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Abstract. An infinite-dimensional linear programming formulated on L1

spaces, problem (P), is studied in this paper. A related optimization prob-
lem, general capacity problem (GCAP), is also mentioned in this paper. But
we find that the optimal solution does not exist in problem (P). Thus, we ap-
proach the optimal value for problem (P) via solving the problem (GCAP).
A proposed algorithm is shown that we solve a sequence of semi-infinite sub-
problems to approach the optimal value of problem (P). The error bound for
the difference between the optimal value for problem (P) and optimal value for
semi-infinite subproblem is also given in this paper. Finally, numerical exam-
ples are implemented and compared with discretization method to show our
computational efficiency.

1. Introduction. Let X and Y be compact subsets of some Euclidean spaces, and
let C(X) and C(Y ) denote the spaces of continuous real-valued functions on X and
Y , respectively. Let L1(X) denote the space of Lebesgue integrable functions on
X . We consider the following infinite-dimensional linear programming problem:

inf
h∈L1(X)

∫

X

f(x)h(x) dx

subject to

∫

X

ϕ(x, y)h(x) dx ≥ g(y), ∀y ∈ Y,

h(x) ≥ 0 a.e. on X,

(P):
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where f ∈ C(X), g ∈ C(Y ), ϕ ∈ C(X×Y ) are given functions. Let L+
1 (X) ⊆ L1(X)

be the set consisting all nonnegative functions almost everywhere on X . L+
1 (X) is

the closed convex cone of L1(X). The second constraint of problem (P) is sometimes
written as h ≥ 0 or h ∈ L+

1 (X).
A related optimization problem called a general capacity problem is formulated

as follows.

min
µ∈M(X)

∫

X

f(x) dµ(x)

subject to

∫

X

ϕ(x, y) dµ(x) ≥ g(y), ∀y ∈ Y,

µ ≥ 0,

(GCAP):

where M(X) denotes the space of signed regular Borel measures on X , and M+(X)
denotes the closed convex cone in M(X) consisting of nonnegative measures.

A dual form of (GCAP) is given by

max
ν∈M(Y )

∫

Y

g(y) dν(y)

subject to

∫

Y

ϕ(x, y) dν(y) ≤ f(x), ∀x ∈ X,

ν ≥ 0.

(DGCAP):

The capacity problem is the origin in electrostatics which studies in determining
the capacity of a conducting body. Anderson and Nash [1] (see also [2]) pointed
out the electrostatics capacity problem is related with potential theory. Some early
studies on the capacity problem can consult Choquet [3] and Fugled [8]. Yamasaki
[22] and Ohtsuka [15] recognized the capacity problem as a general linear program
problem. A related duality theory and characterization of the extreme points of
the feasible domain and the optimal solution can be found in Lai and Wu [13] and
references therein. Gabriel and Hernandez-Lerma [9] discussed the strong duality
of general capacity problem in metric spaces. In Lai and Wu [13] and Wu.etc [19],
authors developed some methods to solve the general capacity problem. We extend
problem (GCAP) to problem (P) as considering in L1 spaces. Some optimal control
problems can, in fact, be viewed as infinite-dimensional programming. See, for
example, Teo, Goh and Wong [16], Finlay, Gaitsgory and Lebedev [7], Wu and Teo
[18], Gerdts and Kunkel [10], Gong and Xiang [11], Dahleh and Pearson [4] and
Dahleh and Diaz-Bobillo [5]. Recently Vanderbei [17] investigated an optimization
problem for the best high-contrast apodization, this is an infinite-dimensional linear
programming problem in which the decision variable has a lower bound and an upper
bound.

In the next section, we will give a numerical approach to get the approximate
optimal solution for problem (P). Our approach is based on the method, which was
discussed in [13], to solve problem (GCAP). We find the optimal value for problem
(GCAP) to approximate the optimal value for problem (P). Now, we assume that
the following condition is satisfied throughout the paper.

