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ABSTRACT. In this paper, we study a class of semilinear elliptic equations in
]Rf with nonlinear boundary condition and sign-changing weight function. By
means of the Lusternik-Schnirelman category, multiple positive solutions are
obtained.

1. Introduction. In this paper, we consider the multiplicity results of positive
solutions for the following semilinear elliptic equation:

—Au+u=g,(z)|u?u in RY,

ou _ . (Ety.g,)
o= ) [u]%u in ORY, Fr.8

where 1 < g <2< p<?2* (2*:13—]_\]21fN23, 2* = o0 if N = 2), the parameters
A p > 0 and Rf = {(x',xN) ERNIXR | any > O} is an upper half space in
RY. We assume that fi(z) = Afy(z) + f-(z) and g,(z) = a(z) + pb(z) where the
functions fi,a and b satisfy the following conditions:

(D1) f € L7 (0RY) (¢* = >25) with fi(2) = £max{+f(x),0} # 0 and there

exists a positive number r;_ such that
f-(z) > —Cexp(—ry_ |z|) for some ¢ > 0 and for all z € ORY;

(D2) a,be C(@) and there are positive numbers r,, r, with r, < min {rff s Ta, q}
such that

1> a(z) >1— coexp(—rq|z|) for some ¢o < 1 and for all z € RY
and
b(z) > do exp(—ry |2]) for some dy > 0 and for all z € RY;
(D3) b(z) — 0 and a(z) — 1 as |z]| — oco.
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The semilinear elliptic equations in bounded domains with nonlinear boundary
condition has been the focus of a great deal of research in recent years. Garcia-
Azorero, Peral and Rossi [15] have investigated the following equation:

—Au+u=u?u inQ,

% = Aul"?u on 09,

(E»)

where 1 < ¢ < 2 < p < 2%, Qis a bounded domain in RY with smooth boundary
and the parameter A > 0. They found that there exist positive numbers Ay, Ao with
Ay < As such that the equation (EA) admits at least two positive solutions for
A € (0, A1) and no positive solution exists for A > Ag. Also see Chipot, Shafrir and
Fila [8], Flores and del Pino [13], Hu [16], Pierrotti and Terracini [20] and Terraccini
[22] where equations similar to the equation (Ey) are studied. Generalizations of
the result of equation (E'A) (involving sign-changing weight) were done by Brown
and Wu [5] and Wu [25]. However, little has been done for this type problems in
unbounded domains. We are only aware of the works Chipot, Chlebik, Fila and
Shafrir [7] which studied existence of solutions for some related semilinear elliptic
equations in Rf with nonlinear boundary condition (not involving sign-changing
weight). Furthermore, we do not know of any results for semilinear elliptic equations
in Rf with nonlinear boundary condition and sign-changing weight function. In this
paper, we will study this issue.

Note that the sublinear boundary condition in equation (Ey, ,4,) is homogeneous
of the same degree ¢ — 1 and so the equation (Ef, 4,) is similar to the Ambrosetti,
Brezis and Cerami problem [2] (a semilinear elliptic equation involving concave and
convex nonlinearities). Thus, the existence of more than one nontrivial solution for
the equation (Ey, 4,) is expected. Our main result in the paper is the following.

Theorem 1.1. Suppose that the functions f1,a and b satisfy the conditions (D1)—
(D3). Let Ag = (2 —q)*>79( Hfil_‘jq* )p*Q(%)@ (%) L2 here Sp and C), the
best Sobolev embedding and trace constants for the operators H'(RY) — LP(RY)
and H'(RY) < LP(ORY), respectively. Then

(i) for each X > 0 and pp > 0 with N72(1 + p||b]| L )*77 < ($)P72Aq, the equation
(Ef,.q,) has at least two positive solutions;

(id) there exist positive numbers \o, o with X~ (14 o [|b]] . )279 < (£)P~2Ag such
that for A € (0, Xo) and p € (0, o), the equation (Ey, 4,) has at least three positive
solutions.

In the following sections, we proceed to prove Theorem 1.1. We use the varia-
tional methods to find the positive solutions of equation (Ey, 4,). Associated with
the equation (Ey, 4,), we consider the energy functional Jy, g, in H'(RY)

1, 1 1
T =5l =< [ piluldo = [ g, ulda,
+ +

where do is the measure on the boundary and |Jul| ;1 = (fun |Vu|* +u?dz)'/? is the
+

standard norm in H'(RY). It is well known that the solutions of equation (Ey, g, )
are the critical points of the energy functional Jy, 4, in H'(R%Y)(see Rabinowitz

21)).
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This paper is organized as follows. In Section 2, we give some notations and
preliminaries. In Section 3, we discussion some concentration behavior in the Nehari
manifold. In Section 4, we prove Theorem 1.1.

2. Notations and Preliminaries. Throughout this section, we denote by S, Cp
the best Sobolev embedding and trace constants for the operators H!'(RY) —
LP(RY), HY(RY) < LP(ORY), respectively. In particular,

(/RN luf? dz)b < S [full e for all w € H'(®Y)\ {0} (1)

+

and

1 =1
( / ul? do)} < ;2
ORY

We define the Palais—Smale (simply (PS)-) sequences, (PS)-values, and (PS)—
conditions in H*(RY) for Jy, 4, as follows.

[u]| g2 for all u e H'(RY)\ {0}.

Definition 2.1. (i) For 8 € R, a sequence {u,} is a (PS)g-sequence in H'(RY)
for Jy, g, if Jy, g, (un) = B+ 0(1) and Jy, . (un) = o(1) strongly in HY(RY) as
n — oo.

(ii) Jf, g, satisfies the (PS)g—condition in H'(RY) if every (PS)s-sequence in
HY(RY) for Jy, 4, contains a convergent subsequence.

