∣∣∣
q

dσ

−
tp min

x∈R
N
+

a(x)

p

∫

R
N
+

|wl|
p
dx

≤
∥∥∥u+

λ,µ

∥∥∥
2

H1
+ t2 ‖w‖2H1 +

2q−1

q
‖f−‖Lq∗ (

∥∥∥u+
λ,µ

∥∥∥
q

Lp
+ tq ‖w‖qLp)

−
tp min

x∈R
N
+

a(x)

p

∫

R
N
+

|w|p dx

→ −∞ as t → ∞,
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we can easily find 0 < t1 < t2 such that

Jfλ,gµ(u
+
λ,µ + twl) < α+

fλ,gµ
+ α∞ for all t ∈ [0, t1] ∪ [t2,∞). (16)

Thus, we only need to show that there exists l0 > 0 such that for l > l0,

sup
t1≤t≤t2

Jfλ,gµ(u
+
λ,µ + twl) < α+

fλ,gµ
+ α∞. (17)

From the condition (D2) and (12), we have
∫

R
N
+

(1− g0)t
pwp

l dx ≤ c0

∫

R
N
+

exp(−ra |x|)B
p
0 exp(−p |x+ le|)dx

≤ C0 exp(−min {ra, p} l) (18)

and ∫

R
N
+

b(x)wp
l (x)dx =

∫

R
N
+

b(x− le)wp(x)dx

≥ ( min
x∈BN

+ (1)
wp(x))

∫

BN (1)

b(x− le)dx

≥ ( min
x∈BN

+ (1)
wp(x))C1 exp(−rbl), (19)

where BN
+ (1) =

{
x ∈ RN

+ | |x| < 1
}
. From the condition (D1) and the same argu-

ment of inequality (18), we also have
∫

∂RN
+

|f−|w
q
l dσ ≤ ĉBq

0

∫

∂RN
+

exp(−rf− |x|) exp(−q |x+ le|)dσ

≤ C2 exp(−min
{
rf− , q

}
l). (20)

Since rb < min
{
rf− , ra, q

}
≤ min

{
rf− , ra, p

}
and t1 ≤ t ≤ t2, by (15) − (20), we

can find l1 > 0 such that

sup
t≥0

Jfλ,gµ(u
+
fλ,gµ

+ twl) < α+
fλ,gµ

+ α∞ for all l ≥ l1.

To complete the proof of Proposition 2, it remains to show that there exists a
positive number t∗ such that u+

fλ,gµ
+ t∗wl ∈ N−

fλ,gµ
. Let

U1 =

{
u ∈ H1(RN

+ )

∣∣∣∣
1

‖u‖H1

t−(
u

‖u‖H1

) > 1

}
∪ {0} ;

U2 =

{
u ∈ H1(RN

+ )

∣∣∣∣
1

‖u‖H1

t−(
u

‖u‖H1

) < 1

}
.

Then N−
fλ,gµ

separates H1(RN
+ ) into two connected components U1 and U2 and

H1(RN
+ )\N−

fλ,gµ
= U1 ∪ U2. For each u ∈ N+

fλ,gµ
, we have

1 < tmax,µ(u) < t−(u).

Since t−(u) = 1
‖u‖H1

t−( u
‖u‖H1

), then N+
fλ,gµ

⊂ U1. In particular, u+
λ,µ ∈ U1. We

claim that there exists t0 > 0 such that u+
fλ,gµ

+ t0wl ∈ U2. First, we find a constant

c > 0 such that 0 < t−(
u+
λ,µ

+twl

‖u+
λ,µ

+twl‖
H1

) < c for each t ≥ 0. Suppose the contrary.

