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a b s t r a c t

λ–ω systems are reaction–diffusion systems whose reaction kinetics admit a stable limit cycle. It is
known that λ–ω systems can possess various types of solutions. Among them, spiral waves are the most
fascinating pattern. However, the effects of the diffusivity, the sizes of the domains, and the reaction
kinetics on spiral waves are largely unknown. In this paper, we investigate how these quantities affect
the properties of m-armed spiral waves in a generalized class of λ–ω system on a circular disk with no-
flux boundary condition. Firstwe derive a criterion for the existence ofm-armed spiralwaves. Specifically,
we show thatm-armed spiral waves do not exist for d ≥ λ0R2/j2m, while for d ∈ (0, λ0R

2/j2m), there exists
an m-armed spiral wave if the twist parameter q is small. Here d is the diffusivity for the λ–ω system, R
is the radius of the circular disk, λ0 is the value of the function λ(A) at A = 0, and jm is the first positive
zero of the first derivative of the Bessel function of the first kind of orderm. We also show that the critical
diffusivity d = λ0R2/j2m is a bifurcation point. Nextweuse the numerical simulation to show that, for small
twist parameter, the rotational frequency increases with increasing domain size, while for large twist
parameter, the dependence of the rotational frequency on the domain size is not monotonic. Moreover,
small circular domains may change the properties of spiral waves drastically. These numerical results are
in contrast to those in excitable media. Finally, the stability of spiral waves is investigated numerically.

© 2010 Elsevier B.V. All rights reserved.
1. Introduction

Rotating spiral waves arise naturally in various chemical
systems and biological processes. Specific examples of spiral
waves can be found in the Belousov–Zhabotinskii reaction [1,2],
aggregating slime-mould cells [3], and cardiac muscle tissue [4,5].
It is now widely accepted that spiral waves can arise from the
interplay between the chemical process of kinetic reaction and
the physical process of molecular diffusion (see [6,1]). Hence one
may use reaction–diffusion systems to model these fascinating
patterns. In general, the reaction kinetics can be either excitable
or oscillatory [7,5].
For excitable media, there are two major approaches for the

study of spiral waves [8–11]. In the first approach, which is
applicable for a weakly excitable medium [12], one needs to divide
the spiral wave into two parts: the far field of the spiral and the
core region of the spiral. The far field of the spiral can be viewed as
amodified version of periodic plane waves. To connect the far field
and the core region of the spiral smoothly, the so-called kinematic
theory has been developed [13]. The second approach is to use
singular perturbation theory to reduce the full model to a free
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boundary problem for the shape and the rotational frequency of
the spiral [14–17]. On the other hand, the fact that spiral waves
are rotating waves suggests that spiral waves are most likely to
arise in oscillatory models having rotational symmetry. Motivated
by these, wewill study spiral waves in a generic λ–ω systemwhich
is essentially an oscillatory system. Unlike excitable media, the
additional rotational symmetry in the λ–ω system allows us to use
the ordinary differential equation (ODE) approach to study spiral
waves. Specifically, the λ–ω system reads

ut = d∇2u+ λ(A)u− ω(A)v,

vt = d∇2v + ω(A)u+ λ(A)v,
(1.1)

whereλ(·) andω(·) are the given functions of A =
√
u2 + v2. Since

theλ–ω systemmay be viewed as the normal formof an oscillatory
system near a Hopf bifurcation (see [18,19]), the study of the λ–ω
system is of relevance to general oscillatory reaction–diffusion
systems whose reaction kinetics admit a limit cycle via a Hopf
bifurcation (see [5,20,42]). It is also reported by Cohen et al. [21]
that λ–ω systems play a dominant role in the asymptotic analysis
of a general class of reaction–diffusion systems modelling realistic
physical phenomena. Furthermore, λ–ω systems have a variety of
important applications in biology, ranging from calcium signalling
in cell biology to population dynamics in ecology (see [5,22,23]).

http://www.elsevier.com/locate/physd
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Now we give a precise definition of m-armed spiral waves. An
m-armed spiral wave is a solution (u, v) of (1.1) in the form

u = A(r) cos
(
Ω̂t +mθ +

∫ r

0
k(s)ds

)
,

v = A(r) sin
(
Ω̂t +mθ +

∫ r

0
k(s)ds

)
,

(1.1a)

where r and θ are polar coordinates of the plane. Here Ω̂ is the ro-
tational frequency, which is a constant to be determined; m is the
number of arms on the spiral under study. We require that A(r) is
positive in its defined interval except at r = 0, and A(r) and k(r)
are regular at r = 0. This implies that A(0) = 0 and k(0) = 0
(see Section 3). The function k(·) is closely related to the shape of a
spiral wave. In the case of the whole plane, the function k(·) satis-
fies that k(r)→ k∞ as r → +∞ for some constant k∞ (see [19]).
Hence, for sufficiently large r , the contour curves of constant con-
centration satisfy Ω̂t + mθ + k∞r = C for some constant C ,
which implies that spiralwaves are approximately thewell-known
Archimedean spirals at large distances from the origin.
The existence of spiral wave solutions of (1.1) in the whole

plane has been studied by numerous researchers. By assuming
that λ(A) = 1 − A and ω = 1 + ω1(A − 1) with 0 < ω1 � 1,
Greenberg [24] has used a formal perturbation technique to con-
struct single-armed spiral waves to (1.1) in the whole plane. Us-
ing the matched asymptotic expansions, Hagan [19] constructed
multi-armed spiral wave solutions of (1.1) in the whole plane
where λ(A) = 1 − A2, ω(A) = qA2, and the twist parameter q can
be small or large. Under the hypothesis that λ(1) = 0, λ′(·) < 0,
ω′(·) < 0 and |ω′| � 1, Kopell and Howard [18] have used the ge-
ometrical singular perturbation theory to establish the existence of
spiral waves rigorously. For recent works on spiral waves, we refer
readers to [20,25,26]. We remark that by assuming a degenerate
form on the function ω(·), one can obtain the so-called logarith-
mic spiral waves which are essentially different from the ones we
discuss here (see [21]).
The ubiquitous spiral waves are mainly studied in the infinite

domain [1,12]. Although ignoring the influence of the geometry
and the size of the medium may simplify the consideration of
spiral waves, the presence of the boundary may have the crucial
effect on the properties of spiral waves [27]. For examples, recent
experimental and theoretical studies reveal that certain domains
with sharp corners can give rise to new spirals [28], and that the
domain size may affect the existence of spiral waves [29,30,27].
Furthermore, for experimental and numerical studies, one needs
to perform every procedure in the finite domain, not in the infinite
plane. In particular, this consideration might become important
and essential when one deals with a medium with very small size,
such as a single oocyte cell [31]. Therefore, unlike in earlier works,
we will focus on spiral wave solutions of (1.1) on a disk, not the
whole plane. Specifically, we will look for spiral wave solutions of
(1.1) subject to the Neumann boundary condition

n · ∇u = 0 on ∂ΓR,
n · ∇v = 0 on ∂ΓR,

(1.2)

where ΓR is the disk with the origin as the center and the radius of
the disk equal to R, and n is the outer unit normal to ΓR. Note that,
according to Scheel’s analysis [20], the existence of rotating waves
in the whole plane for a reaction–diffusion system possessing a
Hopf bifurcation can be reduced to that for the λ–ω system. Hence
the investigation of spiral wave solutions of system (1.1)–(1.2)
might enable a good understanding of spiral wave solutions of
a reaction–diffusion system admitting a Hopf bifurcation in the
circular domain. The restriction of our consideration to finite
circular disks is quite natural, and might be a first step towards
the understanding of the way in which the characteristics of the
domains influence the properties of rotating spiral waves. The
consideration of spiral waves on a disk can raise several interesting
questions, which include the following.

1. For what the radius, R, we can have spiral waves?
2. Does the diffusivity d prevent the existence of spiral waves?
3. How does the reaction kinetics (λ, ω) affect the existence of
spiral waves?

4. What is the effect of the domain size R on the rotational
frequency Ω̂?

In contrast, these questionsmay bemissed in the analysis of spi-
ral waves in the whole plane. From previous works [24,32,19,18],
we see that the diffusivity (d) does not prevent the existence of
spiral waves in the whole plane. The reaction kinetics (λ, ω) does
enter into the analysis of spiral waves in the whole plane, but it is
involved in a complicated way. Evidently, the radius R has no role
in the full plane analysis of spiral waves. Therefore, one of the aims
of this paper is to explore the dependence of the existence of spiral
waves on the diffusivity, the domain size, and the reaction kinetics
(λ, ω) in the case of circular domains. In particular, our study can
give partial answers to these four questions above for system (1.1)
on a circular disk.
Along this direction, we note that Paullet et al. [33] has consid-

ered problem (1.1)–(1.2) with λ(A) = 1− A2 and ω(A) = 1+ qA2.
They rigorously showed that, for small diffusivity d and small q,
there is a single-armed spiral wave solution of (1.1)–(1.2) on the
unit disk, while for d ≥ 1, there is no single-armed spiral wave
solution of (1.1)–(1.2) on the unit disk. By numerical studies, they
also conjectured that d = 1/j21 ∈ (0, 1) may be the critical diffu-
sivity above which there is no single-armed spiral wave solution
of (1.1)–(1.2) on the unit disk, and below which there is a single-
armed spiral wave solution of (1.1)–(1.2) on the unit disk. Here j1 is
the first positive zero of the first derivative of the Bessel function of
the first kind of order one. We will address these conjectures, and
give a criterion for the existence of multi-armed spiral waves on
the unit disk. We also remark that this paper is mainly motivated
by this conjecture, and that for excitable media, we refer readers
to [29,30,27] for spiral waves on the circular domain and [34] for
rotating waves on the annulus.
Since the consideration of general types of nonlinearities

(λ, ω) may avoid the consequence that the analysis relies on
the specific form of nonlinearities, we will give a general, but
physically reasonable, setting for the reaction kinetics (λ, ω).
Indeed, motivated by the above-mentioned works, throughout
the remainder of this paper, we will impose the following two
assumptions on the functions λ(·) and ω(·).

(H1) λ(A) is defined and continuously differentiable for A ∈ [0, a]
for some a > 1, λ(A) > 0 for A ∈ [0, 1), λ(1) = 0, and
λ′(·) < 0 on [0, a]. We will retain the notation λ0 := λ(0).

(H2) ω(A) = ω0 + q$(A), where $(A) is defined and differen-
tiable forA ∈ [0, a], and positive forA ∈ (0, a] and$(0) = 0.
Here ω0 and q are constants.

Note that the assumption λ(1) = 0 implies that (1.1) admits
a homogeneous limit cycle solution with amplitude A = 1 and
frequency Ω̂ = ω(1), and that the condition λ′(·) < 0 ensures
that the spatially independent solution of (1.1) asymptotically
approaches this limit cycle. Here the parameter q is the so-called
twist parameter. Without the twist term (q = 0), one can show
that the arms of the corresponding spiral waves are straight
(see [33]). Hence such spiral waves are rotating straight lines, and
so are more like pinwheels. Therefore, we always assume that the
twist parameter q is nonzero. A typical example for (λ(·), ω(·)) is
(λ(A), ω(A)) = (1− A2, 1+ qA2) (see [33,19]). Before proceeding
any further, we make a crucial remark. Specifically, if (u, v) is an
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m-armed spiral wave solution of (1.1)–(1.2) with the amplitude
function A, the function k, the parameter q, and the rotational
frequency Ω̂ , then one can check that (ũ, ṽ) given by (1.1a) with
(A, k, q, Ω̂) replaced by (A,−k,−q, 2ω0 − Ω̂) is also anm-armed
spiral wave solution of (1.1)–(1.2). In view of this fact, throughout
the remainder of this paper we will assume that the parameter q is
positive.
Finally, our study will consist of two major parts. The first one

is to give a criterion for the existence of m-armed spiral wave
solutions of (1.1)–(1.2). The second one is to numerically study
the effects of the diffusivity and the (effective) domain size on the
amplitude and the rotational frequency of spiral waves, and the
stability of spiral waves. To begin with, we will derive the criterion
for the existence ofm-armed spiral waves on circular domains.

2. The criterion for the existence of m-armed spiral waves on
circular domains

To state the criterion for the existence ofm-armed spiral waves,
we first let Jm(·) be the Bessel function of the first kind of orderm,
and jm,0 (resp. jm) be the first positive zero of Jm(·) (resp. J ′m(·)). Then
the necessary condition for the existence of m-armed spiral wave
solutions of (1.1)–(1.2) can be stated as follows.

Theorem 1. Suppose that the functions λ(·) and ω(·) satisfy the
assumptions (H1)–(H2). If d ∈ [ λ0

j2m
· R2,+∞), then there exists no

m-armed spiral wave solution of (1.1)–(1.2).

On the other hand, for d ∈ (0, λ0R2/j2m), we have the following
result on the existence of m-armed spiral wave solutions of
(1.1)–(1.2).