As the energy functional Jy, 4, is not bounded below on H 1(Rf ), it is useful to
consider the functional on the Nehari manifold

Ny = {u € H RNV} | (T}, (w)u) =0}

Thus, u € Ny, 4, if and only if

2
fullys = [ Saltdo = [ g lul?de =0,
+ +

Furthermore, we have the following results.
Lemma 2.2. The energy functional Jy, 4, is coercive and bounded below on Ny, ..
Proof. 1f uw € Ny, 4., then, by the Holder and Sobolev trace inequalities,

p—2

p—q
Jprg () = —— ul, — —= My + f-) |u|* do
Pavu ( oy Il == 6@( ++f-) [ul
p—2, 12 P—q / g
> — |ullz — AM(—— fr|ul*do
op el = A5) . + [ul
p—2, o P—q -4 g
> ||z — A=) [ f e Cp 2 ||lul|% - 2
oy el = A=) [ Fella o * lullin (2)
Thus, Jy, 4, is coercive and bounded below on Ny, 4. . O

The Nehari manifold Ny, 4 is closely linked to the behavior of the function of
the form hy : t — Jy, g, (tu) for t > 0. Such maps are known as fibering maps and
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were introduced by Drébek and Pohozaev in [10] and are also discussed in Brown
and Zhang [6] and Brown and Wu [5]. If u € H'(RY), we have

2 et q tP »
nt) = Sl =S [ ppltdo = [ g jul?
q JorY D JrY
W) =l — ! / N / gy Jul? d
ORY RY
B =l - (g — 1) / fi Jul? do — (p — 1)~ / gy [l de.
ORY RY

It is easy to see that

) = leully — [ Ajaltdo = [ gl ds
aRY RY
and so, for u € H*(RY)\ {0} and t > 0, A/(t) = 0 if and only if tu € Ny, 4.,
i.e., positive critical points of h, correspond to points on the Nehari manifold. In
particular, h; (1) = 0 if and only if u € Ny, 4 . Thus, it is natural to split Ny, 4 into
three parts corresponding to local minima, local maxima and points of inflection.
Accordingly, we define

Nfig = {w€Npg, [i(1) >0}
N?‘mgu = {u€Nyq, | Py(1)=0};
Fxotn {ue Ny g, [ (1) <0}
We now derive some basic properties of N;{M a0 NSZM 9 and N;x,gu'

Lemma 2.3. Suppose that ug is a local minimizer for Jy, 4, on Ny, o and that
ug ¢ NG, . Then Jp o (ug) =0 in H-Y(RY).

Proof. The proof is essentially the same as that in Brown and Zhang [6, Theorem
2.3] (or see Binding, Drabek and Huang [4]). O

For each u € Ny, 4, we have

W) =l = =) [ o Pl = =1 / ool dz
= @-pllip—ta=p [ pldo 3)
= =l - e [ ol (4)

Then we have the following result.

Lemma 2.4. (i) For anyu € N} UN§

(i) for any w € N . we have fRf gy |ul? dz > 0.

we have [ypn falul?do > 0.
+

Proof. The results now follows immediately from (3) and (4). O
Let 5 g o
_ p— _9 p | P2=0) p \4r=2)
AO =(2— q)2 g )p 2 2 .
( (Hf+||Lq* b= T =7

Then we have the following results.
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Lemma 2.5. For each A > 0 and p > 0 with \’=2(1 + p||b]| . )*~? < Ao, we have
NO  =0.
f)ngu

Proof. Suppose the contrary. Then there exist A > 0 and p > 0 with
N 721+ p[lb]] )*77 < Ao

such that N 9 7 (). Then for u € NSZM g, by (3) and the Holder and Sobolev

trace inequalities, we have

2 pP—q P —q
ol =24 [l de <26 2= 1 e ol
p—2 Jory p—2
and so
_2
2 7 pP—q|*
<Cy 7 |A . — .
lulls < GF Al 2]
Similarly, using (4) and the Sobolev inequality we have
270 )2, = b |ul dz < (1 bll.)Sp? |full”
— |l = [ la 4 pblful” de < (14w (|6l ) Sp® llullg
p—q RY
which implies
2 —
722 —q P
w2, > 87 [ for all 11 > 0.
=P LA+ bl ) e - a)
Hence, we must have
NP2 (1 p bl )21
_ p— 2 _ S r(2—q) C a(p—2)
> (2-9)* PH)TT ()T = Ao
141l e pP—q P—q
which is a contradiction. This completes the proof. |

In order to get a better understanding of the Nehari manifold and fibering maps,
we consider the function m,, : RT — R defined by

My (t) = 1279 |ul|7, — P79 /]RN gy [ul” dz for t > 0.
+

Clearly tu € Ny, o, if and only if m,(t) = [y~ fa|u|? do. Moreover,
+

) = @ =)t — -0 [ gl e )

¥
and so it is easy to see that, if tu € Ny, g, then ¢ 'm/ (t) = h]/(t). Hence
tu € N}i,gu( or N o) if and only if m;,(t) > 0( or <0).

Suppose u € H'(RY)\{0}. Then by (5), m, has a unique critical point at
t = tmax,u(u) where

=q) lulf 1,
(r—q) fRi’ gy ul” dgc) >0 (6)

tmax,u(u) = (
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and clearly m,, is strictly increasing on (0, tmax,.(u)) and strictly decreasing on

(tmax,u (1), 00) with limy_,o0 my, () = —00. Moreover, if AP72(1 + p||b]| . )*~9 < Ao,
then
2(p—q)
2—q.2=¢ 2—q p=g |l i
mu(tmax,u(u)) = (f);Hz - ( — );;72 p 2-q
pP—q p—q (Jes 9o Jul” der) =%

¢ P—2,2—-q 2=, |ullfn 2=
= U p—2 )p72
(1wl % (pfq)(pfq) Tox gu 0" d
Ao / .
ul|* do
2 N Al Jory P
> a |u|qda.
oRY

Thus, we have the following lemma.