Assumption 1. Problem (P) is bounded from below, and there exists a h0 ∈
L+

1 (X) such that
∫

X

ϕ(x, y)h0(x) dx > g(y), ∀y ∈ Y.
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Under Assumption 1, we can construct µ0 be a signed regular Borel measure on
X which satisfies

∫

h0(x) dx =
∫

dµ0. Theorem 2.1 in [13] provided that problems
(GCAP) and (DGCAP) are both feasible, and the strong duality holds for this
primal-dual pair, i.e., V (GCAP) = V (DGCAP), where V (GCAP) and V (DGCAP)
denote the optimal objective values of problems (GCAP) and (DGCAP).

2. Cutting plane algorithm. Since the optimal solution for the problem (P)
does not exist, we will approximate the optimal value of problem (P) via finding
the optimal value of problem (GCAP). Let us apply the cutting plane strategy for
solving problem (GCAP). At each cutting plane iterate, when the index space Y is
relaxed to its finite subset Yk := {yk

1 , yk
2 , . . . , yk

nk
} ⊂ Y , the resulting problem gives

a semi-infinite linear programming problem:

min
µ∈M(X)

∫

X

f(x) dµ(x)

subject to

∫

X

ϕ(x, y) dµ(x) ≥ g(y), ∀y ∈ Yk,

µ ≥ 0.

(SIP(Yk)):

From the theory of semi-infinite programming [12], there exists a discrete mea-
sure µk concentrated on xk

1 , xk
2 , . . . , xk

mk
, where mk ≤ nk, such that µk is optimal

for problem (SIP(Yk)). Note that a dual form of problem (SIP(Yk)) is given by

max
ν∈Rn

k

nk
∑

i=1

g(yk
i ) νi

subject to

nk
∑

i=1

ϕ(x, yk
i ) νi ≤ f(x), ∀x ∈ X,

ν ≥ 0,

(DSIP(Yk)):

where the strong duality holds for this primal-dual pair of semi-infinite programming
under Assumption 1.

Now the basic cutting plane algorithm is described as follows.

Algorithm 2.1. Basic cutting plane algorithm.

Step 1: Let ε > 0 be a sufficiently small number. Let Y1 = {y1
1, y

1
2 , . . . , y

1
n1
} be

a predefined finite subset of Y , where n1 = |Y1|. Let k = 1.
Step 2: Find the optimal solution µk ∈ M(X) of problem (SIP(Yk)) and the

corresponding solution νk = (νk
1 , νk

2 , . . . , νk
nk

) ∈ Rnk of problem (DSIP(Yk)),

where µk is a discrete measure concentrated on xk
1 , xk

2 , . . . , xk
mk

.
Step 3: Calculate

δ(µk) := min
y∈Y

{
∫

X

ϕ(x, y) dµk(x) − g(y)

}

,

and denote by ȳk the minimizing argument.
Step 4: If 0 > δ(µk) > −ε, then stop and output V (SIP(Yk)) as an approximate

optimal objective value of problem (P). If δ(µk) ≥ 0, then stop and output
V (SIP(Yk)) as the optimal value V (P).

Step 5: Set Yk+1 = Yk ∪ {ȳk} = {yk+1
1 , yk+1

2 , . . . , yk+1
nk+1}, nk+1 = nk + 1, and

go to Step 2 with k := k + 1.
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To establish the convergence of Algorithm 2.1, we need several lemmas, some of
which are from [13].

Lemma 2.1. Suppose that a solution sequence {µk} of SIP(Yk) generated by Al-
gorithm 2.1 is bounded, i.e., there exists an M > 0 such that ‖µk‖ ≤ M for all k,
where ‖ · ‖ denote the total variation norm on M(X). Then, there exists a subse-
quence of the sequence {µk} converging to an optimal solution of problem (GCAP).

Proof. See the proof of Theorem 5.1 of [13].

Remark 1. The boundedness assumption in Lemma 2.1 can be technically ensured,
as it is done in the beginning of Section 5 of [13]. More specifically, it is achieved by

considering a compact set Ỹ := Y ∪ {ỹ}, where ỹ is a real number we choose with

ỹ 6∈ Y, ϕ(x, ỹ) = −1, g(ỹ) = −M,

where M > 0 is chosen sufficiently large. According to this fact, we can imply that
‖µk‖ ≤ M .