Theorem 2. Suppose that the functions λ(·) and ω(·) satisfy the
assumptions (H1)–(H2). Let the quantities q0 andΩ0 be defined by

q0 = q0(m, λ0, d, R) := min


√
dλ0/R

sup
x∈[0,1]

$(x)
,

λ0

sup
x∈[0,1]

$(x)

× max
s∈
[
jm,min

{
jm,0,

√
λ0
d ·R

}]
√

−J ′m(s)∫ s
0 ξ
2Jm(ξ)dξ


and

Ω0 = Ω0(m, λ0, d, R)

:= −min


√
d · λ

( 1
2

)
R

,
λ0

2
·

√√√√ −J ′m(
√
λ0/d · R)∫ √λ0/d·R

0 ξ 2Jm(ξ)dξ

 .
Then the following hold:

(i) for each d ∈ (0, λ0
j2m
· R2), if q ∈ (0, q0), then we can choose a

Ω̂ ∈ (ω0, ω0+ q supx∈[0,1]$(x)) for which there is an m-armed
spiral wave solution of (1.1)–(1.2);

(ii) for each q > 0, if d ∈ (0, λ0
j2m
· R2) is sufficiently close to λ0

j2m
· R2,

then we can choose an Ω̂ ∈ (ω0, ω0 − Ω0) for which there
is an m-armed spiral wave solution of (1.1)–(1.2). Moreover, as
d → (

λ0
j2m
· R2)−, such an m-armed spiral wave shrinks to 0 and

the corresponding rotational frequency Ω̂ tends to ω0.

As we will see in the coming proposition, the bound for the
rotational frequency of the spiral wave given in the first part of
Theorem 2 is necessary, and the amplitude of any spiral wave
solution of (1.1)–(1.2) is less than 1.
Proposition 1. Suppose that the functions λ(·) and ω(·) satisfy
the assumptions (H1)–(H2). Let (u, v) be an m-armed spiral wave
solution of (1.1)–(1.2)with the rotational frequency Ω̂ . Then we have
that Ω̂ ∈ (ω0, ω0 + q supx∈[0,1]$(x)) and u2(x, y) + v2(x, y) ∈
(0, 1) for all (x, y) ∈ ΓR \ {(0, 0)}.
The first part of Theorem 2 asserts that, for each d ∈ (0, λ0

j2m
·R2),

if q is small, then system (1.1)–(1.2) admits an m-armed spiral
wave solution, while Theorem 1 asserts that, for each d ≥ λ0

j2m
·

R2, system (1.1)–(1.2) has no m-armed spiral wave solutions.
Hence d = λ0

j2m
· R2 is the critical diffusivity for the existence of

m-armed spiral wave solutions of system (1.1)–(1.2). The exact
characteristics of this critical diffusivity are given by the second
part of Theorem 2. Specifically, the second part of Theorem 2
indicates that there is a branch ofm-armed spiralwaves bifurcating
from the uniform steady state (0, 0)when d = λ0

j2m
·R2, and that the

rotational frequency ofm-armed spiral waves on this branch tends
to ω0 as d→ (

λ0
j2m
· R2)−.

Nowwewould like tomake two crucial remarks. First, although
we impose an additional constraint on the twist parameter q in
the first part of Theorem 2 to guarantee the existence of m-armed
spiral wave solutions of system (1.1)–(1.2), this requirement is
technical and may not be necessary. In fact, according to the
numerical study (see Figs. 1–3 and Section 6), q is not necessarily
less than q0. This raises a question: does a large twist parameter
q prevent the existence of spiral wave solutions of system
(1.1)–(1.2)? Althoughwe cannot give an affirmative answer to this,
the numerical stability analysis in Section 6 indicates that the spiral
waves associated with large twist parameter q are unstable. Hence
we might conclude that Theorems 1 and 2 give a very elegant
criterion for the existence of m-armed spiral wave solutions of
the λ–ω system on a disk with no-flux boundary condition. A
more complete structure of spiral waves solutions will be given in
Section 6.
Second, one might use the bifurcation theory developed by

Auchmuty [35] and symmetry arguments to prove the second part
of Theorem 2. However, even if one can use such a argument to
show that there is a branch of m-armed spiral waves bifurcating
from the uniform steady state, one can only establish the existence
of m-armed spiral wave solutions of system (1.1)–(1.2) for
diffusivity d close to the critical diffusivity λ0

j2m
· R2, not for all values

of diffusivity d ∈ (0, λ0
j2m
· R2). Hence it cannot be employed to show

the first part of Theorem 2, which is a global result. Moreover, such
a bifurcation theory cannot be used to prove the non-existence
of spiral waves, and so cannot be employed to show Theorem 1.
Here we will use the shooting argument to prove both parts of
Theorem 2. With the use of the shooting method, we not only can
prove both parts of Theorem 2 in an unified way, but also give the
quantitative estimates of the allowed parameters (q and d). The
non-existence of spiral waves is shown via an useful identity (see
Eq. (3.11)). Since our results do not rely on the specific form of the
nonlinearities (λ, ω), our results give a picture for the existence of
spiral waves for a generalized class of λ–ω systems.
Our results improve the results of Paullet et al. [33] where the

authors considered system (1.1)–(1.2) on the unit disk with the
specific nonlinearity (λ(A), ω(A)) = (1−A2, 1+qA2). Their results
can be stated as follows:

(i) for each d ≥ 1, system (1.1)–(1.2) has no single-armed spiral
wave solutions;

(ii) for each sufficiently smalld, if q is small, then system (1.1)–(1.2)
admits a single-armed spiral wave solution.

On the other hand, whenwe apply our results to the case of Paullet
et al. [33], the corresponding results can be stated as follows:
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Fig. 1. The left panel shows the profile and contours of the component u(x, y, t) of a single-armed spiral wave solution (u, v) of system (1.1)–(1.2) at a fixed time t for
d = 0.03, q = 7, R = 1, λ(A) = 1 − A2 , and ω(A) = 1 + qA2 . The right panel shows the corresponding profiles of the functions A(r), A′(r), and k(r) defined by (1.1a). The
blue solid line: A(r). The black dotted line: A′(r). The green dash–dotted line: k(r).
Fig. 2. The left panel shows the profile and contours of the component u(x, y, t) of a two-armed spiral wave solution (u, v) of system (1.1)–(1.2) at a fixed time t for d = 0.03,
q = 7, R = 1, λ(A) = 1 − A2 , and ω(A) = 1 + qA2 . The right panel shows the corresponding profiles of the functions A(r), A′(r), and k(r) defined by (1.1a). The blue solid
line: A(r). The black dotted line: A′(r). The green dash–dotted line: k(r).
Fig. 3. The left panel shows the profile and contours of the component u(x, y, t) of a three-armed spiral wave solution (u, v) of system (1.1)–(1.2) at a fixed time t for
d = 0.03, q = 7, R = 1, λ(A) = 1 − A2 , and ω(A) = 1 + qA2 . The right panel shows the corresponding profiles of the functions A(r), A′(r), and k(r) defined by (1.1a). The
blue solid line: A(r). The black dotted line: A′(r). The green dash–dotted line: k(r).
(i) for each d ∈ ( 1
j2m
,+∞), system (1.1)–(1.2) has no m-armed

spiral wave solutions;
(ii) for each d ∈ (0, 1

j2m
), if q is small, then system (1.1)–(1.2) ad-

mits anm-armed spiral wave solution.
Hence our results improve the results of Paullet et al. [33].
We note that the quantity jm is increasing inm. Hence, there are

a number of interesting implications for Theorems 1 and 2, among
them the following.
• Anm-armed spiral wave solution of (1.1)–(1.2) can exist only if

0 < d <
λ0

j2m
· R2.
In particular, for the given diffusivity d and the reaction kinetics
parameter λ0, the quantity

Rm :=

√
d
λ0
· jm

is the critical radius below which the corresponding circular
domain cannot support the formation ofm-armed spiral waves.
Similarly, we have the critical diffusivity dm := λ0R2/j2m and the
critical reaction kinetics parameter λ0,m := dj2m/R

2.
• For any given diffusivity d which is less than the critical
diffusivity λ0

j2m
· R2 (equivalently, the domain size R is above the
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critical domain size
√
d
λ0
· jm), if the twist parameter q is small,

then (1.1)–(1.2) admits anm-armed spiral wave solution.
• For any given twist parameter q > 0, if the diffusivity d is close
to the critical diffusivity λ0

j2m
· R2 (equivalently, the domain size

R is close to the critical domain size
√
d
λ0
· jm), then (1.1)–(1.2)

admits anm-armed spiral wave solution.
• An increase in the diffusivity d can eliminate spiral waves, while
a large domain can aid in the existence of spiral waves.
• A large kinetics parameter (λ0) can help the existence of spiral
waves.
This is perhaps surprising, since the reaction kinetics (λ, ω)

can affect the existence of spiral waves through this simple
quantity λ0.
• The larger the parameter m is, the more space one needs to
generate anm-armed spiral wave.

Hence these implications give partial answers to the questions
proposed in the introduction. We remark that the spiral waves in
the above statements are in the sense of (1.1a). We would like to
point out that the above implications for spiral wave solutions of
the λ–ω system on a circular disk should not be taken further to
imply that these implications hold for general reaction–diffusion
systems on a circular disk. Other reaction–diffusion systems, in
particular, excitable media, may have very different properties
(see also [27,36,37]).
The plan of the remaining parts of this paper is as follows. In

Section 3, we give the setting of the proof for Theorem 1, Theo-
rem 2, and Proposition 1. In fact, we will give the equivalent the-
orems (Theorem 3, Theorem 4, and Proposition 2) for Theorem 1,
Theorem 2, and Proposition 1. Then in Section 4 we use an identity
inspired by the Sturm–Liouville theory to prove Theorem 3. Propo-
sition 2 and Theorem 4 are shown by the two-parameter shooting
method in Section 5. A numerical study of spiral waves is given in
Section 6, where the effects of the diffusivity and the (effective) do-
main size on the amplitude and the rotational frequency of spiral
waves, and the stability of spiral waves are discussed. Finally, the
conclusion and a short discussion are given in Section 7, and the
behavior ofm-armed spiral waves for d close to λ0

j2m
·R2 is discussed

in the Appendix.

3. Formulation of them-armed spiral waves problem

3.1. The ODE setting

The rotation symmetry of (1.1)–(1.2) allows us to reduce the
question of the existence of spiral waves to a boundary value
problem for ordinary differential equations (see [21,24,32,19,
18,33]). Indeed, we look for m-armed spiral wave solutions of
(1.1)–(1.2) in the form

u = A(r) cos
(
(ω0 −Ω)t +mθ +

∫ r

0
k(s)ds

)
,

v = A(r) sin
(
(ω0 −Ω)t +mθ +

∫ r

0
k(s)ds

)
,

(1.1b)

where Ω̂ := ω0 − Ω is the rotational frequency, ω0 is given in
the definition of the function ω(·), and Ω is a constant which is
not known a priori. As before, we require that A(r) is positive in its
defined interval except at r = 0, and A(r) and k(r) are regular at
r = 0. It is clear that (1.1a) is equivalent to (1.1b). However, it is
easier to work in the frame of (1.1b).
Substitution of (1.1b) into (1.1) and (1.2) yields the following
boundary value problem:

dA′′ +
d
r
A′ + A

[
λ(A)−

dm2

r2
− dk2

]
= 0,

dk′ +
(
d
r
+ 2d

A′

A

)
k+ (Ω + q$(A)) = 0,

A(0) = k(0) = 0, A′(R) = k(R) = 0,

(3.1)

where the prime denotes d/dr . Since A(r) and k(r) are regular at
r = 0, we have that A(0) = k(0) = 0 holds. Now introduce the
new variables, parameters, and functions by

r̃ =
r
R
, d̃ =

d
R2
, q̃ = q, Ω̃ = Ω,

Ã(r̃) = A(r), k̃(r̃) = Rk(r), λ̃(Ã) = λ(A),

$̃ (Ã) = $(A).

(3.2)

Substituting these rescaled variables, parameters, and functions
into problem (3.1) and dropping the tildes, we get the following
equivalent boundary value problem:

dA′′ +
d
r
A′ + A

[
λ(A)−

dm2

r2
− dk2

]
= 0, (3.3a)

dk′ +
(
d
r
+ 2d

A′

A

)
k+ (Ω + q$(A)) = 0, (3.3b)

and

A(0) = k(0) = 0, (3.4a)

A′(1) = k(1) = 0. (3.4b)

Therefore, it suffices to consider problem (3.1) for R = 1.
In view of the above discussion, we can conclude that for each
positive twist parameter q, the problem of constructing m-armed
spiral wave solutions of (1.1) and (1.2) is equivalent to selecting
the constantΩ such that the solution (A, k) of the boundary value
problem (3.3a)–(3.3b) and (3.4a)–(3.4b) satisfies that A(·) > 0
on (0, 1]. Furthermore, in order to establish Theorem 1 (resp.
Theorem 2 and Proposition 1), it suffices to show Theorem 3 (resp.
Theorem4andProposition 2),whichwe state below (see Figs. 1–3).

Theorem 3. Suppose that the functions λ(·) and ω(·) satisfy the
assumptions (H1)–(H2). If d ∈ [ λ0

j2m
,+∞), then, for anyΩ ∈ R, there

exists no solution (A, k) of problem (3.3a)–(3.3b) and (3.4a)–(3.4b)
which satisfies A > 0 on (0, 1].

Theorem 4. Suppose that the functions λ(·) and ω(·) satisfy the
assumptions (H1)–(H2). Let q0 and Ω0 be defined as in Theorem 2.
Then the following hold:

(i) for each d ∈ (0, λ0
j2m
), if q ∈ (0, q0), then there exists an Ω ∈

(−q supx∈[0,1]$(x), 0) such that problem (3.3a)–(3.3b) and
(3.4a)–(3.4b) admits a solution (A, k). Moreover, this solution
satisfies A′ > 0 on (0, 1);

(ii) for each q > 0, if d ∈ (0, λ0
j2m
) is sufficiently close to λ0

j2m
, then

there exists an Ω ∈ (Ω0, 0) such that problem (3.3a)–(3.3b)
and (3.4a)–(3.4b) admits a solution (A, k). Moreover, this solution
(A, k) satisfies that A′ > 0 on (0, 1) and |A(·)| ≤ |Ω0| on [0, 1],
and that as d→ (

λ0
j2m
)−, supr∈[0,1] A(r)→ 0 andΩ → 0.