Lemma 2.6. For each u € H*(RY)\ {0} we have the following.
(@) If [opn falu|*do <0, then there is a unique t~ =t~ (u) > tmax,u(u) such that
T

t"u € Ny o andmy is increasing on (0,t7) and decreasing on (t~,00). Moreover,
Trngu(t70) = SUD I, g, (P0). (7)

(1) If faRf I |ul®do > 0, then there are unique 0 < t7 = t7(u) < tmax,u(u) <t

such that tTu € N}i 9 tTu € NJTA g0 Mu is decreasing on (0,11), increasing on
(t*,t7) and decreasing on (1™, 00). Moreover,
T, (tru) = inf Ty g (tu); Jp g, (87 u) = sup Jp, g, (tu).  (8)
0Lt <tmax,u(u) t>t+

(iii) t=(u) is a continuous function for u € H*(RY);
; - — 1N 1 — u _
() N7, 5, = {u € H'®Y) | it () = 1

Proof. Fix u € H'(RY)\ {0}.
(i) Suppose [opn f |u|?do < 0. Then my(t) = [opn fx [u|? do has a unique solution
+ +

t7 > tmaxu(u) and m} (t7) < 0. Hence, by ¢t~ 'm! (u) = h!/(t), h, has a unique
critical point at ¢ =t~ and A7(¢7) <0. Thus, t"u € Ny and (7) holds.

(i7) Suppose fan&f Ialuldo > 0. Since muy, (tmax,u(w)) > faRi’ I |ul? do, the equa-
tion my(t) = [op~ fa|ul? do has exactly two solutions ¢ < tiay,,(u) <t such

+

that m},(t7) > 0 and m/,(t~) < 0. Hence, there are exactly two multiples of u lying
in Ny, 4., that is, tTu € N};,gu and t~u € Ny . Thus, by t17Im! (u) = hl(t),
hy, has critical points at ¢ = ¢t and t = ¢~ with 2/ (t*) > 0 and A(¢t~) < 0. Thus,
h,, is decreasing on (0,¢), increasing on (¢7,47) and decreasing on (¢*, 00). There-
fore, (8) must hold.

(#4¢) By the uniqueness of ¢~ (u) and the extremal property of ¢~ (u), we have ¢t~ (u)
is a continuous function for u € H*(RY)\ {0}.

(iv) For u € N7y .- Let v = = By parts (1), (47), there is a unique ¢~ (v) > 0

]l g1

such that t~(v)v € N7 _ ort™ (i) r—t—u € N7 .- Sinceu € N

Ixogu el g/ Ml g

Fragn W€ have
9
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t~ (=)= = 1, and this implies

Nl g1/ Nlull 5

N ., C {u e H'RY) | —— ¢ (%)= 1}.

lullgs g
Conversely, let u € H'(RY) such that HUIIHl t_(m) 1. Then
u u
t(———)7—— €N, _ .
luall g Ml a9
Thus,
N :{ueHl(RNH ! e ):1}.
T T lullg llull g
This completes the proof. O

Remark 1. (i) If A = 0, then by Lemma 2.6 (i), N}"O 9
for all p > 0.
(id) IE NP=2(1 4 p||b]| . )>~? < Ao, then, by (3), for each u € N;{hgu we have

Q]a and so Nvagu = N;(hgu

p—q p—q
e < P [ npitdr <2l [ i
P =2 Jory P—2 Jory

< Ay 202 ||f+|\m

and so

ull o < (AP~ 2>cT Pl o)/ for allw e N, 9)

We remark that it follows from Lemma 2.5 that Ny, ,, = N}"Mg UNy, ,, forall
A>0and p > 0 with A»~2(1 + pb]| . )* 7 < Ag. Furthermore, by Lemma 2.6 it

follows that N};y " and NB, g, Are non-empty and by Lemma 2.2, we may define

Jr o - o .
OF g0 = 1n+f Jpag.(w) and o o= inf  Jp g, (u).
ueNT ueN
PRI fx9u

Then we have the following results.

Theorem 2.7. We have the following:

(1) a};gu <0 for all X >0 and p > 0 with \’~2(1 + p ||| ,)?~9 < Ao.

(i) If AP2(1+ p||b]| 0 )* 77 < ($)P~2 Ay, then % . > Co for some co > 0.

In particular, for each )\ >0 and p > 0 with NP72(1 + p||b]| 0 )*77 < (£)P~2 Ao, we

+ _
have oy, o = mfueNf%gu Jty,g, (0).

Proof. (i) Let u € NT. Then, by (3),

Faagu®

Hence, by Lemma 2.4

fo,g“ (u)

-2
Ll - 2t / il dor

(r—9)2 —Q)

falulfdo <0
2pq oRY
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+
and so N < 0.

(ii) Let v € N;;,gu' Then, by (4) and the Sobolev inequality,
2—q
p—q

2 —_P
full < [ g lul’do < (14 bS5

+

ullZ

which implies

(2—q)S5
L+ o)l ) —a)

el g > (( )72 forallu € N, _ . (10)

By (2) and (10), we have
(2 — q)SE )ﬁ
(14 p[lblloo) (P = 9)
2p " (L+pllbllo)P —9)
Thus, if \P72(1 + p[|b]|0)*77 < (%)P~2Ay, then

Thngn (@) > (

2-g -4, P—q
)72 = M f+llpar Cp (?))-

a;MgM > ¢q for some cg > 0.
This completes the proof. O
Now, we consider the following elliptic problems:

—Autu=[ulfu in RY,

ou (£)
% =0 on GR_,’A_[
and ) v
_ — |y P : ~
{ .Au+u7|u| u in RY, (B>
hm‘x‘_,oou = 0.