Then there exists a sequence {tn} such that tn → ∞ and t−(
u+
λ,µ

+tnwl

‖u+
λ,µ

+tnwl‖
H1

) → ∞
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as n → ∞. Let vn =
u+
λ,µ

+tnwl

‖u+
λ,µ

+tnwl‖
H1

. Since t−(vn)vn ∈ N−
fλ,gµ

and by the Lebesgue

dominated convergence theorem,
∫

R
N
+

gµv
p
ndx =

1∥∥∥u+
λ,µ + tnwl

∥∥∥
p

H1

∫

R
N
+

gµ(u
+
λ,µ + tnwl)

pdx

=
1∥∥∥∥

u+
λ,µ

tn
+ wl

∥∥∥∥
p

H1

∫

R
N
+

gµ(
u+
λ,µ

tn
+ wl)

pdx

→

∫
R

N
+
gµw

p
l dx

‖wl‖
p
H1

as n → ∞,

we have

Jfλ,gµ(t
−(vn)vn)

=
1

2

[
t−(vn)

]2
−

[t−(vn)]
q

q

∫

∂RN
+

fλv
q
ndσ −

[t−(vn)]
p

p

∫

R
N
+

gµv
p
ndx

→ −∞ as n → ∞,

this contradicts the fact that Jfλ,gµ is bounded below on Nfλ,gµ . Let

t0 = (
p− 2

2pα∞

∣∣∣∣c
2 −

∥∥∥u+
λ,µ

∥∥∥
2

H1

∣∣∣∣)
1
2 + 1.

Then
∥∥∥u+

λ,µ + t0wl

∥∥∥
2

H1
=

∥∥∥u+
λ,µ

∥∥∥
2

H1
+ t20 ‖wl‖

2
H1 + o(1)

>
∥∥∥u+

λ,µ

∥∥∥
2

H1
+

∣∣∣∣c
2 −

∥∥∥u+
λ,µ

∥∥∥
2

H1

∣∣∣∣+ o(1)

> c2 + o(1) >


t−(

u+
λ,µ + t0wl∥∥∥u+

λ,µ + t0wl

∥∥∥
H1

)



2

+ o(1) as l → ∞.

Thus, there exists l2 ≥ l1 such that for l ≥ l2,

1∥∥∥u+
λ,µ + t0wl

∥∥∥
H1

t−(
u+
λ,µ + t0wl∥∥∥u+

λ,µ + t0wl

∥∥∥
H1

) < 1

or u+
λ,µ + t0wl ∈ U2. Define a path γl(s) = vλ + st0wl for s ∈ [0, 1]. Then

γl(0) = u+
λ,µ ∈ U1, γl(1) = u+

λ,µ + t0wl ∈ U2.

Since 1
‖u‖H1

t−( u
‖u‖H1

) is a continuous function for non-zero u and γl([0, 1]) is con-

nected, there exists sl ∈ (0, 1) such that u+
λ,µ + slt0wl ∈ N−

fλ,gµ
. This completes the

proof.

Then we can show that the following result.

Theorem 3.1. For each λ > 0 and µ > 0 with

λp−2(1 + µ ‖b‖∞)2−q < (
q

2
)p−2Λ0,
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the equation (Efλ,gµ) has a positive solution u−
λ,µ ∈ N−

fλ,gµ
such that Jfλ,gµ(u

−
λ,µ) =

α−
fλ,gµ

.

Proof. Similarly to the argument in the proof of Theorem 2.8.

By (4), (6) and Lemma 2.6, for each u ∈ N−
fλ,gµ

there is a unique t−0 (u) > 0 such

that t−0 (u)u ∈ Nf0,g0 and

t−0 (u) > tmax,0(u) = (
(2− q) ‖u‖2H1

(p− q)
∫
R

N
+
g0 |u|

p
dx

)
1

p−2 > 0.

Let

θµ =

[
Aµ(1 +

‖f−‖Lq∗

C
q
2
p

(
Aµ

S
p
2
p

)
2−q
p−2 )

] p
p−2

,

where Aµ =
(1+µ‖b/a‖

∞
)(p−q)

2−q . Then we have the following results.

Lemma 3.2. For each λ > 0 and µ > 0 with λp−2(1 + µ ‖b‖∞)2−q < ( q2 )
p−2Λ0 we

have the following.
(i)

[
t−0 (u)

]p
< θµ for all u ∈ N−

fλ,gµ
with Jfλ,gµ(u) < α+

fλ,gµ
+ α∞.

(ii)
∫
R

N
+
g0 |u|

p
dx ≥ qp

θµ(p−q)α
∞ for all u ∈ N−

fλ,gµ
with Jfλ,gµ(u) < α+

fλ,gµ
+ α∞.

Proof. (i) For u ∈ N−
fλ,gµ

with Jfλ,gµ(u) < α+
fλ,gµ

+ α∞, we have

‖u‖2H1 −

∫

∂RN
+

fλ |u|
q
dσ −

∫

R
N
+

gµ |u|
p
dx = 0.