Proposition 2. Suppose that the functions λ(·) and ω(·) satisfy
the assumptions (H1)–(H2). If the solution (A, k) of problem
(3.3a)–(3.3b) and (3.4a)–(3.4b) with Ω ∈ R satisfies that A(·) > 0
on (0, 1], then we have A(r) ∈ (0, 1) for r ∈ (0, 1] and Ω ∈
(−q supx∈[0,1]$(x), 0).
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3.2. Associated initial value problems and useful identities

We observe that any solution (A, k) of (3.3a)–(3.3b) and (3.4a)
which is regular at r = 0 must satisfy A(i)(0) = 0 for i = 1, . . . ,
m− 1, and so for such a solution (A, k), we have

A(r) ∼ αrm as r → 0+, k(0) = 0 (3.5)

for some α > 0. Hence, for each positive q, the problem of con-
structing m-armed spiral wave solutions of (1.1) and (1.2) can be
reduced to selecting the constants α and Ω such that the solu-
tion (A, k) of the initial value problem (3.3a)–(3.3b) and (3.5) sat-
isfies that the boundary condition (3.4b) holds and A(·) > 0 on
(0, 1]. Motivated by this, we need to study the initial value prob-
lem (3.3a)–(3.3b) and (3.5), which we denote by (Pα,Ω,q). We also
let (A(r;α,Ω, q), k(r;α,Ω, q)) be the solution of (Pα,Ω,q) defined
on the maximal existence interval [0, Rα,Ω,q). If there is no ambi-
guity, we will omit the dependence of (A(r;α,Ω, q), k(r;α,Ω, q))
on the parameters α, Ω and q. Now, multiplying (3.3b) by rA2 and
integrating from 0 to r , we obtain the equality (see [21,19,33])

rA2(r;α,Ω, q) · k(r;α,Ω, q)

= −

∫ r

0

sA2(s;α,Ω, q)
d

· (Ω + q$(A(s;α,Ω, q))) ds. (3.6)

From this, we can conclude that for the solution (A(r;α,Ω, q),
k(r;α,Ω, q)) of the problem (Pα,Ω,q), k(·;α,Ω, q) is bounded as
long as A(·;α,Ω, q) is bounded.
Before we go further, we need another version of the problem

(Pα,Ω,q). We recall that Jm is the Bessel function of the first kind of
orderm. Hence Jm satisfies the Bessel equation of orderm:

d2J
ds2
+
1
s
·
dJ
ds
+

(
1−

m2

s2

)
J = 0. (3.7)

Introduce the new independent variable s and the dependent
variables (Ã, k̃) by

s :=

√
λ0

d
r and Ã(s) := A(r), k̃(s) :=

√
d
λ0
k(r). (3.8)

Then the initial value problem (Pα,Ω,q) is transformed into the
initial value problem (P̃α,Ω,q):

d2Ã
ds2
+
1
s
·
dÃ
ds
+

(
1−

m2

s2

)
Ã+

(
λ(Ã)− λ0

λ0
− k̃2

)
Ã = 0,(3.9a)

k̃′ +

(
1
s
+
2Ã′

Ã

)
k̃+

Ω + q$(Ã)
λ0

= 0, (3.9b)

and

Ã(s) ∼ α

√(
d
λ0

)m
sm as s→ 0+, k̃(0) = 0. (3.10)

Now,multiplying (3.7) by sÃ and (3.9a) by sJm, and then subtracting,
we get the identity:

d
ds

(
sÃ′Jm − sÃJ ′m

)
= sÃJm ·

(
λ0 − λ(Ã)

λ0
+ k̃2

)
. (3.11)
4. The necessary condition: Proof of Theorem 3

In this section, we will prove Theorem 3. To do this, it suffices
to show the following lemma.

Lemma 4.1. Suppose that (A, k) is a solution of problem (3.3a)–(3.3b)
and (3.4a)–(3.4b)with the property that A(·) > 0 on (0, 1]. Then we
have

0 < d <
λ0

j2m
.

Proof. Let (Ã, k̃) be the solution of Eqs. (3.9a) and (3.9b) corre-
sponding to (A, k). Note that Ã satisfies that Ã > 0 on (0,

√
λ0
d ], and

Ã(0) = Ã′
(√

λ0

d

)
= 0. (4.1)

Integrating (3.11) from 0 to
√
λ0
d and using (4.1), we get

−

√
λ0

d
Ã

(√
λ0

d

)
J ′m

(√
λ0

d

)

=

∫ √
λ0
d

0
sÃ(s)Jm(s) ·

(
λ0 − λ(Ã(s))

λ0
+ k̃2(s)

)
ds. (4.2)

For contradiction, we assume that d ≥ λ0
j2m
. Hence jm ≥

√
λ0
d . This,

together with the facts that λ(·) is decreasing and that Ã > 0 on

(0,
√
λ0
d ], implies that the right-hand side of (4.2) is positive. There-

fore we have J ′m(
√
λ0
d ) < 0, which implies that

√
λ0
d > jm. This is a

contradiction. Hence the assertion of this lemma is established. �

5. The sufficient condition: Proof of Theorem 4

In this section, we will prove Theorem 4. In Sections 5.1–5.4,
we will show the first part of Theorem 4, while the second part of
Theorem 4 is proven in Section 5.5.

5.1. The proof for the existence of m-armed spiral waves when q ∈
(0, q0)

We shall use the two-parameter shooting scheme [33] to prove
the first part of Theorem 4. Specifically, we will vary the free
parameters α and Ω . We briefly describe the plan of the proof,
which consists of three steps. First, for ease of notation, we define
the quantity R1 as follows.

Definition 1. Let (A, k) be the solution of the problem (Pα,Ω,q). We
set R1 = R1(α,Ω, q) as the first positive zero of A′ if it exists.

We also need the following two sets:

A1,q := {(α,Ω) ∈ (0,∞)× [−q sup
x∈[0,1]

$(x), 0] | Rα,Ω,q ∈ (0, 1]

and A′(·;α,Ω, q) > 0 on (0, Rα,Ω,q)}
⋃
{(α,Ω) ∈ (0,∞)

×[−q sup
x∈[0,1]

$(x), 0] | A′(·;α,Ω, q) > 0 on (0, 1]},

A2,q := {(α,Ω) ∈ (0,∞)
×[−q sup

x∈[0,1]
$(x), 0] | R1(α,Ω, q) ∈ (0, 1)}.
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Fig. 4. The shooting regionA.

The restriction onΩ is motivated by Proposition 2. Also recall the
quantity q0 defined in Theorem 2. Now fix a q ∈ (0, q0). Then the
plan of the proof consists of the following three steps.

Step 1. We find a large positive number α∗, which is independent
of q > 0, such that {α∗} × [−q supx∈[0,1]$(x), 0] ⊂ A1,q (see
Lemma 5.4 in Section 5.2).

Step 2. We find a small positive number α∗ < α∗, which may
depend on q ∈ (0, q0), such that {α∗} × [−q supx∈[0,1]$(x), 0] ⊂
A2,q (see Lemma 5.6 in Section 5.3). We remark that we use the
arguments based on a comparison with the Bessel equation and
a detailed estimate on k(·) to reach Step 1–Step 2, and so these
arguments are different from those in [33] where the authors use
the rotating straight lines (‘‘pinwheels’’) as building bricks.

Step 3. This step is a slight modification of that in Paullet et al.
[33, pp. 1393–1395]. From Step 1 and Step 2, we use a topological
theorem of McLeod and Serrin [38] to conclude that, for any fixed
q ∈ (0, q0], there exists a continuum Γ ⊆ {α ∈ [α∗, α

∗
],Ω ∈

[−q supx∈[0,1]$(x), 0]} which connects the lines {α > 0,Ω = 0}
and {α > 0,Ω = −q supx∈[0,1]$(x)}, and satisfies that A′(·;α,
Ω, q) > 0 on (0, 1) and A′(1;α,Ω, q) = 0 for all (α,Ω) ∈ Γ
(see Fig. 4). Then we show that there exists (α1,Ω1) ∈ Γ (resp.
(α2,Ω2) ∈ Γ ) for which k(1;α1,Ω1, q) < 0 (resp. k(1;α2,Ω2, q)
> 0). This implies that there exists a (ᾱ, Ω̄) ∈ Γ such that k(1; ᾱ,
Ω̄, q) = 0. Therefore, (A(·; ᾱ, Ω̄, q), k(·; ᾱ, Ω̄, q)) is the desired
solution of problem (3.3a)–(3.3b) and (3.4a)–(3.4b), thereby com-
pleting the proof of the first part of Theorem 4 (see Section 5.4).
In the following, we collect some lemmas which concern the

properties of the sets A1,q and A2,q. First, we show that R1(α,Ω, q)
has a positive lower bound.

Lemma 5.1. Suppose that (A, k) is the solution of the initial value
problem (Pα,Ω,q), and that R1 is the first positive zero of A′. Then we

have R1 >
√
d
λ0
jm and A(r) ∈ (0, 1) for r ∈ (0, R1].

Proof. The assertion for the estimate of R1 can be proved by a
similar argument as in Lemma 4.1, and so we omit it.
For the second assertion, we note that A′(·) > 0 on (0, R1) and

A′(R1) = 0. Hence we have A′′(R1) ≤ 0, which, together with
(3.3a), implies that

d ·
m2

R21
+ dk2(R1)− λ(A(R1)) ≤ 0.

Therefore, we have λ(A(R1)) > 0. Together with the fact that λ(·)
is decreasing and λ(1) = 0, it follows that A(R1) ∈ (0, 1). Finally,
the second assertion follows from the fact that A(R1) ∈ (0, 1) and
the definition of R1. This completes the proof of this lemma. �
Following the proof of the second assertion in Lemma 5.1, we
have the following lemma which, together with the continuous
dependence on the parameters α and Ω , shows that the set A1,q
is open.

Lemma 5.2. Suppose that (A, k) is the solution of the initial value
problem (Pα,Ω,q), and that for some r1 ∈ (0, Rα,Ω,q), A(r) ∈ [0, 1)
for all r ∈ [0, r1) and A(r1) = 1. Then we have that A′(r) > 0 for all
r ∈ [r1, Rα,Ω,q).

Finally, we give the proof for Proposition 2. To do this, it suffices
to show the following lemma.

Lemma 5.3. If the solution (A(r), k(r)) of the problem (Pα,Ω,q)
satisfies that (3.4b) holds and A(·) > 0 on (0, 1], then we have
A(r) ∈ (0, 1) for r ∈ (0, 1] andΩ ∈ (−q supx∈[0,1]$(x), 0).

Proof. We first prove the first assertion. For contradiction, we
assume that there is a first r1 ∈ (0, 1] such that A(r) ∈ [0, 1) for all
r ∈ [0, r1) and A(r1) = 1. Then, by Lemma 5.2, we have A′(r) > 0
for all r ∈ [r1, 1]. This is a contradiction to the fact that A′(1) = 0,
thereby completing the proof of the first assertion.
For the second assertion, we use themethod of [33, Lemma 3.1].

Indeed, by evaluating (3.6) at r = 1 and using (3.4b), we obtain∫ 1
0 sA

2(s) · (Ω + q$(A(s))) ds = 0, which implies that

−Ω

q
=

∫ 1
0 sA

2(s)$(A(s))ds∫ 1
0 sA

2(s)ds
.

Recall that $(x) > 0 for x ∈ (0, 1] and that A(r) ∈ (0, 1) for
r ∈ (0, 1]. Then it follows from the above inequality that Ω ∈
(−q supx∈[0,1]$(x), 0). This proves the second assertion of this
lemma, thereby completing the proof of this lemma. �

5.2. The nonemptiness of the set A1,q

The following lemma concerns the nonemptiness of the set A1,q
for any q > 0.

Lemma 5.4. Let d ∈ (0, λ0
j2m
), q > 0, Ω ≤ 0, and

(A(·;α,Ω, q), k(·;α,Ω, q)) be the solution of the initial value
problem (Pα,Ω,q). Then there is a sufficiently large α∗ = α∗(d, λ0),
which is independent of (Ω, q), such that, for each α ≥ α∗,
A(·;α,Ω, q) > 0 and A′(·;α,Ω, q) > 0 on (0, r̂], and
A(r̂;α,Ω, q) = 1 for some r̂ = r̂(α) ∈ (0,

√
d
λ0
jm).

Proof. Let (Ã(·;α,Ω, q), k̃(·;α,Ω, q)) be the solution of the
initial value problem (P̃α,Ω,q) corresponding to (A(·;α,Ω, q),
k(·;α,Ω, q)). Then with the use of (3.8) and Lemma 5.1, we see
that Ã′(·;α,Ω, q) > 0 on (0,min{R̃α,Ω,q, jm}), where [0, R̃α,Ω,q) is
the maximal existence interval of (Ã(·;α,Ω, q), k̃(·;α,Ω, q)).
From (3.10), Ã(·;α,Ω, q) satisfies that Ã(s;α,Ω, q) ∼ α√
( d
λ0
)msm as s → 0+, and note that Jm(s) ∼ sm/(2m · m!) as

s → 0+. Hence we have lims→0+ Ã(s;α,Ω, q)/Jm(s) = α · (2m ·
m!)