Associated with the equations (E*°) and (E°), we consider the energy functionals
J>° in H'(RY) and J> in H'(R")

1 1
J®(u) == \Vul|® + u?de — = lu|” dx
2 RN P JrN

+ +
and

~ 1 1
J®(u) = —/ \Vul® + udx — —/ |ul” dz,
2 RN P JrN
respectively. Consider minimizing problems:

inf J®(u)=a™ and inf J®(u)=a>
ueIN>° weN>

where
N = {ue H' (RY)\{0} | () (u),u) = 0}
and N B
N> — {u e HYRV)\ {0} | <(J°°)’(u),u> - o}.
It is known that equation (E°°) has a least energy positive solution w(x) such that
J®(w) = a* = a*/2 and w(0) = max, e pr N w(x) (see [9, 12, 17]). We observe

that solution w(z), we can construct a solution @(z) of equation (E>) by reflection
with respect to 8Rf . Then we have the following proposition provides a precise
description for the (PS)-sequence of Jy, 4.
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Proposition 1. If {u,} is a (PS)s-sequence in H'(RY) for Jg, 4, with B <
a;{%gu + a, then there exist a subsequence {u,} and a non-zero ug in H'(RY)
such that u, — uo strongly in H*(RY) and Jy, 4. (uo) = B. Moreover, ug is a
solution of equation (Ey, 4, ).

Proof. Similarly to the argument in [25, Proposition 4.6] (or see Adachi and Tanaka
[3, Proposition 3.1]). O

Then we can show that the following result.

Theorem 2.8. For each A > 0 and p > 0 with X?=2(1 4 [|b]| ,)?~9 < (£)P~2Ao,

the equation (Ey, 4,) has a positive solution u;\ru € N;{A g, Such that Jy, g, (u;\ru) =
af)ngu :

Proof. By the Ekeland variational principle [11] (or see Wu [25, Proposition 3.3]),
there exist {u;}} C N}i,g# such that they are (PS)O‘? —sequence for Jy, 4. . Then,

A9p
by Theorem 2.7 and Proposition 1, there exist a subsequences {u;} and u;\" u €
N;{%gu a non-zero solution of equation (Ey, 4,) such that u} — u;\r’# strongly in
N + 0y ot : + ) _ + +
HI(R-‘,-) and ‘]fkvgu (UA,M) - af)”g”' Since Jf%gu (u)\,u) - ‘]fkvgu( UA,;L ) and ‘u)\,u‘ €
N;{A 90 by Lemma 2.3 and the maximum principle, we may assume that uj\ru is a
positive solutions of equation (Ef, 4, ). O

We need the following lemmas.
Lemma 2.9. We have

inf J = inf J* =a*°.
uEll\RrO,gO foﬁgo(u) ugll\loo (U) «Q

Furthermore, the equation (Ey, 4) does not admit any solution ug such that

‘]fo,go(uo) = ueli\}lf Jfoygo(u)'

fo-90
Proof. Let w(z) be a least energy solution of equation (E°°) and let w;(z) = w(z +
le), where | € R and e € S = {z € ORY | |z| =1} . Then, by Lemma 2.6, there is
a unique ¢t~ (w;) > (12)_:3)1/(;)72) such that ¢~ (w;)w; € Ny, 4, for all I > 0, that is

Ht_(wz)wzﬂzl = /8RN I- ‘t_(wz)wl\qu-F/

90 |t_(wl)wl |p dx.
]RN

+ +
Since
f-|w|?doe — 0asl— oo,
ORY
/ (1—go)|w|"der — Oasl— oo
]RN
N
and
2
fealfye = [ fnf?de = 2o for it 1> 0,
RY p—2

we have t~ (w;) — 1 as [ — oco. Thus,

lim Ty, g, (8 (wi)wr) = lim J* (¢ (wi)wr) = ™
l—o0 1500
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Then
inf J < inf J*° =a™.
el Ingow) < if T () =a
Let u € Ny, g,- Then, by Lemma 2.6 (i), Jj, 40 (u) = sup;>q J,,g, (tu). Moreover,
there is a unique ¢ > 0 such that t*°u € N*°. Thus,

I fo.,90 (u) = I f0,90 (t>u) = J>(t*u) > a™
and so infuen,, o Jfo.g0 (1) > > Therefore,

inf J = inf J®(u)=a".
uel{?f{)m foﬁgo(u) ugll\fx (U) o
Next, we will show that equation (Ey, 4,) does not admit any solution ug such
that Jy, g, (u0) = infueny,, ,, Jfo.00 (¥). Suppose the contrary. Then we can assume
that there exists ug € Ny, g, such that Jy, g, (uo) = infueny,, . Jf.90(u). Then, by
Lemma 2.6 (i), Jf,,g0 (20) = Sup;>q Jf,,90 (tuo). Moreover, there is a unique t,, > 0
such that ¢,,uo € N°°. Thus,

a® = inf me!]o (U) = me!]o (UO) > me!]o (tuouo)
u€Nyg . go
td td
> J®(tyyuo) — —2 I |ug|do > a™ — =2 f— |uol? do.
9 Jory q Jory

This implies [ypn f— [uo|?do = 0 and so ug = 0 in {z € ORY | f_(z) # 0}, from
+
the condition (D1). Therefore,

o :ugll\rfooj (u) = J(tuyuo)-

Since |ty,uo| € N and J°(|ty,uo|) = J(tu,uo) = o, by Willem [24, Theorem
4.3] and the maximum principle, we can assume that ¢,,uo is a positive solution of
(E°°). This contradicts

up=0in {z € ORY | f_(z) #0}.
This completes the proof. O

Lemma 2.10. Suppose that {u,} is a minimizing sequence in Ny, 6, for Jy, go-
Then

(Z) faRf f* |un|q do = 0(1);
(i) Jpy (1= g0) [un]” dz = o(1).
Furthermore, {u,} is a (PS)a=~sequence for J*° in H'(RY).