Lemma 2.2. Let

δ(µk) := min
y∈Y

{
∫

X

ϕ(x, y) dµk(x) − g(y)

}

.

Then
δ(µk) → δ(µ∗) as k → ∞,

where µ∗ is an optimal solution of problem (GCAP).

Proof. Define

G(y, µ) :=

∫

X

ϕ(x, y) dµ(x) − g(y).

By Lemma 2.1, there exists a subsequence {µkl} ⊂ M(X) converging to µ∗. Let
ykl ∈ Y denote the optimizer for each µkl , i.e.,

G(ykl , µkl) ≤ G(y, µkl), ∀y ∈ Y.

Since Y is compact, we may assume that ykl → y∗ for some y∗ ∈ Y . Letting l → ∞
in the inequality above, we have

G(y∗, µ∗) ≤ G(y, µ∗), ∀y ∈ Y.

This, in turn, implies that

δ(µkl) = G(ykl , µkl) → G(y∗, µ∗) = min
y∈Y

G(y, µ∗) = δ(µ∗).

Lemma 2.3. Let µk be an optimal solution for problem (SIP(Yk)). If there exists
a µ̄ ∈ M+(X) satisfying

∫

X

ϕ(x, y) dµ̄(x) > 1, ∀y ∈ Y,

then
∣

∣V (GCAP ) − V
(

SIP(Yk)
)
∣

∣ ≤
∣

∣

∣

∣

δ(µk)

∫

X

f(x) dµ̄(x)

∣

∣

∣

∣

.

Proof. See the proof of Theorem 6.5 of [13], which is given for the case when δ(µk) <
0. Since µk is feasible for problem (GCAP) with V (GCAP)=V (SIP(Yk)), the result
follows readily.
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To continue, we need the following assumption.

Assumption 2. There exists an absolutely continuous measure (with respect to
the Lebesgue measure) µ̄ ∈ M+(X) satisfying

∫

X

ϕ(x, y) dµ̄(x) > 1, ∀y ∈ Y. (1)

Remark 2. µ̄ is found easily to achieve Assumption 2. Without loss of generality,
we assume that the set X+ := {x ∈ X |ϕ(x, y) > 0, for each y ∈ Y } be nonempty.
We define µ̄(x) as follows

µ̄(x) =

{

M̄ x ∈ X+,

0 elsewhere,

where M̄ is a sufficiently large real number such that M̄ × ϕ(x, y) > 1, for (x, y) ∈
X+ × Y . Then µ̄ ∈ M+(X) is an absolutely continuous measure which satisfies
Assumption 2.

Base on Assumption 2, we have the following result on the error bound for the
difference between the optimal value of problem (SIP(Yk)) and problem (P).

Theorem 2.4. Let µk be an optimal solution to problem (SIP(Yk)), and let As-
sumption 2 be satisfied. If δ(µk) < 0, then

∣

∣V (P ) − V
(

SIP(Yk)
)∣

∣ ≤
∣

∣

∣

∣

δ(µk)

∫

X

f(x) dµ̄(x)

∣

∣

∣

∣

.

Proof. For notational simplicity, we may, without loss of generality, take X to be a
compact interval. Let hk

l ∈ L1(X), for l > 0, be a step function defined by

hk
l (x) =







ak
i l on

[

xk
i − 1

2l
, xk

i +
1

2l

]

, i = 1, 2, . . . , mk,

0 elsewhere,

where ak
i = µk(xk

i ), i = 1, 2, . . . , mk, with necessary modifications if some xk
i s

happen to be end points of the interval, and l be a sufficiently large such that
⋂mk

i=1[x
k
i − 1

2l , x
k
i + 1

2l ] is empty. Let µk
l ∈ M(X) be the corresponding absolutely

continuous measure with the density function hk
l . Since, for any p ∈ C(X), we have

∫

X

p(x) dµk
l (x) =

∫

X

p(x)hk
l (x) dx

=

mk
∑

i=1

p(x̄k
i )

l
ak

i l, where x̄k
i ∈

[

xk
i − 1

2l
, xk

i +
1

2l

]

,

→
mk
∑

i=1

p(xk
i ) ak

i =

∫

X

p(x) dµk(x) as l → ∞.