√
( d
λ0
)m. Since λ(·) is decreasing, it follows from (3.11) that

sÃ′(s;α,Ω, q)Jm(s)−sÃ(s;α,Ω, q)J ′m(s) > 0 for all s ∈ (0, R̃α,Ω,q).
Hence (Ã(·;α,Ω, q)/Jm(·))′ > 0 on (0,min{R̃α,Ω,q, jm}). Taken to-

gether, we obtain that Ã(s;α,Ω, q) > α · (2m ·m!)
√
( d
λ0
)mJm(s) for

all s ∈ (0,min{R̃α,Ω,q, jm}). From this and Lemma 5.1, we can con-
clude that there exists a sufficiently largeα∗ = α∗(d, λ0) such that,
for each α ≥ α∗, Ã′(·;α,Ω, q) > 0 on (0, ŝ] and Ã(ŝ;α,Ω, q) = 1
for some ŝ = ŝ(α) ∈ (0, jm). Finally, by transforming back to the
origin variable (A(·;α,Ω, q), k(·;α,Ω, q)), the assertion of this
lemma follows. �
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5.3. The nonemptiness of the set A2,q

Before showing that A2,q is nonempty, we need some estimates
on (A(·;α,Ω, q), k(·;α,Ω, q)) for small positive α.

Lemma 5.5. Let q ∈ (0,
√
dλ(ε0)/ supx∈[0,1]$(x)] with ε0 ∈ (0,

1/2). Then, for each α ∈ (0, ε0), we have

0 < A(r;α,Ω, q) ≤ αrm and

|k(r;α,Ω, q)| ≤
(
q sup
x∈[0,1]

$(x)/d
)
r

(5.1)

for all r ∈ (0,min{R1(α,Ω, q), 1}] andΩ ∈ [−q supx∈[0,1]$(x), 0].

Proof. First, for ease of use, we set R̂ = R̂(α,Ω, q) := min{R1(α,
Ω, q), 1}, and write A(·;α,Ω, q) (rep. k(·;α,Ω, q)) as A (resp. k).
Now, with the help of (3.3a), one can check that the following
equality holds.

A′(r) = δmα +
m2 − 1
2

∫ r

0

(
1
r2
+
1
s2

)
A(s)ds

+
1
2d

∫ r

0

(
1+

s2

r2

)
A(s)

(
dk2(s)− λ(A(s))

)
ds, (5.2)

where δm = 1 ifm = 1, and δm = 0 ifm > 1.
We consider the case when m = 1. Since λ(0) > 0 and

k(0) = 0, from (5.2), it follows that 0 < A′(r) < α for small r .
Hence we have 0 < A(r) < αr for small r . Set r̂ := sup{r ∈
(0, R̂] | 0 < A(r ′) < αr ′ for r ′ ∈ (0, r]}. Then we have r̂ ≤ R̂ ≤ 1.
We claim that r̂ = R̂. Suppose not. Then we have r̂ < R̂, and, from
the definition of r̂ , we have 0 < A(r) < αr < ε0 for r ∈ (0, r̂) and
A(r̂) = αr̂ < ε0. Now we give an estimate on k(·). To do this, we
use Eq. (3.6) to estimate k(·) on (0, r̂] as follows:

|k(r)| ≤
1
d

∫ r

0

sA2(s)
rA2(r)

· | −Ω − q$(A(s))|ds

≤
1
d

∫ r

0
max{|Ω|, q$(A(s))}ds

(A(·) is increasing on [0, r̂] andΩ ≤ 0)

≤

q sup
x∈[0,1]

$(x)

d
· r (since A(·) ∈ [0, 1) on [0, r̂]

and |Ω| ≤ q sup
x∈[0,1]

$(x)). (5.3)

With these estimates on (A, k) and the choice of q, we can conclude
that dk2(r) − λ(A(r)) < 0 for r ∈ (0, r̂]. This, together with (5.2),
implies that A′(r) < α for r ∈ (0, r̂], which yields that A(r̂) < αr̂ .
This is a contradiction, hence completing the proof of this claim.
With the use of this claim, we can proceed as in (5.3) to conclude
that |k(r)| ≤ (q supx∈[0,1]$(x)/d)r for r ∈ [0, R̂].
Now we turn to the case when m > 1. Fix an arbitrary β ∈

(α, ε0). From (3.5), we have that A(r) ∼ αrm as r → 0+. Hence
0 < A(r) < βrm for small r . Set r̃ := sup{r ∈ (0, R̂] | 0 <
A(r ′) < β(r ′)m for r ′ ∈ (0, r]}. We claim that r̃ = R̂. Suppose
not. Then we have 0 < r̃ < R̂, and from the definition of r̃ , we
have 0 < A(r) < βrm < ε0 for r ∈ (0, r̃) and A(r̃) = β r̃m <
ε0. Proceeding as in the case when m = 1, we can show that
|k(r)| ≤ (q supx∈[0,1]$(x)/d)r for r ∈ [0, r̃], and hence we have
dk2(r) − λ(A(r)) < 0 for r ∈ (0, r̃]. This, together with (5.2),
implies that the following estimate holds:

A′(r) <
m2 − 1
2

∫ r

0

(
1
r2
+
1
s2

)
A(s)ds

<
m2 − 1
2

∫ r

0

(
1
r2
+
1
s2

)
βsmds = mβrm−1
for r ∈ [0, r̃]. Integrating the above inequality from 0 to r̃ , we
obtain A(r̃) < β r̃m. This is a contradiction. Hence we have r̃ = R̂,
and so 0 < A(r) < βrm for all r ∈ (0, R̂) and any β ∈ (α, ε0).
Letting β → α+ and using the definition of R̂, we obtain 0 <
A(r) ≤ αrm for all r ∈ (0, R̂]. Finally, the estimate for k(·) follows
from the same lines as in the case whenm = 1. This completes the
proof of this lemma. �

Now we are in a position to show that A2,q is nonempty.
Intuitively, R1(α,Ω, q) can exist for small α. However, we need
the fact that R1(α,Ω, q) exists and R1(α,Ω, q) ∈ (0, 1) for small
α, which will be established in the following lemma. We also note
that Paullet et al. [33] have used a restrictive method to show the
following lemma for small d, m = 1, and λ(A) = 1 − A2 and
$(A) ≡ 0. Here, with the use of different arguments, we can prove
this lemma for d ∈ (0, λ0

j2m
) (not only for small d), and for general

m ∈ N and reaction kinetics (λ(·), ω(·)).

Lemma 5.6. Let d ∈ (0, λ0
j2m
) and q ∈ (0, q0), where q0 is defined

in Theorem 2. Then there exists an α∗ = α∗(d, q) > 0 such
that R1(α,Ω, q) ∈ (0, 1) holds for each α ∈ (0, α∗] and Ω ∈
[−q supx∈[0,1]$(x), 0].

Proof. By the definition of q0 and the fact that λ(·) is decreasing,
we can choose a small number ε0 ∈ (0, 1/2) such that q ∈ (0,√
dλ(ε0)/ supx∈[0,1]$(x)). Now, for contradiction, we assume
that there are two sequences {αn} ⊂ (0, ε0) and {Ωn} ⊂
[−q supx∈[0,1]$(x), 0] with αn → 0 as n → +∞ such that
the solution (A(r;αn,Ωn), k(r;αn,Ωn)) of (Pαn,Ωn,q) satisfies that
A′(r;αn,Ωn) > 0 for all r ∈ (0,min{1, Rαn,Ωn,q}). Here, for
simplicity, we omit the dependence of (A(r;αn,Ωn), k(r;αn,Ωn))
on the parameter q. From Lemma 5.5, we may assume that
A′(r;αn,Ωn) > 0 for each r ∈ (0, 1) and n ∈ N, and that the es-
timates on (A(·;αn,Ωn), k(·;αn,Ωn)) given by (5.1) hold for each
r ∈ (0, 1] and n ∈ N.
Now, for each n ∈ N, let (Ã(s;αn,Ωn), k̃(s;αn,Ωn)) be the so-

lution of the problem (P̃αn,Ωn,q) corresponding to (A(r;αn,Ωn),
k(r;αn,Ωn)). Recall that

s :=

√
λ0

d
r and Ã(s;αn,Ωn) := A(r;αn,Ωn),

k̃(s;αn,Ωn) :=

√
d
λ0
k(r;αn,Ωn).

Hence we have Ã′(·;αn,Ωn) > 0 on (0,
√
λ0
d ). Also note that√

λ0
d > jm and Ã(·;αn,Ωn) satisfies that Ã(s;αn,Ωn) ∼ αn√
( d
λ0
)msm as s→ 0+. Integrating (3.11) from 0 to s, we have that

sÃ′(s;αn,Ωn)Jm(s)− sÃ(s;αn,Ωn)J ′m(s)

=

∫ s

0
ξ Ã(ξ ;αn,Ωn)Jm(ξ)

×

(
λ0 − λ(Ã(ξ ;αn,Ωn))

λ0
+ k̃2(ξ ;αn,Ωn)

)
dξ

holds for s ∈ [0,
√
λ0
d ] and n ∈ N. Dividing the above equation by

sÃ(s;αn,Ωn)Jm(s), we obtain

Ã′(s;αn,Ωn)

Ã(s;αn,Ωn)
=

∫ s

0

ξ

s
·
Ã(ξ ;αn,Ωn)

Ã(s;αn,Ωn)

×
Jm(ξ)
Jm(s)

·

(
λ0 − λ(Ã(ξ ;αn,Ωn))

λ0

)
dξ
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+

(
J ′m(s)
Jm(s)

+

∫ s

0

ξ

s
·
Ã(ξ ;αn,Ωn)

Ã(s;αn,Ωn)

×
Jm(ξ)
Jm(s)

· k̃2(ξ ;αn,Ωn)dξ
)

:= I(s)+ II(s) (5.4)

for each s ∈ (0,min{
√
λ0
d , jm,0}), where jm,0 denotes the first posi-

tive zero of Jm(·). In the following, we will estimate the right-hand
side of (5.4). To do this, we let ĵm be the maximal point of the func-

tion
√

−J ′m(s)∫ s
0 ξ
2Jm(ξ)dξ

on [jm,min{jm,0,
√
λ0
d }]. Since J

′
m(jm) = 0 (resp.

J ′m(jm,0) < 0 and J
′′
m(jm,0) > 0), we have ĵm 6= jm (resp. ĵm 6= jm,0).

Hence we can conclude that ĵm ∈ (jm, jm,0). Now we choose a suf-
ficiently large numberMm such that

0 < Jm(s)/Jm(ĵm) ≤ Mm

for s ∈ (0, ĵm]. With the use of these facts, we first estimate I(ĵm)
as follows:

I(ĵm) =
∫ ĵm

0
Mm ·

λ0 − λ(Ã(ξ ;αn,Ωn))
λ0

dξ(
since Ã(·;αn,Ωn) is increasing on

(
0,

√
λ0

d

))

≤

∫ ĵm

0

Mm sup
x∈[0,1]

|λ′(x)|

λ0
· Ã(ξ ;αn,Ωn)dξ

(the mean-value theorem, λ0 = λ(0), and λ(·) is decreasing)

≤

∫ ĵm

0

Mm sup
x∈[0,1]

|λ′(x)|

λ0
· αn

√(
d
λ0

)m
ξmdξ

(by Lemma 5.5)

≤ αnMm ĵm+1m

√(
d
λ0

)m
·

sup
x∈[0,1]

|λ′(x)|

(m+ 1)λ0
.

Next we estimate II(ĵm) as follows:

II(ĵm) =
1

Jm(ĵm)
·

(
J ′m(ĵm)+

∫ ĵm

0

ξ

s
·
Ã(ξ ;αn,Ωn)

Ã(s;αn,Ωn)

× Jm(ξ) · k̃2(ξ ;αn,Ωn)dξ
)

<
1

Jm(ĵm)
·

(
J ′m(ĵm)+

∫ ĵm

0
Jm(ξ) · k̃2(ξ ;αn,Ωn)dξ

)
(
since Ã(·;αn,Ωn) is increasing on

(
0,

√
λ0

d

))

≤
1

Jm(ĵm)
·

J ′m(ĵm)+ q
2( sup
x∈[0,1]

$(x))2

λ20

∫ ĵm

0
ξ 2Jm(ξ)dξ


(by Lemma 5.5)

< 0. (by the choice of q).

In view of the estimates on I(ĵm) and II(ĵm), we can conclude from
(5.4) that

Ã′(ĵm;αn,Ωn)

Ã(ĵm;αn,Ωn)
≤ αnMm ĵm+1m

√(
d
λ0

)m
·

sup
x∈[0,1]

|λ′(x)|

(m+ 1)λ0
+ II(ĵm)
holds for each n ∈ N. Note that II(ĵm) is bounded above by a
negative number which is independent of n ∈ N. Together with
the above inequality, this estimate implies that Ã′(ĵm;αn,Ωn)/
Ã(ĵm;αn,Ωn) must be negative for all n > n0 and for some large
n0. This is a contradiction to the assumption that Ã′(·;αn,Ωn) > 0

on (0,
√
λ0
d ). The proof is thus completed. �

5.4. Proof of the first part of Theorem 4

With the preparation in the previous subsections, we can
slightly modify the arguments of Paullet et al. [33, pp. 1393–1395]
to complete the proof of the first part of Theorem 4, andwe include
these arguments here for the sake of completeness and later use
in Section 5.5.1. To begin with, let q0 be defined as in Theorem 2.
Throughout the remainder of this section, we fix d ∈ (0, λ0/j2m)
and q ∈ (0, q0). We assume that the pair of parameters (α,Ω) lies
in the set

A :=

{
(α,Ω) | α ∈ [α∗, α

∗
],Ω ∈ [−q sup

x∈[0,1]
$(x), 0]

}
,

and for simplicity we set

Ã1,q := A1,q
⋂

A and Ã2,q := A2,q
⋂

A.