Proof. For each n, there is a unique ¢, > 0 such that t,u, € N°°, that is

&l =2 [ ual? do.
RN

+

Then, by Lemma 2.6 (i),
Tfo.g0(Un) = JTfo,90 (bntin)

P
— J%(tnun)Jr_n/
p RY

tq
u—mm#mfﬂ/ f un” do
q aRf

Y

tP td
a°°+—”/ (1—go) Iunlpdﬂf*—”/ f- |un|? do.
P JryN q ORY

+
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Since Jyp,, g, (un) = @ + 0(1) from Lemma 2.9, we have

14
- f-lun|"do = o(1)
4 Jory
and
0 p
2 (1 —go) |un|” dx = o(1).
p RY

We will show that there exists ¢y > 0 such that ¢, > ¢¢ for all n. Suppose the
contrary. Then we may assume t,, — 0 as n — o0o. Since Jy, 4, (un) = > +0(1), by
Lemma 2.2, ||uy|| ;1 is uniformly bounded and so |[t,unl| 1 — 0 or J®(t,u,) — 0
and this contradicts J°(t,uy,) > a® > 0. Thus,

J- lu]? do = o(1)
oRY

and
/ (1= go) |un]” dz = o(1),
Y

this implies

Junli = [l dz+ o(1)

+
and

I (up) = a™ + o(1).

Moreover, by Wang and Wu [23, Lemma 7], we have {u,} is a (PS)s~—sequence
for J> in H'(RY). O

Let P : @ — RN¥~1 be a projection defined by P(z',zx) = 2’ for (2/,2x) € @
Then we have the following result.

Lemma 2.11. There exists dy > 0 such that if u € Ny, 4, with Jg, g,(u) < a™ +do,
then
p(/ L ((Vul + u?)dz) £0.
RY |z
Proof. Suppose the contrary. Then there exists sequence {u,} C Ny, g, such that
Jto,90 (1) = &> + 0(1) and

P / (1 Val? + u2)dz) = 0.

hlEd

Moreover, by Lemma 2.10, we have {u,, } is a (PS)4-sequence in H! (RY) for J>. It
follows from Lemma 2.2 that there exist a subsequence {u,} and up € H'(RY) such
that u, — ug weakly in H 1(Rf ). By the concentration—compactness principle (see
Lions [18, 19] or del Pino and Flores [9, proof of proposition 2.1]) and o™ = a* /2,
there exist a sequence {x,} C 0Rf , and a positive solution wg € H 1(Rf ) of
equation (E°°) such that

[ln(z) — wo(x — xp)|| 1 — 0 as n — oo. (11)
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Now we will show that |x,,| = 0o as n — oco. Suppose the contrary. Then we may
assume that {z,} is bounded and z,, — zo for some zg € ORY. Thus, by (11),

/ I Jun| do f- (@) lwo(z — )| do + o1)
ORY ORY

f—(x + x0) |wo(x)]|? do + o(1),
oRY

this contradicts the result of Lemma 2.10: [ox f- [un|? do = o(1). Hence we may
+

assume % — e as n — 00, where e € § = {z € ORY | |z| = 1}. Then, by the
Lebesgue dominated convergence theorem, we have

0 = P(/ li(|wn|2+ui)dx)
RY z|
- P(/ LI (G + wd)de) + o(1)
= oy % 2] 0 0

I
= 5 3 P(e) +o(1),

which is a contradiction. This completes the proof. |

3. Concentration Behavior. First, let w(z) be a least energy positive solution
of equation (E°°) such that J°°(w) = «*°. Then by Gidas, Ni and Nirenberg [14]
and Kwong [17], for any ¢ > 0, there exist positive numbers A, and By such that

Acexp(—(1+¢)|z|) <w(z) < Byexp(— |z|) for all x € M (12)
Let
wy(x) =w(x +1le), forl e R and e € S,
where S = {z € ORY | |z[ =1} . Clearly, w; is also a least energy positive solution
of equation (E*°) for all [ > 0, and faRi’ frw|do = 0 as | — oo. Then we have

the following result.

Proposition 2. For each A > 0 and p > 0 with \P72(1 + p||b]| )77 < Ao, we
have

— + )
af)ngu < Oéfkagu +a™.
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Proof. Let u;t# be a positive solution of equation (Ey, 4,) as in Theorem 2.8. Then

thgu (uip, + tUJl)

1
< a;gﬂ + J(tw) — ﬁ/ btPw? da + —/ (1 — go)tPwPda
D JrY P Jry
tw;
Lo [ -t
oRY 0
1 —_
- /]RN {(ui“ + twy)P — (“;u)p — tPuf — p(u;\i-’#)p 1twl} da
+
tP
< a};g JrO‘OO*H_/ bwy dx
G p Rf
tP 4
+— (17g0)wfd:£+ —/ |f7|w?dg
b JrY q Jory
1

75 /N {(u;\ru + tw; )P — (uiu)p — tPwl fp(u;;u)p*ltwl} dr.
R
+

We remark that
(u+v)P —uP — P — puP~tv > 0 for all (u,v) € [0,00) x [0, 0),

this implies

J

Thus, by (13) and (14), we have

R {(u;\ru + twy)? — (uiu)p — tPwl fp(uj\iu)p_ltwl} dz > 0.
+

I
fo,gu (UIM + twl) < Oé};’g“ +a™> — 7 n bwfdx
+
P
o a—ggetdr+ B[ 1 utdo
D JrY ORY
Since
Tfasg (U, twr) = Ty g, (uy ) = af, , <0ast—0
and