We distinguish two cases.
Csae (I) : t−0 (u) < 1. Since θµ > 1 for all µ > 0, we have

[
t−0 (u)

]p
< 1 < θµ.

Case (II) : t−0 (u) ≥ 1. Since

[
t−0 (u)

]p
∫

R
N
+

g0 |u|
p
dx =

[
t−0 (u)

]2
‖u‖2H1 −

[
t−(u)

]q
∫

∂RN
+

f− |u|q dσ

≤
[
t−0 (u)

]2
(‖u‖2H1 +

∫

∂RN
+

|f−| |u|
q dσ),

we have

[
t−0 (u)

]p−2
≤

‖u‖2H1 +
∫
∂RN

+
|f−| |u|

q
dσ

∫
R

N
+
g0 |u|

p dx
. (21)

Moreover, by (4) and the Sobolev inequality,

‖u‖2H1 <
p− q

2− q

∫

R
N
+

gµ |u|
p dx ≤

p− q

2− q
(1 + µ ‖b/a‖∞)

∫

R
N
+

g0 |u|
p dx (22)

≤ (1 + µ ‖b/a‖∞)S
− p

2
p

p− q

2− q
‖u‖pH1 (23)

and so

‖u‖H1 ≥ (
(2 − q)S

p
2
p

(1 + µ ‖b/a‖∞)(p− q)
)

1
p−2 . (24)
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Thus, by (21)− (24) and the Sobolev inequality,

[
t−0 (u)

]p−2

≤ (1 + µ ‖b/a‖∞)(
p− q

2 − q
)(1 +

∫
∂RN

+
f− |u|q dσ

‖u‖2H1

)

≤
(1 + µ ‖b/a‖∞)(p− q)

2− q
(1 +

‖f−‖Lq∗

C
q
2
p ‖u‖2−q

H1

)

≤
(1 + µ ‖b/a‖∞)(p− q)

2− q
(1 +

‖f−‖Lq∗

C
q
2
p

(
(1 + µ ‖b/a‖∞)(p− q)

(2− q)S
p
2
p

)
2−q
p−2 )

or
[
t−0 (u)

]p
≤ θµ.

(ii) By Lemma 2.9 and t−0 (u)u ∈ Nf0,g0 ,

α∞ ≤ Jf0,g0(t
−
0 (u)u)

= (
1

2
−

1

q
)
[
t−0 (u)

]2
‖u‖2H1 + (

1

q
−

1

p
)
[
t−0 (u)

]p
∫

R
N
+

g0 |u|
p dx

< (
1

q
−

1

p
)
[
t−0 (u)

]p
∫

R
N
+

g0 |u|
p
dx,

and this implies
∫

R
N
+

g0 |u|
p dx ≥

1[
t−0 (u)

]p (
pq

p− q
)α∞.

By part (i), we can conclude that

∫

R
N
+

g0 |u|
p dx ≥

pq

θµ(p− q)
α∞

for all u ∈ N−
fλ,gµ

with Jfλ,gµ(u) < α+
fλ,gµ

+ α∞. This completes the proof.

By the proof of Proposition 2, there exist positive numbers t∗ and l2 such that
u+
λ,µ + t∗wl ∈ N−

fλ,gµ
and

Jfλ,gµ(u
+
λ,µ + t∗wl) < α+

fλ,gµ
+ α∞ for all l ≥ l2.

Then we have the following result.

Lemma 3.3. There exist positive numbers λ0 and µ0 with

λp−2
0 (1 + µ0 ‖b‖∞)2−q < (

q

2
)p−2Λ0

such that for every λ ∈ (0, λ0) and µ ∈ (0, µ0), we have

P (

∫

R
N
+

x

|x|
(|∇u|2 + u2)dx) 6= 0

for all u ∈ N−
fλ,gµ

with Jfλ,gµ(u) < α+
fλ,gµ

+ α∞.