We repeat again that the restriction on Ω is motivated by
Proposition 2. Our goal is to look for (ᾱ, Ω̄) for which the solution
(A(r; ᾱ, Ω̄, q), k(r; ᾱ, Ω̄, q)) of the problem (Pα,Ω,q) satisfies
(3.4b). Now we summarize the associated properties on the sets
Ã1,q and Ã2,q as follows.

• Ã1,q ⊃ {α∗} × [−q supx∈[0,1]$(x), 0] by Lemma 5.4.
• Ã1,q is relatively open in A by Lemma 5.2 and the continuous
dependence on the parameters α andΩ .
• Ã2,q ⊃ {α∗} × [−q supx∈[0,1]$(x), 0] by Lemma 5.6.
• Ã2,q is relatively open in A by the continuous dependence on
the parameters α andΩ .
• Ã1,q

⋂
Ã2,q = ∅ by the definitions of the sets A1,q and A2,q.

These properties, together with the theorem due to McLeod
and Serrin [38], immediately imply that we can find a continuum
Γ ⊂ A \ (Ã1,q ∪ Ã2,q)which connects the segments {α ∈ [α∗, α∗],
Ω = 0} and {α ∈ [α∗, α∗],Ω = −q · supx∈[0,1]$(x)}. From
the definition of Γ , we can conclude that, for each (α,Ω) ∈ Γ ,
A(·;α,Ω, q) and k(·;α,Ω, q) are defined on [0, 1], and

A′(·;α,Ω, q) > 0 on (0, 1), and A′(1;α,Ω, q) = 0
for all (α,Ω) ∈ Γ .

Furthermore, together with Lemma 5.1, A(·;α,Ω, q) ∈ (0, 1) on
(0, 1].
Note that k(1;α,Ω, q) depends continuously on (α,Ω) ∈ Γ .

Suppose that we can show that k(1;α,Ω, q) < 0 (resp. k(1;α,
Ω, q) > 0) for some (α1,Ω1) ∈ Γ (resp. (α2,Ω2) ∈ Γ ). Then as
(α,Ω) varies along Γ from Ω = 0 to Ω = −q · supx∈[0,1]$(x),
there must exist a (ᾱ, Ω̄) ∈ Γ such that k(1; ᾱ, Ω̄, q) = 0.
This in turn implies that (A(·; ᾱ, Ω̄, q), k(·; ᾱ, Ω̄, q)) is the desired
solution of problem (3.3a)–(3.3b) and (3.4a)–(3.4b), thereby
completing the proof of the first part of Theorem 4.
Therefore, it remains to show the existence of (αi,Ωi)with the

desired properties for i = 1, 2. We first study k(1;α,Ω, q) for
(α,Ω) ∈ Γ withΩ close to 0.

Lemma 5.7. There exists anΩ1 ∈ (−q supx∈[0,1]$(x), 0) such that,
if Ω ∈ [Ω1, 0) and (α,Ω) ∈ Γ , then we have k(1;α,Ω, q) < 0.
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Proof. Let α̂ ∈ [α∗, α∗] be such that (α̂, 0) ∈ Γ . With the use of
(3.6) and (α,Ω) = (α̂, 0), we have

rA2(r; α̂, 0, q) · k(r; α̂, 0, q)

= −

∫ r

0

sA2(s; α̂, 0, q)
d

· q$(A(s; α̂, 0, q))ds

for r ∈ [0, 1]. Since (α̂, 0) ∈ Γ , we have A(r; α̂, 0, q) ∈ (0, 1) for
r ∈ (0, 1]. This, together with the above equality and the fact that
$(·) is positive on (0, 1], shows that k(1; α̂, 0, q) < 0. Hence the
assertion of this lemma follows from this and an application of the
continuous dependence on (α,Ω). �

We next study k(1;α,Ω, q) for (α,Ω) ∈ Γ with Ω close to
−q supx∈[0,1]$(x).

Lemma 5.8. There exists an Ω2 ∈ (−q supx∈[0,1]$(x),Ω1) such
that, if Ω ∈ (−q supx∈[0,1]$(x),Ω2] and (α,Ω) ∈ Γ , then we
have k(1;α,Ω, q) > 0.

Proof. For simplicity, we set Ω̃ = −q supx∈[0,1]$(x). Let α̃ ∈
[α∗, α

∗
] be such that (α̃, Ω̃) ∈ Γ . Since (α̃, Ω̃) ∈ Γ , we have

A(r; α̃, Ω̃, q) ∈ (0, 1) for r ∈ (0, 1]. Now, with the use of (3.6) and
(α,Ω) = (α̃, Ω̃), we have

rA2(r; α̃, Ω̃, q) · k(r; α̃, Ω̃, q)

= q
∫ r

0

sA2(s; α̃, Ω̃, q)
d

·

(
sup
x∈[0,1]

$(x)−$(A(s; α̃, Ω̃, q))
)
ds

for r ∈ (0, 1]. This, with the fact that A(r; α̃, Ω̃, q) ∈ (0, 1) for
r ∈ (0, 1], yields k(1; α̃, Ω̃, q) > 0. Finally, an application of
the continuous dependence on (α,Ω) shows that, if (α,Ω) ∈ Γ
and (α,Ω) close to (α̃, Ω̃), then we have k(1;α,Ω, q) > 0. This
completes the proof of this lemma. �

5.5. The proof for the existence of m-armed spiral waves when d is
close to λ0

j2m
· R2

In this subsection, we will establish the second part of
Theorem 4.

5.5.1. Outline of the proof of the second part of Theorem 4
The proof of the second part of Theorem 4 follows the same

plan as in the first part. But it needs some modifications. For
simplicity of presentation, we will only sketch the proof and show
the necessary lemmas. To begin with, we recall the quantity

Ω0 = Ω0(m, λ0, d)

:= −min


√
d · λ

(
1
2

)
,
λ0

2
·

√√√√ −J ′m(
√
λ0/d)∫ √λ0/d

0 ξ 2Jm(ξ)dξ

 .
For each fixed q > 0, we also need the following two sets:

B1,q := {(α,Ω) ∈ (0,∞)× [Ω0, 0] | Rα,Ω,q ∈ (0, 1]

and A′(·;α,Ω, q) > 0 on (0, Rα,Ω,q)}
⋃
{(α,Ω) ∈ (0,∞)

×[Ω0, 0] | A′(·;α,Ω, q) > 0 on (0, 1]},
B2,q := {(α,Ω) ∈ (0,∞)× [Ω0, 0] | R1(α,Ω, q) ∈ (0, 1)}.

The difference between the sets Ai,q and Bi,q is that we restrict
the parameter Ω to the smaller interval [Ω0, 0], not the interval
[−q supx∈[0,1]$(x), 0]. Now fix a γ ∈ (0, 1) and recall that jm,0
denotes the first positive zero of Jm(·). Since$(A) is differentiable
at A = 0 andΩ0 → 0 as d→ (

λ0
j2m
)−, we can choose a sufficiently
small δ0 > 0 such that, for each d ∈ (
λ0
j2m
− δ0,

λ0
j2m
) and α ∈

(0, |Ω0|1+γ ], we have

|Ω0|
1+γ <

1
2
and q$(α) ≤ |Ω0|. (5.5)

Step 1. Set α∗ := |Ω0|1+γ . We find a small positive number
δ1 ∈ (0, δ0) such that, for each d ∈ (

λ0
j2m
− δ1,

λ0
j2m
), we have

{α∗} × [Ω0, 0] ⊂ B1,q (see Lemma 5.10 in Section 5.5.2).

Step 2. For each d ∈ ( λ0
j2m
− δ1,

λ0
j2m
), we find a small positive number

α∗ < α∗ such that {α∗} × [Ω0, 0] ⊂ B2,q (see Lemma 5.11 in
Section 5.5.2).
Step 3. This step is a slight modification of that in Paullet et al.
[33, pp. 1393–1395]. From Step 1 and Step 2, we can conclude
that, for each fixed d ∈ ( λ0

j2m
− δ1,

λ0
j2m
), there exists a continuum

Γ ⊆ {α ∈ [α∗, α
∗
],Ω ∈ [Ω0, 0]} which connects the lines

{α > 0,Ω = 0} and {α > 0,Ω = Ω0}, and satisfies
that A′(·;α,Ω, q) > 0 on (0, 1) and A′(1;α,Ω, q) = 0 for
all (α,Ω) ∈ Γ . Then, as before, we can show that there exists
(α1,Ω1) ∈ Γ (resp. (α2,Ω2) ∈ Γ ) for which k(1;α1,Ω1, q) <
0 (resp. k(1;α2,Ω2, q) > 0). This in turn implies that there
exists a (ᾱ, Ω̄) ∈ Γ such that k(1; ᾱ, Ω̄, q) = 0. Therefore,
(A(·; ᾱ, Ω̄, q), k(·; ᾱ, Ω̄, q)) is the desired solution of problem
(3.3a)–(3.3b) and (3.4a)–(3.4b). Now we give some details for this
step. First, the existence of (α1,Ω1) follows the same argument
as in Lemma 5.7. Next, to show the existence of (α2,Ω2), we
note that, since α ≤ α∗(= |Ω0|

1+γ ) for all (α,Ω) ∈ Γ and
|Ω0| < 1/2, we have q$(A(·;α,Ω, q)) ∈ [0, |Ω0|] on [0, 1]
(see Lemma 5.9). Using this fact and the argument of Lemma 5.8,
we can establish the existence of (α2,Ω2). Finally, from the fact
that A(·;α,Ω, q) ∈ [0, |Ω0|] on [0, 1] for each (α,Ω) ∈ Γ and
Ω0 → 0 as d→ (

λ0
j2m
)−, it follows that supr∈[0,1] A(r; ᾱ, Ω̄, q)→ 0

as d→ (
λ0
j2m
)−. This implies that, as d→ (

λ0
j2m
)−, the corresponding

m-armed spiral waves and the rotational frequency shrink to 0
and ω0, respectively. This completes the proof of the second part
of Theorem 4. In the next subsection, we will show the necessary
lemmas which are mentioned in the above plan.

5.5.2. Auxiliary lemmas
Throughout this subsection, we will retain the notations δ0, γ ,

α∗, and Ω0 defined in the previous section, Section 5.5.1. First, by
following a similar arguments as in Lemma 5.5 and using Eq. (5.5),
we have the following lemma.

Lemma 5.9. Let q > 0 and d ∈ (
λ0
j2m
− δ0,

λ0
j2m
). Then, for each

α ∈ (0, α∗], we have

0 < A(r;α,Ω, q) ≤ αrm(≤ |Ω0|),
0 < q$(A(r;α,Ω, q)) ≤ |Ω0|,

|k(r;α,Ω, q)| ≤
|Ω0|

d
· r

for all r ∈ (0,min{R1(α,Ω, q), 1}] andΩ ∈ [Ω0, 0].

The following lemma concerns the nonemptiness of the set A1,q.

Lemma 5.10. Let q > 0 and d ∈ (
λ0
j2m
− δ0,

λ0
j2m
). Then there is a

sufficiently small δ1 ∈ (0, δ0) such that, for each d ∈ (
λ0
j2m
− δ1,

λ0
j2m
),

we have that A(·;α∗,Ω, q) > 0 and A′(·;α∗,Ω, q) > 0 on (0, 1]
for allΩ ∈ [Ω0, 0].
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Proof. We will work in the frame of (P̃α∗,Ω,q). Indeed, let
(Ã(s;α∗,Ω), k̃(s;α∗,Ω)) be the solution of the problem (P̃α∗,Ω,q)
corresponding to (A(r;α∗,Ω, q), k(r;α∗,Ω, q)). Here, for sim-
plicity, we omit the dependence of (Ã(·;α∗,Ω), k̃(·;α∗,Ω)) on
the parameter q. Let [0, R̃α∗,Ω) be the maximal existence interval
of (Ã(·;α∗,Ω), k̃(·;α∗,Ω)). Note that

s :=

√
λ0

d
r and Ã(s;α∗,Ω) := A(r;α∗,Ω, q),

k̃(s;α∗,Ω) :=

√
d
λ0
k(r;α∗,Ω, q).

Hence we have Ã′(·;α∗,Ω) > 0 on (0,min{R̃1(α∗,Ω),
√
λ0
d }),

where R̃1(α∗,Ω) is the first positive zero of Ã(·;α∗,Ω) if it exists.

Also note that
√
λ0
d > jm, and R̃1(α∗,Ω) > jm by Lemma 5.1.