Jf)ngu (U’;\‘r,p, + twl)
1

+
Huhu q

2 9 9
L+

q
/ |f,|‘uj\r7u+twl‘ do
oRY

tPmin _—va(x)
-cRN
_L/ lwi|P de
N

p

+

2¢71 + |2 q
Mg (o, + 20 el)

tPmin__—v a(x)
RN
,L/ |w|? dz
R

p
— —o00 ast — 0o,

2
2
< k], + 2 Nl +

N
+
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we can easily find 0 < t; < to such that

N (uj{’lt +twy) < O‘;&,gu +a™ for all t € [0,t1] U [ta, 00). (16)
Thus, we only need to show that there exists I > 0 such that for [ > [,
+ + 00
sup Jp, g, (uy , Flw) < + a™. 17
ity INACW ) Frigu (17)

From the condition (D2) and (12), we have

/ (1= go)tPwldx < co/ exp(—r, |z|)BY exp(—p |z + le|)dx
RN RY

+ +

< Cpexp(—min{rg,p}l) (18)

and

/R b(x — le)wP (z)dx

%\
z
=
8
g
%3
—
8
SN—
QU
5
I

N
+ T
> ( min wp(m))/ b(x — le)dx
zeBY (1) BN (1)
> ( min wP(x))Cy exp(—mpl), (19)
a:EBi’(l)

where BY (1) = {# e RY | |#| < 1}. From the condition (D1) and the same argu-
ment of inequality (18), we also have

| rlutdo < eng [ exp(-ry fol)exp(-qlo + ledo
ORY oRY
< Cgexp(—min{rff,q}l). (20)

Since 7, < min {rff,ra,q} < min {rff,ra,p} and t; <t < to, by (15) — (20), we
can find [; > 0 such that

§1>110) megu(“;&,g“ + twy) < a;{%gu +a™ foralll > 1.

To complete the proof of Proposition 2, it remains to show that there exists a

o, . Jr —
positive number t, such that (N tw; € thg“. Let
1N L, wu
Uy = JueH RY) | ——t (+——) >1;U{0};
lull g Ml g
U, = {u € Hl(Rf) ‘ LF(L) < 1}.
lull g llull g

Then N g, Separates H 1(Rf ) into two connected components U; and Uy and
Hl(Rf)\N;%gu = U; UU,. For each u € N}'%gu, we have

1 < tmax,p(u) < t7(u).
Since ¢t~ (u) = —i—t"(7=%—), then N*  C Uj. In particular, u;\r’# € U;. We

T lull g lull g Fx.gu
claim that there exists tg > 0 such that u}; ” +tow; € Us. First, we find a constant

+
¢ > 0 such that 0 < t_(l ot ) < ¢ for each ¢ > 0. Suppose the contrary.

[ ttwn]
ul  Htaw

— 00
Hu;u—’_t"wl ”Hl

Then there exists a sequence {t,} such that ¢, — oo and ¢~ (



SEMILINEAR ELLIPTIC EQUATIONS 1689

ui Hinwg

as n — oo. Let v, = . Since ¢t~ (vy,)vy, € NJTX " and by the Lebesgue

A,
||uhu+t”wl HH1
dominated convergence theorem,

1

/ guvbdr = 5 / gu(uj{,u—i—tnwl)”dx
RY Huj{qutnle RY

y Hl

+
1 Uy
T gu(_’“ +wl)sz
uiu RN tn

. tw "

Hl

fRf gpwy dx

————— as n — 00,
llwi[ g2

we have
fo,gu (™ (vn)vn)

I N [t~ (vn)]* ol do — [t~ (va)]” o di
2 [#7 (on)] q ORY Sind p /N gutnd

— —o0asn — 0o,

R

this contradicts the fact that Jy, 4, is bounded below on Ny, 4 . Let

2

_(p=2 + 3

to = (2pa°° © - HUA’“ o )2 41
Then
2 2
2
et st = Jitl, B+
2 2
+ 2 +

>t + e = ekl o

2
+

uy , + tow

> A to(l) > |t (2 R )| +o(l)asl— occ.

+
[i + tow ],
Thus, there exists ls > [; such that for [ > s,

1 _ ’Lb;t# + towl

- n ) <1
R P R

or uiu + tow; € Us. Define a path 7;(s) = vy + stow; for s € [0,1]. Then

’71(0) = u;tu € Ul,’yl(l) = u:\tlt + tow; € Us.

Since Hu%t’(m) is a continuous function for non-zero u and ~;([0, 1]) is con-
H H

nected, there exists s; € (0, 1) such that uj\ru + sitow; € NJTX 9 This completes the

proof. O

Then we can show that the following result.

Theorem 3.1. For each A >0 and p > 0 with

X214 bl )P0 < ()72,
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the equation (Ey, q,) has a positive solution uy , € Ny such that Jg, 4, (uy ,) =

N m

af)\ 2gu”

Proof. Similarly to the argument in the proof of Theorem 2.8. O
By (4), (6) and Lemma 2.6, for each u € N7, g, there is a unique ¢y (u) > 0 such

that ¢y (v)u € Ny, ¢, and

2
(2 = q) [[ullg

1
72 > 0.
(P = ) Joy 90 [ul” &)

to (1) > tmax,0(u) = (

Let
||f*|| q* At 2-9 v
0, = Au(l"‘if(_lg)p”) )
Gy Sp
where A, = (H“”b/;_”q =9 Then we have the following results.

Lemma 3.2. For each A > 0 and p > 0 with \P72(1 4 p||b]| . )*~7 < (£)P72Ao we
have the following.
(1) [to_ (u)}p <0, forallu e N)Tk’g# with Jy, 4, (u) < a};’g# + a™.

(i) fM 9o lul|” dx > Ty @™ for allu € Ny o with J, g, (u) < O‘}l,gu +a®.