Thus, µk
l is weak* convergent to µk when l → ∞.

Let µ̄k
l := µk

l −δ(µk)µ̄ and µ̄k := µk−δ(µk)µ̄, where µ̄ ∈ M+(X) is the absolutely
continuous measure which satisfies Assumption 2. Then, it holds that

∫

X

ϕ(x, y) dµ̄k(x) − g(y) =

∫

X

ϕ(x, y) dµk(x) − g(y) − δ(µk)

∫

X

ϕ(x, y) dµ̄(x)

> δ(µk) − δ(µk) = 0
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for all y ∈ Y , this shows that there exists a δ > 0 such that
∫

X

ϕ(x, y) dµ̄k(x) − g(y) ≥ δ.

Note that the left-hand side above is continuous in y and hence attains a positive
minimum.

On the other hand, since µ̄k
l is weak* convergent to µ̄k, it can be shown that

there exists a subsequence of the sequence {µ̄k
l }, denoted by the original sequence,

such that

max
y∈Y

∣

∣

∣

∣

∫

X

ϕ(x, y) dµ̄k
l −

∫

X

ϕ(x, y) dµ̄k

∣

∣

∣

∣

→ 0, as l → ∞. (2)

For each fixed l, there exists a yl, which minimizes the left-hand side. Furthermore,
since Y is compact, the sequence {yl} contains a subsequence converging to a point
y∗ ∈ Y . Again, the subsequence is denoted by the original sequence {yl}. Then, we
have

max
y∈Y

∣

∣

∣

∣

∫

X

ϕ(x, y) d(µ̄k
l − µ̄k)

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

X

ϕ(x, yl) d(µ̄k
l − µ̄k)

∣

∣

∣

∣

≤
∣

∣

∣

∣

∫

X

(

ϕ(x, yl) − ϕ(x, y∗)
)

dµ̄k
l

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

X

ϕ(x, y∗) d(µ̄k
l − µ̄k)

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

X

(

ϕ(x, y∗) − ϕ(x, yl)
)

dµ̄k

∣

∣

∣

∣

,

which implies (2).
Now we choose an ε such that δ ≥ ε > 0. For this ε, there exists a l∗ such that

if l ≥ l∗ then
∣

∣

∣

∣

∫

X

ϕ(x, y) dµ̄k
l (x) − g(y) −

(
∫

X

ϕ(x, y) dµ̄k(x) − g(y)

)
∣

∣

∣

∣

≤ ε, ∀y ∈ Y.

Thus, it follows that

0 ≤ δ − ε ≤
∫

X

ϕ(x, y) dµ̄k(x) − g(y) − ε ≤
∫

X

ϕ(x, y) dµ̄k
l (x) − g(y), ∀y ∈ Y.

Hence, for l ≥ l∗, µ̄k
l is feasible for problem (P) and we have

∫

X

f(x) dµk(x) = V
(

SIP(Yk)
)

≤ V (GCAP ) ≤ V (P ) ≤
∫

X

f(x) dµ̄k
l (x),

which implies

∣

∣V (P ) − V
(

SIP(Yk)
)∣

∣ ≤
∣

∣

∣

∣

∫

X

f(x) dµ̄k
l (x) −

∫

X

f(x) dµk(x)

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

X

f(x) dµk
l (x) − δ(µk)

∫

X

f(x) dµ̄(x) −
∫

X

f(x) dµk(x)

∣

∣

∣

∣

≤
∣

∣

∣

∣

∫

X

f(x) dµk
l (x) −

∫

X

f(x) dµk(x)

∣

∣

∣

∣

+

∣

∣

∣

∣

δ(µk)

∫

X

f(x) dµ̄(x)

∣

∣

∣

∣

→
∣

∣

∣

∣

δ(µk)

∫

X

f(x) dµ̄(x)

∣

∣

∣

∣

, as l → ∞.
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Theorem 2.5. Let µk be an optimal solution to problem (SIP(Yk)), and let As-
sumption 2 be satisfied. If δ(µk) ≥ 0, then V (P ) = V

(

SIP(Yk)
)

.