Note that Ã(·;α∗,Ω) cannot blow up before s =
√
λ0
d by virtue

of Lemma 5.9. Integrating (3.11) from 0 to s, we have that

sÃ′(s;α∗,Ω)Jm(s)− sÃ(s;α∗,Ω)J ′m(s)

=

∫ s

0
ξ Ã(ξ ;α∗,Ω)Jm(ξ)

×

(
λ0 − λ(Ã(ξ ;α∗,Ω))

λ0
+ k̃2(ξ ;α∗,Ω)

)
dξ (5.6)

holds for s ∈ [0, R̃α∗,Ω).
From the proof of Lemma 5.4, we see that Ã(s;α∗,Ω) > α∗ ·

(2m · m!)
√
( d
λ0
)mJm(s) for all s ∈ [0, R̃α∗,Ω) andΩ ∈ [Ω0, 0]. From

Lemma 5.9, we have that Ã(s;α∗,Ω) ≤ α∗
√
( d
λ0
)msm ≤ |Ω0| for

s ∈ [0,min{R̃1(α∗,Ω),
√
λ0
d }]. Using these facts and Eq. (5.6), we

can estimate Ã′(jm;α∗,Ω) as follows:

jm · Jm(jm)Ã′(jm;α∗,Ω)

≥

∫ jm

0
ξ Ã(ξ ;α∗,Ω)Jm(ξ) ·

(
λ0 − λ(Ã(ξ ;α∗,Ω))

λ0

)
dξ

≥

∫ jm

0

ξ Jm(ξ) inf
x∈[0,|Ω0|]

|λ′(x)|

λ0
· Ã2(ξ ;α∗,Ω)dξ

(the mean-value theorem, λ0 = λ(0), and λ(·) is decreasing)

> (α∗)2 ·

(
d
λ0

)m
· inf
x∈[0,|Ω0|]

|λ′(x)|

×

(
22m(m!)2

λ0
·

∫ jm

0
ξ J3m(ξ)dξ

)
:= I(α∗). (5.7)

Note that the quantity I(α∗) is independent ofΩ ∈ [Ω0, 0]. By the
definition ofΩ0 andα∗, there exists a sufficiently small δ1 ∈ (0, δ0)

such that, for each d ∈ ( λ0
j2m
− δ1,

λ0
j2m
), we have

√
λ0
d < jm,0 and

I(α∗) > α∗

√
λ0

d
max

ξ∈[jm,jm,0]
|J ′′m(ξ)| ·

∣∣∣∣∣
√
λ0

d
− jm

∣∣∣∣∣ . (5.8)

Now we claim that Ã′(·;α∗,Ω) > 0 on (0,
√
λ0
d ] for each d ∈

(
λ0
j2m
− δ1,

λ0
j2m
) and Ω ∈ [Ω0, 0]. For contradiction, we can assume

that R̃1(α∗,Ω) exists and lies in the interval (0,
√
λ0
d ) for some
d ∈ ( λ0
j2m
−δ1,

λ0
j2m
) andΩ ∈ [Ω0, 0]. Then, from Lemmas 5.1 and 5.9,

we have that R̃1(α∗,Ω) ∈ (jm,
√
λ0
d ) and Ã(R̃1(α

∗,Ω);α∗,Ω) ≤

α∗
√
( d
λ0
)msm for s ∈ [0, R̃1(α∗,Ω)]. Together with themean-value

theorem, the following holds:

|R̃1(α∗,Ω)Ã(R̃1(α∗,Ω);α∗,Ω)J ′m(R̃1(α
∗,Ω))|

≤

√
λ0

d
·

α∗√( d
λ0

)m
· R̃m1 (α

∗,Ω)

 |J ′m(R̃1(α∗,Ω))|
≤ α∗

√
λ0

d
max

ξ∈[jm,jm,0]
|J ′′m(ξ)| ·

∣∣∣∣∣
√
λ0

d
− jm

∣∣∣∣∣ ,
which, together with (5.8), yields

−R̃1(α∗,Ω)Ã(R̃1(α∗,Ω);α∗,Ω)J ′m(R̃1(α
∗,Ω))

− jm · Jm(jm)Ã′(jm;α∗,Ω) < 0.

On the other hand, since A′(R̃1(α∗,Ω);α∗,Ω) = J ′m(jm) = 0, it
follows from Eq. (5.6) that

−R̃1(α∗,Ω)Ã(R̃1(α∗,Ω);α∗,Ω)J ′m(R̃1(α
∗,Ω))

− jm · Jm(jm)Ã′(jm;α∗,Ω) =
∫ R̃1(α∗,Ω)

jm
ξ Ã(ξ ;α∗,Ω)Jm(ξ)

×

(
λ0 − λ(Ã(ξ ;α∗,Ω))

λ0
+ k̃2(ξ ;α∗,Ω)

)
dξ > 0.

This is a contradiction, and hence the assertion of the claim is
established. This completes the proof. �

Finally, the following lemma concerns the nonemptiness of the
set A2,q.

Lemma 5.11. Let q > 0 and d ∈ (
λ0
j2m,0
,
λ0
j2m
). Then there exists an

α∗ = α∗(d, q) > 0 such that R1(α,Ω, q) ∈ (0, 1) holds for each
α ∈ (0, α∗] andΩ ∈ [Ω0, 0].

Proof. Note that the assumption that d ∈ ( λ0
j2m,0
,
λ0
j2m
) implies that√

λ0
d ∈ (jm, jm,0). Then, by setting ĵm :=

√
λ0
d and using Lemma 5.9,

we can follow the argument of Lemma 5.6 to complete the proof.
Hence we omit the details of this proof. �

6. Numerical study of spiral waves

In this section, we will use the reaction kinetics (λ(A), ω(A)) =
(1− A2, 1+ qA2) to numerically study the spiral wave solutions of
(1.1)–(1.2). Note that λ0 = ω0 = 1 for this example, and that this
choice of reaction kinetics (λ, ω) is the same as that in [33,19].

6.1. The choice of reaction kinetics

We first discuss this choice of reaction kinetics (λ(A), ω(A)).
Consider the new variables, parameters, and functions

t̃ = λ0t, r̃ =
r
R
, θ̃ = θ, d̃ =

d
λ0R2

,
˜̂
Ω =

Ω̂

λ0
,

ũ(r̃, θ̃ , t̃) = u(r, θ, t), ṽ(r̃, θ̃ , t̃) = v(r, θ, t),

Ã(r̃) = A(r), k̃(r̃) = R · k(r),

λ̃(Ã) =
λ(A)
λ0

, $̃ (Ã) =
$(A)
λ0

, q̃ =
q
λ0
, ω̃0 =

ω0

λ0
.
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Substituting these rescaled variables, parameters, and func-
tions into problem (1.1)–(1.2) (resp. problem (3.3a)–(3.3b) and
(3.4a)–(3.4b)) and dropping the tildes, we get the same governing
equations as in (1.1)–(1.2) (resp. (3.3a)–(3.3b) and (3.4a)–(3.4b))
with R replaced by R = 1. Hence for the choice of the reaction ki-
netics (λ(A), ω(A)) = (1− A2, 1+ qA2), we can view the twist pa-
rameter q as the ratio of q to λ0. Similar explanations can be made
for the diffusivity d and the rotational frequency Ω̂ . Finally, with
the use of Eq. (1.1b) and the relation Ω̂ = ω0 − Ω , we can con-
clude from (3.3a) and (3.3b) that ω0 has only the ‘‘shift’’ effect on
the rotational frequency Ω̂ , and will not affect the qualitative de-
pendence of spiral waves on the other parameters.

6.2. Spiral wave solutions diagram

In this subsection,wewill focus on spiralwaves on the unit disk.

6.2.1. Numerical tools and continuation of spiral waves
If we are given a solution (A, k,Ω) of problem (3.3)–(3.4),

then we can track a branch of spiral wave solutions and
graphically depict the dependence of various properties of spiral
wave solutions on the parameters such as d or q by using the
continuation software AUTO which is implemented in XPPAUT by
Ermentrout [39]. As a ‘starting’’ m-armed spiral wave solution,
we employ the two-parameter shooting scheme discussed in the
previous section to look for a solution of problem (3.3)–(3.4) for
the given diffusivity d and the twist parameter q.

6.2.2. Numerical results
Fig. 5 shows spiral wave solutions diagram including the ampli-

tude (A(1) = supr∈[0,1] A(r)) and the rotational frequency (Ω̂) from
continuation on the diffusivity d for three fixed values of the twist
parameter q (q = 1, 4, 7). It indicates that, form = 1, 2, 3, a branch
of m-armed spiral waves on the unit disk emanates from (u, v) =
(0, 0)when d = dm := 1/j2m, which has been predicted by the sec-
ondpart of Theorem2.Moreover, the secondpart of Theorem2also
shows that as d→ ( 1

j2m
)−, the correspondingm-armed spiralwaves

on theunit diskwill shrink to 0 and their rotational frequency tends
to ω0 = 1 in the case of (λ(A), ω(A)) = (1 − A2, 1 + qA2), which
is consistent with the numerical results presented in Fig. 5. From
Fig. 5, we see that, as q increases, the amplitude (A(1)) decreases
and the rotational frequency (Ω̂) increases.
Fig. 5 also indicates that, for large twist parameter q (e.g., q =

4 or 7), as the diffusivity d decreases from dm to some small
critical diffusivity, it seems thatm-armed spiral waves on the unit
disk cease to exist. On the other hand, no matter how small the
diffusivity d is, we can use the first part of Theorem 2 to conclude
that there always exists a small twist parameter q for which there
is anm-armed spiral wave.
Now we give explanation on why branches of spiral waves

terminate at some small critical diffusivity in the continuation
procedures. To begin with, these small critical diffusivity are
labelled as MX points by XPPAUT. There are two possible reasons
for this. The first possible reason is that compared with the
magnitude of the diffusivity d (equivalently, the domain size is too
large), a large twist parameter q might prevent the existence of
m-armed spiral waves. The second possible reason is due to the
restriction of numerical computation. For this, we first observe that
from Lemma 5.2 one can see that, if the component A(·) of the
solution (A, k) to problem (3.3)–(3.4a) exceeds 1 at some point
r = r1, then A′(·) > 0 for all r > r1 such that (A, k) exists. This
implies that (A, k) cannot be a solution of problem (3.3)–(3.4), and
so spiral wave solutions cannot exist for this set of parameters q
and d. Now Fig. 5 and the left panels of Figs. 6 and 7 indicate that
for small twist parameter q (q = 0.3 and 1), as the diffusivity d
decreases from dm to some critical diffusivity d̂q,m, the amplitude
(A(1) = supr∈[0,1] A(r)) of the corresponding spiral wave increases
to some number which is very close to 1. Hence if we continue to
decrease the diffusivity d, the component A of the solution (A, k)
to problem (3.3)–(3.4a) via numerical computation may exceed 1
at some point r = r1 ∈ (0, 1), and so (A, k) cannot be a solution of
problem (3.3)–(3.4) by the previous remark.
Finally, for large twist parameter q (q ≥ 4) and small diffusivity

d, Fig. 5 indicates that, as the diffusivity d decreases from dm to
some critical diffusivity d̂q,m, the amplitude (A(1) = supr∈[0,1] A(r))
of the corresponding spiral wave will tend to some small number.
Specifically, the right panels of Figs. 6 and 7 indicate that the
solution (A, k) of problem (3.3)–(3.4) has the property that the
component A(·) is close to 0 and has a boundary layer near the
vicinity of r = 1, while the component k(·) is very large (compared
with A(·)). Hence we may conclude that for large twist parameter
q, termination of branches of spiral waves at some small critical
diffusivity is due to the restriction of numerical computation.
In the next subsection, we will use the perturbation method to

construct m-armed spiral waves for d � 1 and d/q � 1, which
formally verifies that termination of branches of spiral waves at
some small diffusivity in the continuation procedure is due to the
restriction of numerical computation.

6.3. Perturbation analysis

We now construct spiral waves by undertaking an asymptotic
analysis for both small q and large q. The method employed in this
subsection is motivated by those in [24,32,19].

6.3.1. Small twist parameter q and small diffusivity d
We first discuss the case where 0 < q � 1, 0 < d � 1, and

d/q � 1. To do this, we introduce the new variables, parameters,
and functions by

s =
r
√
d
, Ã(s) = A(r), k̃(s) =

√
dk(r), Ω̃ =

Ω

q
. (6.1)

Substituting these rescaled variables, parameters, and functions
into problem (3.3)–(3.4), we get the following equivalent boundary
value problem:

Ã′′ +
1
s
Ã′ + Ã

[
1− Ã2 −

m2

s2
− k̃2

]
= 0, (6.2a)

k̃′ +

(
1
s
+ 2
Ã′

Ã

)
k̃+ q(Ω̃ + Ã2) = 0, (6.2b)

and

Ã(0) = k̃(0) = 0, (6.3a)

Ã′(1/
√
d) = k̃(1/

√
d) = 0, (6.3b)

where the prime denotes d/ds.We remark that problem (6.2)–(6.3)
is identical to that in [19], butwith the condition (6.3b) replaced by
Ã(∞) = 1 and k̃(s) bounded as s→+∞.
Fig. 5 indicates that, for small twist parameter q, A(1) ≈ 1 as

d → 0+. Also, Figs. 6 and 7 suggest that the magnitude of k(·) is
an increasing function of q (see also Fig. 4 in [33]). Therefore we
substitute the expansions

Ã(s) = Ã0(s)+ qÃ1(s)+ q2Ã2(s)+ · · · ,

k̃(s) = qk̃0(s)+ q2k̃1(s)+ q3k̃2(s)+ · · ·
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into (6.2)–(6.3) and equate to zero the coefficient of q, which leads
to the consideration of the following problem:

Ã′′0 +
1
s
Ã′0 + Ã0

[
1− Ã20 −

m2

s2

]
= 0, (6.4a)

k̃′0 +

(
1
s
+ 2
Ã′0
Ã0

)
k̃0 + (Ω̃ + Ã20) = 0, (6.4b)

and

Ã0(s) ∼ αsm as s→ 0+, Ã′0(1/
√
d) = 0, (6.5a)
k̃0(0) = 0, k̃0(1/
√
d) = 0. (6.5b)

Here α is a positive number. It have been shown [24] that Eq. (6.4a)
with Ã0(0) = 0 admits a unique solution Am(s) such that

A′m(s) > 0 for all s > 0, Am(s)→ 1 as s→+∞.

Hence, for 0 < d� 1,Am(·) is an approximate solution of problem
(6.4a) and (6.5a).
Now we turn to problem (6.4b) and (6.5b) with Ã0 = Am. With

the use of a simple integration, the solution Km(·; Ω̃) of Eq. (6.4b)
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with Ã0 = Am and Km(0; Ω̃) = 0 is given by

Km(s; Ω̃) =
1

sA2m(s)

∫ s

0
tA2m(t)[−Ω̃ − A2m(t)]dt.