Proof. (i) For w € Ny . with Jy, g, (u) < a};gu + a™, we have

||u||§{1 - / I |ul?do — / gu |ul” dz = 0.
ORY RY
We distinguish two cases.

Csae (I) : t; (u) < 1. Since 6, > 1 for all u > 0, we have

[t (w)]” <1<,
Case (II) : ty (u) > 1. Since

) [ ol =[] full ~ @) [ gl

+
_ 2
< T ] Ul + [ 1ol do),
oRY
we have )
q
e ()] < lullzrs + Jorsy |J;—| |ul" do o
fRf go |ul? dz
Moreover, by (4) and the Sobolev inequality,
pP—q pP—aq
< 5=2 [ aulurde < B2 wulbfal) [ oluldo (22
—q RY —q RY
—5D— 4
< (A+plb/all)Se 54 [l [ (23)
and so
92— 2
(2 q)S% = (24)

l[ull g = ((1 +pllb/all )@ —q)
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Thus, by (21) — (24) and the Sobolev inequality,

[tg (w)]"~?
fB]Ri’ f- |U|q do

< (14 plb/al))E=Da +
(14 e lb/al) (G o
o Uplb/al)e-a) ||1ff||L;*
2-4 Gy Jlull3:
- <1+u|\b2/a_||oo><p—q>(1 Ml (A ilb/alle)p =)y 2oy
q Cp (2 q)S3

or [ty (u)]p <46,.
(#4) By Lemma 2.9 and ¢, (u)u € Ny, 405

aoo < JnggO

—~

ty (w)u)

i 2 2 I p
L [to ()]l + ;=7 [to ()] /Rf g0 lul” dz
1. ,,/ )
< (===) |ty (u go |u|” dz,
G p)[o( )] o o [ul
and this implies
1
/ go [uf? dz > ——(Fya.
RY [tO (u)} p—q
By part (i), we can conclude that
/ go |ul? dz > P4 yeo
RY 0.(p—q)
for allu € N - with Jy, g, (u) < a}"hgu + «®°. This completes the proof. O

By the proof of Proposition 2, there exist positive numbers ¢, and lo such that
u;\ru +tyw; € N and

fkagu
Tpag (U, + tewr) < o, +a for all | > .

Then we have the following result.

Lemma 3.3. There exist positive numbers Ao and o with
—9 _ q\,_
N2+ g b0 < (2

such that for every A € (0, Xo) and p € (0, o), we have

x 2
P(/M o (Vul? +-u)dz) 0

forallu € N7, with Jp, 4, (u) < af,  +a*.
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Proof. Foru € N with Jy, 4, (u) < a};’g# +a®°, by Lemma 2.6 (i), there exists
ty (w) > 0 such that ¢, (u)u € Ny, 4,. Moreover,

thgu (u) = igg‘]fhgu (tu) Z ‘]fhgu (tO_ (U)U)
B At (w)]?
I .90 (g (w)u) — M/ fr |t do
q oRY
- P
_B e W [to (w)] / blul? dz.
Ry

p
Thus, by Lemma 3.2 and the Holder and Sobolev inequalities,

NI q
Tt @) < g+ XL

= ()P
+7M [ 0 (u)] / b|ul? dz
p RY

N A9/ .
S g et 1 +llza Co ® Nl
16,110

+ 0 oo 6% ul
p

Since J, g, (u) < a}' g, T <™, by (2) in Lemma 2.2, for each A > 0 and p > 0
with AP 72 (144 [|b]| )29 < (2)P~2 Ao, there exists a positive number ¢ independent

of A,y such that ||u||;, < ¢ for all u € N7 g, with Jpng.(w) < O‘}i,gu + a™

Therefore,

DV oy, 0 bl

1f4ll o Cp Fet 4+ B e g5

Tforge(tg (W) < af, \ +a> +

Let dg > 0 be as in Lemma 2.11. Then there exist positive numbers Ay and po with
M2 (14 po [16]], )9 < (4)P=2Aq such that for A € (0, Ao) and p € (0, o),

Togo () < ™ + do. (25)

Since ty (u)u € Ny, g, and ¢, (u) > 0, by Lemma 2.11 and (25)
P, T 905 @+ 5 i) 2 0.
y |30|
and this implies
P(/ (IVul® + u?)dz) # 0
RY |$|

for allu € N~ with Jy, g, (u )<o<fhgu+o<°°. O

4. Proof of Theorem 1.1. In the following, we use an idea of Adachi and Tanaka
[3]. For ¢ € RT, we denote

[thgu < c] = {u eEN; 9 |u>0,Jy, g, (u) < c} .
We then try to show for a sufficiently small o > 0

cat( {fo,gu < a};’g# +a>— a}) > 2. (26)
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To prove (26), we need some preliminaries. Recall the definition of Lusternik-
Schnirelman category.

Definition 4.1. (i) For a topological space X, we say a non-empty, closed subset

Y C X is contractible to a point in X if and only if there exists a continuous

mapping
£:0,1]xY = X

such that for some zg € X

£(0,z) =x forall x €Y,

and
&(l,z) =ao for all z € Y.

(74) We define
cat(X) = min{k € N| there exist closed subsets Y1, ..., Y, C X such that

k
Y; is contractible to a point in X for all j and _LJ1 Y, =X}
j:

When there do not exist finitely many closed subsets Y7, ..., Y, C X such that Y}
k
is contractible to a point in X for all j and 4U1Yj = X, we say cat(X) = oc.
=
We need the following two lemmas.

Lemma 4.2. Suppose that X is a Hilbert manifold and F € C*(X,R). Assume
that there are co € R and k € N,

(1) F(x) satisfies the Palais—Smale condition for energy level ¢ < co;

(17) cat({x € X | F(z) < co}) > k.

Then F(x) has at least k critical points in {x € X; F(z) < c¢p}.