1692 TSUNG-FANG WU

Proof. For u ∈ N−
fλ,gµ

with Jfλ,gµ(u) < α+
fλ,gµ

+α∞, by Lemma 2.6 (i), there exists

t−0 (u) > 0 such that t−0 (u)u ∈ Nf0,g0 . Moreover,

Jfλ,gµ(u) = sup
t≥0

Jfλ,gµ(tu) ≥ Jfλ,gµ(t
−
0 (u)u)

= Jf0,g0(t
−
0 (u)u)−

λ
[
t−0 (u)

]q

q

∫

∂RN
+

f+ |u|q dσ

−
µ
[
t−0 (u)

]p

p

∫

R
N
+

b |u|p dx.

Thus, by Lemma 3.2 and the Hölder and Sobolev inequalities,

Jf0,g0(t
−
0 (u)u) ≤ Jfλ,gµ(u) +

λ
[
t−0 (u)

]q

q

∫

∂RN
+

f+ |u|q dσ

+
µ
[
t−0 (u)

]p

p

∫

R
N
+

b |u|p dx

< α+
fλ,gµ

+ α∞ +
λθ

q/p
µ

q
‖f+‖Lq∗ C

− q
2

p ‖u‖qH1

+
µθµ ‖b‖∞

p
S
− p

2
p ‖u‖pH1 .

Since Jfλ,gµ(u) < α+
fλ,gµ

+α∞ < α∞, by (2) in Lemma 2.2, for each λ > 0 and µ > 0

with λp−2(1+µ ‖b‖∞)2−q < ( q2 )
p−2Λ0, there exists a positive number c̃ independent

of λ, µ such that ‖u‖H1 ≤ c̃ for all u ∈ N−
fλ,gµ

with Jfλ,gµ(u) < α+
fλ,gµ

+ α∞.

Therefore,

Jf0,g0(t
−
0 (u)u) < α+

fλ,gµ
+ α∞ +

λθ
q/p
µ

q
‖f+‖Lq∗ C

− q
2

p c̃q +
µθµ ‖b‖∞

p
S
−p

2
p c̃p.

Let d0 > 0 be as in Lemma 2.11. Then there exist positive numbers λ0 and µ0 with
λp−2
0 (1 + µ0 ‖b‖∞)2−q < ( q2 )

p−2Λ0 such that for λ ∈ (0, λ0) and µ ∈ (0, µ0),

Jf0,g0(t
−(u)u) < α∞ + d0. (25)

Since t−0 (u)u ∈ Nf0,g0 and t−0 (u) > 0, by Lemma 2.11 and (25)

P (

∫

R
N
+

x

|x|
(
∣∣∇(t−0 (u)u)

∣∣2 + (t−0 (u)u)
2)dx) 6= 0,

and this implies

P (

∫

R
N
+

x

|x|
(|∇u|2 + u2)dx) 6= 0

for all u ∈ N−
fλ,gµ

with Jfλ,gµ(u) < α+
fλ,gµ

+ α∞.

4. Proof of Theorem 1.1. In the following, we use an idea of Adachi and Tanaka
[3]. For c ∈ R+, we denote

[
Jfλ,gµ ≤ c

]
=

{
u ∈ N−

fλ,gµ
| u ≥ 0, Jfλ,gµ(u) ≤ c

}
.

We then try to show for a sufficiently small σ > 0

cat(
[
Jfλ,gµ ≤ α+

fλ,gµ
+ α∞ − σ

]
) ≥ 2. (26)
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To prove (26), we need some preliminaries. Recall the definition of Lusternik-
Schnirelman category.

Definition 4.1. (i) For a topological space X, we say a non-empty, closed subset
Y ⊂ X is contractible to a point in X if and only if there exists a continuous
mapping

ξ : [0, 1]× Y → X

such that for some x0 ∈ X

ξ(0, x) = x for all x ∈ Y,

and
ξ(1, x) = x0 for all x ∈ Y.

(ii) We define

cat(X) = min {k ∈ N | there exist closed subsets Y1, ..., Yk ⊂ X such that

Yj is contractible to a point in X for all j and
k
∪
j=1

Yj = X}.

When there do not exist finitely many closed subsets Y1, ..., Yk ⊂ X such that Yj

is contractible to a point in X for all j and
k
∪

j=1
Yj = X , we say cat(X) = ∞.

We need the following two lemmas.