Using Greenberg’s result [24], we have

Am(s) = 1−
m2

2s2
+ · · · , for s� 1,

and so Km(·; −1) > 0 on (0,+∞) and Km(s;−1) → 0 as s →
+∞. Furthermore, from the expansion of Am(·) and the mono-
tonicity of Eq. (6.4b) on the parameter Ω̃ , we see that, for each fixed
d � 1, there exists a unique negative number Ω̃(d) ∈ (−1, 0)
such that Km(·; Ω̃(d)) > 0 on (0, 1/

√
d) and Km(1/

√
d; Ω̃(d)) =

0. This implies that Km(·; Ω̃(d)) solves problem (6.4b) and (6.5b).
Moreover, Ω̃(d) is an increasing function of d and Ω̃(d)→ −1 as
d→ 0+.
To summarize, for 0 < q � 1, 0 < d � 1, and d/q � 1, to

leading order the solution (A, k) of problem (3.3)–(3.4) is given by

A(r) = Am(r/
√
d)+ · · · ,

k(r) =
q
√
d
· Km(r/

√
d; Ω̃(d))+ · · · ,

Ω = qΩ̃(d).

6.3.2. Large twist parameter q and small diffusivity d
We now consider the other extreme case, where q � 1, 0 <

d � 1, and d/q � 1. To do this, we set Ω̄ = Ω/q. Inspired by
Hagan [19], we substitute the expansions

A(r) =
√
−Ω̄ ·

(
Â0(r)+

1
q
Â1(r)+

1
q2
Â2(r)+ · · ·

)
,

k(r) =
√
1+ Ω̄ ·

(
k̂0(r)+

1
q
Â1(r)+

1
q2
Â2(r)+ · · ·

)
,

Ω√
1+ Ω̄

= Ω̂0 +
1
q
Ω̂1 +

1
q2
Ω̂2 + · · · ,

into problem (3.3)–(3.4), and equate to zero the coefficient of 1/q,
we obtain

dÂ′′0 +
d
r
Â′0 + Â0

[
1−

dm2

r2
− dk̂20

]
= 0, (6.6a)

dk̂′0 +

(
d
r
+ 2d

Â′0
Â0

)
k̂0 + Ω̂0(1− Â20) = 0, (6.6b)

and

Â0(r) ∼ αrm as r → 0+, k̂0(0) = 0, (6.7a)

Â′0(1) = 0, k̂0(1) = 0. (6.7b)

Here α is a positive number. Unlike the case for small q, problem
(6.6)–(6.7) cannot be solved analytically, and hence we need to
resort to numerical computation. With the help of XPPAUT, we
have numerically computed that, as d→ 0+,

Ω̂0 ≈

{
−1.342 form = 1,
−3.007 form = 2,
−2.9147 form = 3.

We remark that, as d → 0+, the limiting problem of problem
(6.6)–(6.7) is similar to that in [19], but with the condition (6.7b)
replaced by Â0(∞) = 1 and k̂0(∞) = 1.
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Fig. 9. The amplitude A(1)(= supr∈[0,1] A(r)) of single-armed spiral waves on the
unit disk versus the diffusivity d for four fixed twist parameter values q (from the
top to the bottom curve, the q values are 0.3, 1, 2, and 4). The light blue solid line:
q = 0.3. The blue solid line: q = 1. The red solid line: q = 2. The green line: q = 4.
The single-armed spiral waves which correspond to the points between S−,∗ and
S+,∗ with ∗ = 2, 4, or lying on the left-hand side of the point S1 are stable, while
those corresponding to the points lying on the right-hand side of the point U∗ with
∗ = 1, 2, 4, are unstable. See Section 6.5 for more details. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version
of this article.)

6.4. The dependence of the rotational frequency Ω̂ on the domain
size R

In this subsection we would like to study the behavior of
m-armed spiral waves on large circular domains. To begin with,
we recall the scaling relation (3.2) and the relationship between
problem (3.1) and problem (3.3)–(3.4). Hence the construction
of m-armed spiral wave solutions of system (1.1)–(1.2) with
diffusivity d and radius R is reduced to problem (3.3)–(3.4) with
diffusivity d/R2.
Several plots of the numerically computed rotational frequency

Ω̂ versus the radius R of the circular domain are shown in Fig. 8.
They indicate several interesting phenomena. First, for small q (q =
0.3), it shows that an increase of the radius R results in the increase
of the rotational frequency Ω̂ . Furthermore, when the radius R is
above a critical value Rm,c1 , the rotational frequency seems to be
independent of the radius R. This seems to suggest that, if R is big-
ger than Rm,c1 , then the domain sizewill not affect the properties of
spiral waves. Next, there is another critical radius Rm,c0 =

√
d · j2m

which is given by Theorem 1 (with λ0 = 1). For the case d = 0.03,
we have Rm,c0 ≈ 0.3189 for m = 1, Rm,c0 ≈ 0.5290 for m = 2,
Rm,c0 ≈ 0.7277 for m = 3. When the radius R is below Rm,c0 ,
the corresponding medium no longer supports the formation of
m-armed spiralwaves. On the other hand, if the radius R is between
these two critical radii Rm,c0 and Rm,c1 , the corresponding rota-
tional frequency changes substantially. By contrast, excitable me-
dia exhibit an increase of the rotational frequency with decreasing
domain size (see [30,27]). However, there also exist critical radii in
excitable media whose properties are similar to that of Rm,c1 and
Rm,c0 (see [30,27]).
For large q (q ≥ 2), there are more critical radii involved. In

fact, the curves related to the single-armed and two-armed spiral
waves in Fig. 8 indicate that there is a small interval of R on which
the dependence of the rotational frequency Ω̂ on the radius R is
no longer monotonic. Finally, Fig. 8 also indicates that a large twist
parameter q (q ≥ 2)might prevent the existence ofm-armed spiral
waves, if the domain size is too large. This is a reflection of the
qualitative behavior seen in Fig. 5.
6.5. Stability of spiral waves

In this subsection, we numerically investigate the stability
of spiral wave solutions of (1.1)–(1.2) which are computed via
XPPAUT in Section 6.2. We employ the finite element method
which is implemented by the PDE Toolbox package ofMATLAB. For
all computations, the domain under study is the unit disk which
is divided into 541 triangles of equal size, and time step 1t =
0.005. For a possible stable spiral wave solution (ū, v̄), we use
(1.1ū, 1.1v̄) as the initial condition.
Before we go any further, we would like to make one remark.

Recall that spiralwaves bifurcate from the unstable uniform steady
state (0, 0) when the diffusivity d equals the critical diffusivity
1/j2m. Hence we might expect that spiral waves are unstable for
diffusivity d close to the critical diffusivity 1/j2m, which is confirmed
numerically. Also, from Section 6.2.2 (in particular, see the right
panels of Figs. 6 and 7),we see that, for large twist parameter q (q ≥
4) and small diffusivity d, the amplitude function A(·) associated
with spiral waves is close to 0, and hence the corresponding spiral
wave (u, v) is close to 0, which suggests that such a spiral wave is
unstable. This is also confirmed numerically.

6.5.1. Single-armed spiral waves
Numerical evidence suggests the following.
(i) For twist parameters q = 0.3 and q = 1, let ds (resp. du) be the
abscissa of the point S1 (resp. U1) in Fig. 9. Then the following
hold.
• If d ∈ (0, ds), then the corresponding single-armed spiral
wave solution of (1.1)–(1.2) is stable (Fig. 10).
• If d ∈ (du, 1/j21), then the corresponding single-armed spiral
wave solution of (1.1)–(1.2) is unstable.
• The interval (ds, du) is the fuzzy region for which the
stability of the corresponding single-armed spiral wave
solution of (1.1)–(1.2) is uncertain.

(ii) For twist parameters q = 2 and q = 4, let ∗ = 2 or 4, and
ds,±,∗ (resp. du,∗) be the abscissa of the point S±,∗ (resp. U∗) in
Fig. 9. Then the following hold.
• If d ∈ (0, ds,−,∗), then the corresponding single-armed
spiral wave solution of (1.1)–(1.2) is unstable.
• If d ∈ (ds,−,∗, ds,+,∗), then the corresponding single-armed
spiral wave solution of (1.1)–(1.2) is stable.
• If d ∈ (du,∗, 1/j21), then the corresponding single-armed
spiral wave solution of (1.1)–(1.2) is unstable.
• The interval (ds,+,∗, du,∗) is the fuzzy region for which the
stability of the corresponding single-armed spiral wave
solution of (1.1)–(1.2) is uncertain.

(iii) For twist parameters q = 6 and q = 7, all of the computed
single-armed spiral wave solutions of (1.1)–(1.2) are unstable.

Furthermore, those unstable waves loss stability and evolve into
chaotic or periodic patterns. Recall that single-armed spiral waves
on the whole plane are stable only for small twist parameter
q (see [19]). Hence these numerical evidences suggest some
differences between single-armed spiral waves on thewhole plane
and those on the finite disks. These numerical evidences also lead
to the following conjecture:
(i) For small twist parameter q (q = 0.3, 1), there exists a
dc ∈ (0, 1/j21) such that, if d ∈ (0, dc) (resp. d ∈ (dc, 1/j

2
1)),

then the corresponding single-armed spiral wave solution of
(1.1)–(1.2) is stable (resp. unstable). Note that this case has
been predicted by the formal bifurcation discussion in [33].

(ii) For twist parameter q of middle size (q = 2 and 4), there
exist two numbers 0 < ds,− < ds,+ < 1/j21 such that, if
d ∈ (ds,−, ds,+) (resp. d ∈ (0, ds,−)∪(ds,+, 1/j21)), then the cor-
responding single-armed spiral wave solution of (1.1)–(1.2) is
stable (resp. unstable).

(iii) For large twist parameter q (q = 7), all of the single-armed
spiral wave solutions of (1.1)–(1.2) are unstable.
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Fig. 11. Snapshots at the indicated times T = 5, 25 and 50 of the component u(x, y, t) for the solution (u, v) of system (1.1)–(1.2) on the unit disk with d = 0.006, q = 1,
λ(A) = 1 − A2 , and ω(A) = 1 + qA2 . The initial data is the two-armed spiral wave which is computed in Section 6.2. These figures suggest that loss of stability of a spiral
wave may result in chaotic patterns.
6.5.2. Multi-armed spiral waves
Numerical evidences show that all of the computed multi-

armed spiral waves are unstable. Furthermore, those unstable
waves loss stability and evolve into chaotic or periodic patterns
(Fig. 11).

7. Conclusion and discussion

Although spiral waves are commonly observed in various
chemical systems, the slime mould Dioctyostelium discoideum, and
cardiac fibrillation, their existence in model equations has been
proved only infrequently. Therefore, it is difficult to obtain a
criterion for the existence of the general system. On the other hand,
it is widely believed that λ–ω systems arise naturally near a Hopf
bifurcation. Furthermore, λ–ω systems are tractable analytically.
In this paper, we give a elegant criterion for the existence of

m-armed spiral wave solutions of λ–ω systems on a circular disk
with no-flux boundary condition. To beginwith, we note thatmost
of previous studies only consider the specific nonlinearities (λ, ω)
(see [24,32,33]). To avoid our analytical results relying on the
specific form of the nonlinearities (λ, ω), we give a general setting
for the reaction kinetics (λ, ω) (see assumptions H1–H2), but keep
the supercritical characteristicswhich are the common features for
the previous studies.With the help of the useful identity (3.11), we
show that m-armed spiral wave solutions of (1.1)–(1.2) can exist
only if

0 < d <
λ0

j2m
· R2.

On the other hand, for any given diffusivity d ∈ (0, λ0
j2m
·R2) (equiva-

lently, the domain size R is above the critical domain size
√
d
λ0
· jm),
if the twist parameter q is small, then (1.1)–(1.2) admits an m-
armed spiral wave solution, while for any given twist parameter
q > 0, if the diffusivity d is close to the critical diffusivity λ0

j2m
· R2

(equivalently, the domain size R is close to the critical domain
size

√
d
λ0
· jm), then we can find m-armed spiral wave solutions

of (1.1)–(1.2). We remark that for the existence of m-armed spiral
waves, numerical studies indicate that q (resp. d)may not be neces-
sarily small (resp. close to λ0

j2m
·R2). However, numerical studies sug-

gest that spiral waves associated with large twist parameters are
always unstable. Therefore, we obtain a relation between the dif-
fusivity d, the radius R of a circular domain, and the reaction kinetic
quantity λ0, whichmakes it possible to forecast whether the inter-
play between these quantities leads to the existence of m-armed
spiral wave solutions of (1.1)–(1.2). Note that we do not intend to
claim that the property of spiral wave solutions of (1.1)–(1.2) de-
pends only on these quantities d, R and λ0. It may be the case that
the qualitative properties (e.g., the shape) of a spiral wave depend
on the parameters d, R, and the reaction kinetics (λ, ω) in a more
complicated way. Nevertheless, the above criterion holds for this
generic λ–ω system which keeps the supercritical characteristics.
Numerical studies (see the right panel in Figs. 5 and 8) reveal

that, for small q and large domains, the rotational frequency of
spiral waves seems to be independent of the domain sizes. This
suggests that the properties of spiral waves on large circular
domains may be similar to those of spiral waves in the infinite
plane. On the other hand, for small circular domains, the domain
size has very strong influence on the rotational frequency of spiral
waves. From Fig. 8, this is very apparent for large q and/or multi-
armed spiral waves. Therefore, it is interesting to investigate how
the middle domain sizes affect the properties of spiral waves,
which we will leave as our future study.
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Although the stability of the constructed spiral waves is not
analyzed rigourously, we have used the finite element method to
numerically investigate the stability of these obtained spiral waves
which are computed in Section 6.2. The numerical results can be
summarized concisely as follows.