Proof. See Ambrosetti [1, Theorem 2.3]. O

Let Sm~1 = {z € R™ | |z| = 1} be a unit sphere in R™ for m € N. Then we have
the following results.

Lemma 4.3. Let X be a topological space. Suppose that there are two continuous
maps

: S X, U X St
such that U o ® is homotopic to the identity map of S™~1, that is, there exists a
continuous map ¢ : [0,1] x S?~1 — S™=1 such that

C0,2) = (Vod)(x) for each z € S™ 7,
¢(1,2) = x for each v € S™ 1.
Then
cat(X) > 2.
Proof. See Adachi and Tanaka [3, Lemma 2.5]. O

Since Rf =RN=1 x {0}, for | > I3, we may define a map
Dy, gt SV HYRY)
by
Dy, g, (€)(x) = u;\ru(:ﬂ) + sitow(z + 1(€,0)) for € € SW-D-1

where u;\rqusltowl is as in the proof of Proposition 2. Note that SIN=1)—=1y {0} =S.
Then we have the following result.
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Lemma 4.4. There exists a sequence {o;} C Rt with oy — 0 as | — oo such that

N—1)—1 +
q)fmgu (S( ) ) C Jf)\ig# < Ot g +a> —o.

1
fkvgu a d

Proof. By Proposition 2, for each [ > I3 we have u;t# + sitow; € N

sl,1>1%)thgu (u;\"u + sitow;) < a};,gM + a° uniformly in e € S.

Since S = SV~ x {0} and @y, 4, (SN ~V~1) is compact,
VNS (uj\'u + sitow;) < a}i’g# +a™ — oy,
so that the conclusion holds. O
From Lemma 3.3, we define
‘I’fx,gu : [Jfk,gM < a};gu + aOO} Ly §N=1)—1

by
: P(Jg

= . .

[Py (190l +v)do)|

Then we have the following results.

Z(|Vul* + u?)de)

+2

‘Ilfkagu (u

Lemma 4.5. Let Ao, po be as in Lemma 3.3. Then for each A € (0,X9) and
€ (0, o) there exists L, > ly such that for 1 > ., the map

Viig, ©Psig, sN=-1)-1 _, g(N-1)-1

is homotopic to the identity.
Proof. Let S = {u € HYRYN{0} | P(fon &(Vul? + u2)dz) # 0} . We define

Y Tl
Uy g, X — SE-DAL
by
P(foy f5(IVul” + u?)dz)
| Py & (IVul + u2)do)

as an extension of Wy , . Since w; € ¥ for all (€,0) € S = SW=D=1 x {0}
(N-1)

fo,gu (u)

and for [ sufficiently large, we let v : [s1,82] — S -1 be a regular geodesic
Eetween \Ilfmgu(wl) and \Ilfhgu(q)fxygu(g)) such that 7(51) - \Ilfmgu (wl)a7(52) =
Vs, 0. (Pry g, (€)). By an argument similar to that in Lemma 2.11, there exists a
positive number [, > I3 such that for [ > [,

l(e,0 ~
o+ ﬁ) €S forall € MV and 6 € [1/2,1).
We define
G(0,8) : 0,1] x SV-H=1 , s(W—=1)—1
by

7(20(s1 — s2) + 52) for 6 € [0,1/2);
G(0,8) = Wy g, (wlz + 5555) for 0 € [1/2,1);
€ for 6 = 1.
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Then G(0,2) = Tpy. (1,0, (@) = Vg0, (1,0, (8)) and G(1,E) = & By the
standard regularity, we have u} L EC (RY). First, we claim that elim G(b,e) =€
: —1-

and lim G(0,8) = Ty, ,, (w(e +1(E0))).
0—17

(a) elirilig(& €) = ¢ : since
P b7 [ 20

x— 5= (2,0 ) )
= HA mw()uvmmn+mmnm>

’ 1(2,0)

%1_@4 )dz)

+ [w(m +

¥ o - 5y @ 0)|
2 ~
= (prQ)aooe +o(l)as =17,

then alir? G0, e) =e.
g
(b) lim (0,€) =y, 4, (w(z+1(€,0))) : since Uy, 4 € C(S,SV=D1) we obtain
0—3%~
ehr{LCl(evE) = \I/fmgu (w(ac + Z(a 0)))
-3

Thus, (;(6,€) € C([0,1] x SV-D=1 S(N-1)=1y anq

G0€) = Wy 0,(Ps,g,.(€) forall € € sWV-1-1
G(1,8) = eforallee SNt
provided [ > [,. This completes the proof. 0

Lemma 4.6. For each X € (0, o), it € (0, 0) and I > L., the functional Jy, 4, has
at least two critical points in |:Jf)\79u < a}i’g# + aoo] . In particular, the equation

(Efy.9.) has two positive solutions uy and uy such that u; € Ny - fori=1,2.
Proof. Applying Lemmas 4.3, 4.5, we have for A € (0, \g), p € (0, p19) and I > I,
cat([thg“ < a};g” +a™ — al}) > 2.
By Proposition 1 and Lemma 4.2, Jy, (u) has at least two critical points in
{Jf%gu < Oz;g’gM + a"o} ,

which implies that the equation (Ey, ,,) has two nontrivial nonnegative solutions
uy and uy such that u; € NJTX " for ¢ = 1, 2. Moreover, by the maximum principle,

we have u; > 0 in Rf. O

We can now complete the proof of Theorem 1.1: (i) by Theorems 2.8 and 3.1. (%)
for X € (0, \o) and p € (0, o), from Theorem 2.8 and Lemma 4.6, equation (Ey, 4, )
has three positive solutions uj\:u, uy , U, such that u;t# S N}"Mg“ and u; € N;%gu
for ¢ = 1,2. This completes the proof of Theorem 1.1.
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