Lemma 4.2. Suppose that X is a Hilbert manifold and F ∈ C1(X,R). Assume
that there are c0 ∈ R and k ∈ N,
(i) F (x) satisfies the Palais–Smale condition for energy level c ≤ c0;
(ii) cat({x ∈ X | F (x) ≤ c0}) ≥ k.
Then F (x) has at least k critical points in {x ∈ X ;F (x) ≤ c0} .

Proof. See Ambrosetti [1, Theorem 2.3].

Let Sm−1 = {x ∈ Rm | |x| = 1} be a unit sphere in Rm for m ∈ N. Then we have
the following results.

Lemma 4.3. Let X be a topological space. Suppose that there are two continuous
maps

Φ : Sm−1 → X, Ψ : X → S
m−1

such that Ψ ◦ Φ is homotopic to the identity map of Sm−1, that is, there exists a
continuous map ζ : [0, 1]× Sm−1 → Sm−1 such that

ζ(0, x) = (Ψ ◦ Φ)(x) for each x ∈ S
m−1,

ζ(1, x) = x for each x ∈ S
m−1.

Then
cat(X) ≥ 2.

Proof. See Adachi and Tanaka [3, Lemma 2.5].

Since RN
+ = RN−1 × {0} , for l > l2, we may define a map

Φfλ,gµ : S(N−1)−1 → H1(RN
+ )

by
Φfλ,gµ(ẽ)(x) = u+

λ,µ(x) + slt0w(x + l(ẽ, 0)) for ẽ ∈ S
(N−1)−1,

where u+
λ,µ+slt0wl is as in the proof of Proposition 2. Note that S(N−1)−1×{0} = S.

Then we have the following result.
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Lemma 4.4. There exists a sequence {σl} ⊂ R+ with σl → 0 as l → ∞ such that

Φfλ,gµ(S
(N−1)−1) ⊂

[
Jfλ,gµ ≤ α+

fλ,gµ
+ α∞ − σl

]
.

Proof. By Proposition 2, for each l > l2 we have u+
λ,µ + slt0wl ∈ N−

fλ,gµ
and

sup
l≥0

Jfλ,gµ(u
+
λ,µ + slt0wl) < α+

fλ,gµ
+ α∞ uniformly in e ∈ S.

Since S = S(N−1)−1 × {0} and Φfλ,gµ(S
(N−1)−1) is compact,

Jfλ,gµ(u
+
λ,µ + slt0wl) ≤ α+

fλ,gµ
+ α∞ − σl,

so that the conclusion holds.

From Lemma 3.3, we define

Ψfλ,gµ :
[
Jfλ,gµ < α+

fλ,gµ
+ α∞

]
→ S

(N−1)−1

by

Ψfλ,gµ(u) =
P (

∫
R

N
+

x
|x| (|∇u|2 + u2)dx)

∣∣∣P (
∫
R

N
+

x
|x| (|∇u|2 + u2)dx)

∣∣∣
.

Then we have the following results.

Lemma 4.5. Let λ0, µ0 be as in Lemma 3.3. Then for each λ ∈ (0, λ0) and
µ ∈ (0, µ0) there exists l∗ ≥ l2 such that for l > l∗, the map

Ψfλ,gµ ◦ Φfλ,gµ : S(N−1)−1 → S
(N−1)−1

is homotopic to the identity.

Proof. Let Σ =
{
u ∈ H1(RN

+ )\ {0} | P (
∫
R

N
+

x
|x| (|∇u|2 + u2)dx) 6= 0

}
. We define

Ψfλ,gµ : Σ → S
(N−1)−1

by

Ψfλ,gµ(u) =
P (

∫
R

N
+

x
|x|(|∇u|2 + u2)dx)

∣∣∣P (
∫
R

N
+

x
|x|(|∇u|2 + u2)dx)

∣∣∣

as an extension of Ψfλ,gµ . Since wl ∈ Σ for all (ẽ, 0) ∈ S = S(N−1)−1 × {0}

and for l sufficiently large, we let γ : [s1, s2] → S(N−1)−1 be a regular geodesic
between Ψfλ,gµ(wl) and Ψfλ,gµ(Φfλ,gµ(ẽ)) such that γ(s1) = Ψfλ,gµ(wl), γ(s2) =

Ψfλ,gµ(Φfλ,gµ(ẽ)). By an argument similar to that in Lemma 2.11, there exists a
positive number l∗ ≥ l2 such that for l > l∗,

w(x +
l(ẽ, 0)

2(1− θ)
) ∈ Σ for all ẽ ∈ S

(N−1)−1 and θ ∈ [1/2, 1).