Proof. Similar to Theorem 1.

For each iterate k in Algorithm 2.1, we add a new constraint to problem (SIP(Yk))
to get new subproblem (SIP(Yk+1)). It means that the number of constraints is in-
creasing after one iteration in Algorithm 2.1. For efficiency, we keep the active con-
straints and drop the inactive constraint for each iterates. The modified algorithm
will reduce the dimension of problem. We modify the last step of Algorithm 2.1 as
follows.

Algorithm 2.2. Modified cutting plane algorithm.

Steps 1–4: Same as in Algorithm 2.1.
Step 5: Let

Ak = {yk
i ∈ Yk | νk

i > 0},
nk+1 = |Ak| + 1,

Yk+1 = Ak ∪ {ȳk} = {yk+1
1 , yk+1

2 , . . . , yk+1
nk+1

},

and go to Step 2 with k := k + 1.

Remark 3. In [13], it was proved that there exists a subsequence of {µk} converging
to an optimal solution of problem (GCAP) under an additional condition that
ȳk ∈ Ak+1 for all k.

3. Relaxed cutting plane method for solving SIP subproblem. In Step 2
of the proposed cutting plane algorithm, we need to solve a linear semi-infinite
programming problem given in the form:

max
ν∈Rn

n
∑

j=1

g(yj) νj

subject to

n
∑

j=1

ϕ(x, yj) νj ≤ f(x), ∀x ∈ X,

ν ≥ 0,

(DSIP):

or equivalently, in the form:

min
µ∈M(X)

∫

X

f(x) dµ(x)

subject to

∫

X

ϕ(x, yj) dµ(x) ≥ g(yj), j = 1, 2, . . . , n,

µ ≥ 0,

(SIP):

where yj ∈ Y , j = 1, 2, . . . , n, are given at each iterate. The iteration counter k is
suppressed for simplicity throughout this section. In the literature on semi-infinite
programming, the form given here as (DSIP) is usually regarded as in the primal
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form, where the decision variable is finite-dimensional and the number of inequality
constraints is infinite. Letting

b =











g(y1)
g(y2)

...
g(yn)











∈ Rn, a ∈ C(X), a(x) =











ϕ(x, y1)
ϕ(x, y2)

...
ϕ(x, yn)











∈ Rn,

we have the standard-form primal–dual pair:

max
ν∈Rn

bT ν

subject to a(x)T ν ≤ f(x), ∀x ∈ X,

ν ≥ 0,

(DSIP′):

and

min
µ∈M(X)

∫

X

f(x) dµ(x)

subject to

∫

X

a(x) dµ(x) ≥ b,

µ ≥ 0.

(SIP′):

In this section, we propose a method to solve this pair of semi-infinite programming.
There are various ways to solve semi-infinite programming problem, such as [14].
Here we use a powerful method, relaxed cutting plane method, to solve the semi-
infinite programming problem. In view of a review article [12], the so-called cutting
plane method or implicit exchange method is one of the key solution techniques.
This statement is valid not only for linear semi-infinite programming problem, but
also a good numerical technique for quadratic and convex programming problem
[6, 20]. Basically, this approach finds a sequence of optimal solutions of the corre-
sponding regular linear programs in a systematic way and shows that the sequence
converges to an optimal solution of (DSIP′). We briefly present here the relaxed
cutting plane method for the (DSIP′).

Algorithm 3.1. Relaxed cutting plane algorithm for (DSIP′).

Step 1: Let m = 1, choose a finite set {x1, x2, ..., xs} ⊂ X and δ be an arbitrary
small real number. Set X1 = {x1, x2, ..., xs} and s = |X1|.

Step 2: Solve problem (LP(Xm)), where LP(Xm) is a linear programming prob-
lem defined as follows:

max
ν∈Rn

bT ν

subject to a(xi)
T ν ≤ f(xi), for i = 1, ..., s + m − 1,

ν ≥ 0,

(LP(Xm)):

Let νm = {νm
1 , νm

2 , ..., νm
n } be an optimal solution.