(i) Single-armed spiral wave case:
• for small twist parameter q (q = 0.3 and 1), the single-
armed spiral wave is stable for diffusivity d close to 0, and it
is unstable for diffusivity d close to the bifurcation diffusivity
(d = 1/j21);
• for twist parameter q of middle magnitude (q = 2 and 4),
the single-armed spiral wave is stable for diffusivity d in a
small interval which is away from the bifurcation diffusivity
(d = 1/j21), and it is unstable for d close to the bifurcation
diffusivity (d = 1/j21) and for d close to 0;
• for large twist parameter q (q = 5, 6, and 7), the single-
armed spiral wave is unstable.

(ii) Multiple-armed spiral waves are unstable.

According toHagan’s analysis (see [19]), single-armed spiral waves
in the infinite plane are stable only for small q, while multi-armed
spiral waves in the infinite plane are unstable for all q. Hence for
small q andmiddle size q, the stability of single-armed spiralwaves
in finite disks is different from that in the whole plane. We also
refer the readers to [33] for formal bifurcation discussion on the
stability of single-armed spiral waves.
Finally, we would like to discuss the relevance of our results

for general reaction–diffusion systems. To begin with, it is widely
accepted that λ–ω systems arise naturally only as center-manifold
reductions of Hopf bifurcations in reaction–diffusion systems,
and hence might not actually correspond to some specific type
of realistic models (see [21,19,20]). However, λ–ω systems are
actually special cases of a general class of physical models. To see
this, we set d = 1 and let λ0 = λ(0) be the controlled parameter
in system (1.1) for ease of comparison. We can do this without loss
of generality since system (1.1) enjoys a nice scaling property (see
Section3.1). Also recall thatω(·) = ω0+q$(·). Nowwe follow [40]
to set z = u+iv. Then system (1.1) can be transformed into a single
complex equation:

zt = ∇2z + (λ(|z|)+ iω(|z|)) z

= ∇
2z + (λ0 + iω0)z + (λ(|z|)− λ0 + iq$(|z|)) z. (7.1)

For the typical nonlinearity (λ(|z|), ω(|z|)) = (λ0−|z|2, ω0+q|z|2)
where$(|z|) = |z|2, system (7.1) becomes

zt = ∇2z + (λ0 + iω0)z − (1− iq)|z|2z,

which is a special case of the well-known cubic complex
Ginzburg–Landau equation (CGLE)

zt = (1+ ib)∇2z + (λ0 + iω0)z − (1+ ic)|z|2z, (7.2)

where the real parameters b and c are related to linear and
nonlinear dispersion, respectively (see [41]). Hence our results can
be applied to system (7.2) on the unit disk with b = 0 and no-
flux boundary condition. Roughly speaking, m-armed spiral wave
solutions of system (7.2) on the unit disk with b = 0 and no-flux
boundary condition exist only for λ0 > j2m, while system (7.2) on
the unit disk with b = 0 and no-flux boundary condition admits
physically observable single-armed spiral waves for either small c
and large λ0, or middle size c and suitably chosen λ0.
It is also believed [41] that the CGLE is aminimal realisticmodel,

which means that it cannot be further reduced. To include new
phenomena, it is necessary to generalize the CGLE, or extra factors
need to be incorporated into the CGLE. For example, the following
perturbed cubic CGLE

zt = (1+ ib)∇2z + (λ0 + iω0)z − (1+ ic)|z|2z + γ |z|4z, (7.3)
has been employed to discuss the destruction of Nozaki–Bekki
holes (see [41]). We can then see that system (7.1) with the
nonlinearity (λ(|z|), ω(|z|)) = (λ0 − |z|2 + γ |z|4, ω0 + q|z|2) is
a special case of system (7.3). This specific example and possible
generalizations of the CGLE suggest that our results can be applied
to a potential generalized class of CGLE which are physically
acceptable models.
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Appendix. The behavior of m-armed spiral waves when d is
close to λ0

j2m
·R2

In this appendix, we will show that as the diffusivity d
approaches the critical diffusivity λ0

j2m
· R2, the amplitude function

A(·) and the related quantityΩ ofm-armed spiral waves shrink to
0. Recall that the rotational frequency Ω̂ satisfies Ω̂ = ω0 − Ω
(see Eq. (1.1b)). By doing so, we obtain the asymptotical behavior
of m-armed spiral waves when d is close to λ0

j2m
· R2, even if the

uniqueness ofm-armed spiral waves does not hold.
To do this, with the discussion in Section 3, we assume that

R = 1 and consider the solution (A, k) of problem (3.3)–(3.4). To
specify the dependence of solutions of problem (3.3)–(3.4) on d and
Ω , we will write such solutions as (A(·; d,Ω), k(·; d,Ω)) in the
following proposition.

Proposition 3. Suppose that the functions λ(·) and ω(·) satisfy the
assumptions (H1)–(H2). Assume that (A(·; d,Ω), k(·; d,Ω)) is a
solution of problem (3.3)–(3.4) which satisfies that A(·; d,Ω) > 0
on (0, 1]. Then it holds that

sup
r∈[0,1]

A(r; d,Ω)→ 0 and Ω → 0 as d→
(
λ0

j2m

)−
.

Proof. We first establish the first assertion. To begin with, for
each n ∈ N, let (Ã(·; d,Ω), k̃(·; d,Ω)) be the solution of Eqs.
(3.9a)–(3.9b) corresponding to (A(·; d,Ω), k(·; d,Ω)). Recall that

s :=

√
λ0

d
r and Ã(s; d,Ω) := A(r; d,Ω),

k̃(s; d,Ω) :=

√
d
λ0
k(r; d,Ω).

Hencewe have that (Ã(s;α,Ω), k̃(s;α,Ω)) is defined on [0,
√
λ0
d ]

and Ã(·; d,Ω) ∈ (0, 1) on (0,
√
λ0
d ] by Proposition 2. Also note that√

λ0
d > jm. Hence, from Lemma 5.1, we have that Ã

′(·; d,Ω) > 0
on (0, jm]. Integrating (3.11) from 0 to s, we have that

sÃ′(s; d,Ω)Jm(s)− sÃ(s; d,Ω)J ′m(s)

=

∫ s

0
ξ Ã(ξ ; d,Ω)Jm(ξ)

×

(
λ0 − λ(Ã(ξ ; d,Ω))

λ0
+ k̃2(ξ ; d,Ω)

)
dξ

:= F [s; Ã(·; d,Ω), k̃(·; d,Ω)] (A.1)
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holds for s ∈ [0,
√
λ0
d ]. Since the integrand in the above integral

is positive, we have that the function F [s; Ã(·; d,Ω), k̃(·; d,Ω)] is

increasing on [0,
√
λ0
d ]. Evaluating (A.1) at s =

√
λ0
d , we obtain

F

[√
λ0

d
; Ã(·; d,Ω), k̃(·; d,Ω)

]

= −

√
λ0

d
Ã

(√
λ0

d
; d,Ω

)
J ′m

(√
λ0

d

)
.

Fix a sufficiently small δ0 ∈ (0,min{1/2, (jm,0 − jm)/2}) such

that
√
λ0
d ≤ 2jm for

√
λ0
d ∈ (jm − δ0, jm + δ0). Let Cm := 2jm ·

maxs∈[jm−1,jm+1] |J
′′
m(s)|. Then, for each

√
λ0
d ∈ (jm−δ0, jm+δ0), we

can conclude from the above equality that

0 ≤ F [s; Ã(·; d,Ω), k̃(·; d,Ω)]

≤ F

[√
λ0

d
; Ã(·; d,Ω), k̃(·; d,Ω)

]
(since F is increasing)

≤ −2jm

(
J ′m

(√
λ0

d

)
− J ′m(jm)

)
(
since Ã(·; d,Ω) ∈ [0, 1) on

[
0,

√
λ0

d

])

≤ Cm

(√
λ0

d
− jm

)
(by the mean-value theorem) (A.2)

holds for s ∈ [0,
√
λ0
d ].

We claim that Ã(jm; d,Ω) → 0 as
√
λ0
d → j+m . For contra-

diction, we assume that there is a ε0 > 0 and a sequence of so-
lutions {(Ã(·; dn,Ωn), k̃(·; dn,Ωn))} to problem (3.3a)–(3.3b) and

(3.4a)–(3.4b) such that
√
λ0
dn
→ j+m as n→ +∞, and Ã(jm; dn,Ωn)

≥ ε0 for all n ∈ N. Without loss of generality, we can also assume
that

√
λ0
dn
∈ (jm − δ0, jm + δ0) for each n ∈ N. From the fact that

F is increasing and Ã(·; dn,Ωn) ∈ [0, 1) on [0,
√
λ0
d ], we can use

Eq. (A.1) to estimate Ã(s; dn,Ωn) for all s ∈ [0, jm] and n ∈ N as
follows:

|sÃ′(s; dn,Ωn)Jm(s)|

≤ jm · max
ξ∈[0,jm]

J ′m(ξ)+ F [jm; Ã(·; dn,Ωn), k̃(·; dn,Ωn)].

Together with (A.2) and the definition of δ0, we have

|Ã′(s; dn,Ωn)| ≤
2

Jm(jm/2)
· max
ξ∈[0,jm]

J ′m(ξ)

+
2Cm

jm · Jm(jm/2)
·

∣∣∣∣∣
√
λ0

dn
− jm

∣∣∣∣∣
≤

2
Jm(jm/2)

· max
ξ∈[0,jm]

J ′m(ξ)+
2Cm

jm · Jm(jm/2)
· δ0

for all s ∈ [jm/2, jm] and n ∈ N. By the Arzelà–Ascoli theorem, we
can find a subsequence of {(Ã(·; dn,Ωn), k̃(·; dn,Ωn))}, which we
still denote by {(Ã(·; dn,Ωn), k̃(·; dn,Ωn))}, such that the sequence
Ã(ξ ; dn,Ωn)→ Ã(ξ)uniformly on [jm/2, jm] asn→+∞ for some
continuous function Ã(·) which is defined on [jm/2, jm] and satis-
fies that Ã(·) ∈ [0, 1] on [jm/2, jm] and Ã(jm) ≥ ε0. By using (A.1)
and (A.2) with (d,Ω) = (dn,Ωn) and taking the limit, we have∫ jm

jm/2
ξ Ã(ξ)Jm(ξ) ·

(
λ0 − λ(Ã(ξ))

λ0

)
dξ = 0,

which, together with the fact that λ(·) is decreasing, implies that
Ã(s) = 0 for s ∈ [jm/2, jm]. This is a contradiction, thus completing
the proof of the claim. With this claim and the fact that Ã(·; d,Ω)
is increasing on [0, jm], it follows that Ã(·; d,Ω)→ 0 uniformly on

[0, jm] as
√
λ0
d → j+m .

Now,with the help of (3.9a) and a straightforward computation,
one can check that the following equality holds:

Ã′(s; d,Ω) = Ã′(jm; d,Ω)+
m2 − 1
2

×

∫ s

jm

(
1
s2
+
1
ξ 2

)
Ã(ξ ; d,Ω)dξ

+
1
2

∫ s

jm

(
1+

ξ 2

s2

)
Ã(ξ ; d,Ω)

×

(
k̃2(ξ ; d,Ω)−

λ(Ã(ξ ; d,Ω))
λ0

)
dξ

= Ã′(jm; d,Ω)+
m2 − 1
2

∫ s

jm

(
1
s2
+
1
ξ 2

)
Ã(ξ ; d,Ω)dξ

−
1
2

∫ s

jm

(
1+

ξ 2

s2

)
Ã(ξ ; d,Ω)dξ

+
1
2

∫ s

jm

(
1+ ξ2

s2

)
ξ Jm(ξ)

· ξ Ã(ξ ; d,Ω)Jm(ξ)

×

(
λ0 − λ(Ã(ξ ; d,Ω))

λ0
+ k̃2(ξ ; d,Ω)

)
dξ . (A.3)

By using (A.1) with s = jm and (A.2), we have

0 < Ã′(jm; d,Ω) ≤
Cm

jm · Jm(jm)
·

(√
λ0

d
− jm

)
. (A.4)

With the use of (A.3)–(A.4) and the fact that Ã(·; d,Ω) ∈ (0, 1)

on (0,
√
λ0
d ], the following estimate on Ã

′(s; d,Ω) holds for s ∈

[jm,
√
λ0
d ]:

|Ã′(s; d,Ω)| ≤
(

Cm
jm · Jm(jm)

+m2
)
·

(√
λ0

d
− jm

)

+
F [s; Ã(·; d,Ω), k̃(·; d,Ω)]

min
ξ∈[jm,jm+1]

ξ Jm(ξ)

≤

 Cm
jm · Jm(jm)

+m2 +
Cm

min
ξ∈[jm,jm+1]

ξ Jm(ξ)


×

(√
λ0

d
− jm

)
(by (A.2)). (A.5)

Together with the mean-value theorem and the fact that

Ã(·; d,Ω)→ 0 uniformly on [0, jm] as
√
λ0
d → j+m , this yields that

Ã(·; d,Ω)→ 0 uniformly on [0,
√
λ0
d ] as

√
λ0
d → j+m .
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Now we turn to the second assertion. From the proof of
Lemma 5.3, we have

0 ≤
−Ω

q
=

∫ 1
0 sA

2(s)$(A(s))ds∫ 1
0 sA

2(s)ds
≤ sup
x∈[0, sup

r∈[0.1]
A(r;d,Ω)]

$(x).

This, together with the first assertion and the continuity of $(x)
at x = 0, shows the second assertion. This completes the proof of
this lemma. �
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