We define

ζl(θ, ẽ) : [0, 1]× S
(N−1)−1 → S

(N−1)−1

by

ζl(θ, ẽ) =





γ(2θ(s1 − s2) + s2) for θ ∈ [0, 1/2);

Ψfλ,gµ(w(x + l(ẽ,0)
2(1−θ))) for θ ∈ [1/2, 1);

ẽ for θ = 1.
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Then ζl(0, ẽ) = Ψfλ,gµ(Φfλ,gµ(ẽ)) = Ψfλ,gµ(Φfλ,gµ(ẽ)) and ζl(1, ẽ) = ẽ. By the

standard regularity, we have u+
λ,µ ∈ C(RN

+ ). First, we claim that lim
θ→1−

ζl(θ, ẽ) = ẽ

and lim
θ→ 1

2
−

ζl(θ, ẽ) = Ψfλ,gµ(w(x + l(ẽ, 0))).

(a) lim
θ→1−

ζl(θ, ẽ) = ẽ : since

P (

∫

R
N
+

x

|x|
(

∣∣∣∣∇
[
w(x +

l(ẽ, 0)

2(1− θ)
)

]∣∣∣∣
2

+

[
w(x +

l(ẽ, 0)

2(1− θ)
)

]2
)dx)

= P (

∫

R
N
+

x− l
2(1−θ)(ẽ, 0)∣∣∣x− l
2(1−θ)(ẽ, 0)

∣∣∣
(|∇ [w(x)]|2 + [w(x)]2)dx)

= (
2p

p− 2
)α∞ẽ+ o(1) as θ → 1−,

then lim
θ→1−

ζl(θ, ẽ) = ẽ.

(b) lim
θ→ 1

2
−

ζl(θ, ẽ) = Ψfλ,gµ(w(x+ l(ẽ, 0))) : since Ψfλ,gµ ∈ C(Σ, S(N−1)−1), we obtain

lim
θ→ 1

2
−

ζl(θ, ẽ) = Ψfλ,gµ(w(x + l(ẽ, 0))).

Thus, ζl(θ, ẽ) ∈ C([0, 1]× S(N−1)−1, S(N−1)−1) and

ζl(0, ẽ) = Ψfλ,gµ(Φfλ,gµ(ẽ)) for all ẽ ∈ S
(N−1)−1,

ζl(1, ẽ) = ẽ for all ẽ ∈ S
(N−1)−1,

provided l > l∗. This completes the proof.

Lemma 4.6. For each λ ∈ (0, λ0), µ ∈ (0, µ0) and l > l∗, the functional Jfλ,gµ has

at least two critical points in
[
Jfλ,gµ < α+

fλ,gµ
+ α∞

]
. In particular, the equation

(Efλ,gµ) has two positive solutions u−
1 and u−

2 such that u−
i ∈ N−

fλ,gµ
for i = 1, 2.

Proof. Applying Lemmas 4.3, 4.5, we have for λ ∈ (0, λ0), µ ∈ (0, µ0) and l > l∗,

cat(
[
Jfλ,gµ ≤ α+

fλ,gµ
+ α∞ − σl

]
) ≥ 2.

By Proposition 1 and Lemma 4.2, Jfλ(u) has at least two critical points in
[
Jfλ,gµ < α+

fλ,gµ
+ α∞

]
,

which implies that the equation (Efλ,gµ) has two nontrivial nonnegative solutions

u−
1 and u−

2 such that u−
i ∈ N−

fλ,gµ
for i = 1, 2. Moreover, by the maximum principle,

we have u−
i > 0 in RN

+ .

We can now complete the proof of Theorem 1.1: (i) by Theorems 2.8 and 3.1. (ii)
for λ ∈ (0, λ0) and µ ∈ (0, µ0), from Theorem 2.8 and Lemma 4.6, equation (Efλ,gµ)

has three positive solutions u+
λ,µ, u

−
1 , u

−
2 such that u+

λ,µ ∈ N+
fλ,gµ

and u−
i ∈ N−

fλ,gµ

for i = 1, 2. This completes the proof of Theorem 1.1.
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