Define φm(x) =
∑n

j=1 a(x)T νm − f(x).

Step 3: Find any xs+m ∈ X such that φm(xs+m) > δ. If such xs+m does not
exist, stop and output νm as the solution. Otherwise, set Xm+1 = Xm ∪
{xs+m}.

Step 4: Update m := m + 1, then go to step 2.
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Let (DLP(Xm)) be the dual problem of (LP(Xm)), and µm = (µm
1 , ..., µm

s+m−1)
T

be the optimal solution of (DLP(Xm)). We define a discrete measure µ̃m on X such
that

µ̃m(x) =

{

µm
i , if x = xi ∈ Xm;

0, if x 6∈ Xm.

Furthermore, let B′

m = {im1 , ..., imkm
} and Bm = {jm

1 , ..., jm
pm

} denote the index sets
defined by B′

m = {i|µ̃m(xi) > 0} and Bm = {j|νm
j > 0}, respectively. Recalling

the definition of φm(x), we define φm
j =

∑

i∈B′

m

aj(xi)µ
m(xi) − bj, for j = 1, ..., n.

Thus, we have the following convergence properties with respect to the sequence of
the solutions generated by the cutting plane algorithm.

Theorem 3.1. Given any δ > 0, assume in each iteration, that:

(A1) (LP(Xm)) has a bounded feasible domain;
(A2) (DLP(Xm)) is nondegenerate.

Moreover, there exists a δ̄ > 0 such that:

(A3) µ̃m(xi) ≥ δ̄, ∀i ∈ B′

m.
(A4) φm

j < −δ̄, ∀i 6∈ Bm.

(A5) MT
m has a square submatrix Dm with rank pm(= |Bm|) and | det(Dm)| > δ̄,

where Mm be a pm×km matrix with its jth row vector is (aj(tim

1
), ..., aj(tim

km

)),

for j ∈ Bm.

Then, the proposed scheme terminates in a finite number of iterations.

Proof. The proof follows from similar arguments as these given for Theorem 2.1
and 2.3 of [19], respectively.

4. Numerical examples. In this section, Algorithm 2.1 and Algorithm 2.2 are
used to solve two examples given below. In Step 2 of Algorithm 2.1 and Algorithm
2.2, we need to solve the semi-infinite programming subproblems (SIP(Yk)) and
(DSIP(Yk)) for problem (P). In the following numerical experiment, for efficiency,
we perform the relaxed cutting plane scheme, which stated in Section 3, to solve
(SIP(Yk)) and (DSIP(Yk)) simultaneously. For comparison, we have implemented
Algorithm 2.1, Algorithm 2.2 and the traditional discretization method. In dis-
cretization method, we discretize the set X into a finite subset XN = {x0, x1, · · · ,
xN} ⊂ X . Problem (P) becomes a linear semi-infinite programming problem (PN)
listed as follows:

min

N
∑

i=1

f(xi) zi∆xi

subject to

N
∑

i=1

ϕ(xi, y) zi∆xi ≥ g(y), ∀y ∈ Y,

zi ≥ 0 for i = 1, 2, ..., N.

(PN ):

Here ∆xi = xi−xi−1 and let zi = h(xi) for i = 1, 2, ..., N . After solving Problem
(PN), we consider the optimal solution h for problem (P) as a step function by
setting h(x) = zi, for x ∈ [xi−1, xi), i = 1, 2, ..., N . First, we consider the following
example:
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Example 1.

inf
h∈L1(X)

∫ 1

−1

h(x) dx

subject to

∫ 1

−1

((x − y)2 − 2)2 h(x) dx ≥ 1, ∀y ∈ Y = [−1, 1],

h(x) ≥ 0 a.e. on X = [−1, 1],

where X = Y = [−1, 1], f(x) = 1, ϕ(x, y) = ((x − y)2 − 2)2 and g(y) = 1. The
corresponding (GCAP) problem to Example 1 is given below:

min

∫ 1

−1

dµ(x)

subject to

∫ 1

−1

((x − y)2 − 2)2 dµ(x) ≥ 1, ∀y ∈ Y = [−1, 1],

µ ∈ M+([−1, 1]).

(GCAP 1):

From [1], we know that the optimal solution for (GCAP 1) is given by a three-point
measure µ(.) with µ(−1) = µ(1) = 1/9, and µ(0) = 2/9. The optimal objective
value is 4/9≈0.444444. Although there exists an optimal solution for (GCAP 1), but
we cannot find the optimal solution for Example 1. For instance, if we discretize X
into 1000 equal partitions, i.e. ∆xi = 1/500 for i = 1, 2, ..., 1000. We get 0.444221
be the optimal objective value and the optimal solution for problem (P1000) is (see
Figure 1)

h∗(x) =































56.4313 if x ∈ [−1,−0.998];

64.8334 if x ∈ [0, 0.010];

47.5400 if x ∈ [0.010, 0.012];

53.4519 if x ∈ [0.998, 1];

0 elsewhere.

Since
∫ 1

−1
dµ(x) =

∫ 1

−1
h(x)dx, the values of h(−1), h(0) and h(1) will go to

infinity as the norm of partition on X goes to 0. Hence our attention is to investigate
the infimum of the objective function value. Figure 2 shows the inequality constraint
∫ 1

−1 ((x − y)2 − 2)2 h∗(x) dx − 1, for y ∈ [0, 1]. The inequality constraint becomes
active at two points near ±0.7 as shown in Figure 2.

In this implementation, we also use the relaxed cutting plane method which
introduce in Section 3 to solve problem (PN ) when we apply discretization method.
In Algorithm 1 and Algorithm 2, we set ε = 10−4 as a terminating condition in
Step 4, and choose the initial points {y1

1, ..., y
1
n1
} ⊂ Y1 arbitrarily to start Algorithm

2.1 and Algorithm 2.2. We use MATLAB (version 7.0) which was installed on a
Pentium 4, 3.40 GHZ personal computer to implement these three algorithms. The
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Figure 1. Optimal so-
lution for P1000
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1
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2 −

2)
2 h* (x

)d
x−

1

Figure 2. Inequality
Constraint in P1000

numerical results obtained are listed in Table 1.

Y1 optval cpu iter δ(µk)
Discretizaion - 0.444221 25.9961 - -
Algorithm 1 {0.5}∗ 0.444221 3.7447 10 -6.8430e-5
Algorithm 2 {0.5} 0.444221 3.5868 10 -6.8430e-5

Algorithm 1 {−1/
√

2, 1/
√

2} 0.444444 1.2879 5 -1.4283e-7

Algorithm 2 {−1/
√

2, 1/
√

2} 0.444444 1.2055 5 -1.4283e-7
*: 0.5 is the initial point

Table 1: Numerical results for Example 1

Here optval means optimal value, iter denotes the iteration number in our
algorithms and cpu means the computer time spent. Notice that the value of δ(µk)
is not greater than 0, it says that we get an approximate optimal objective value
by applying Algorithm 2.1 and Algorithm 2.2. From Theorem 2.4, we can evaluate
the error bound between V (P) and V (SIP(Yk)) by setting a discrete measure µ̄ on
X = [−1, 1] defined by

µ̄(0) = 1 and µ̄(x) = 0 if x 6= 0.

Then µ̄ satisfies the Equation 1 in Assumption 2. So we have
∫

X
dµ̄(x) = 1 and

∣

∣V (P ) − V
(

SIP(Yk)
)∣

∣ ≤ | δ(µk) |. Observing the numerical results in Table 1, our
algorithms perform very well when compared with the traditional discretization
method. Also, we find that the results obtained are getting better when the initial
points chosen are close to the active points. We implement Example 2 for further
numerical experience.

Example 2.

inf
h∈L1(X)

∫ π/2

−π/2

h(x) dx

subject to

∫ π/2

−π/2

2 sin((x − y)2)h(x) dx ≥ 1, ∀y ∈ Y = [−π/2, π/2],

h(x) ≥ 0 a.e. on X = [−π/2, π/2],
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where X = Y = [−π/2, π/2], f(x) = 1, ϕ(x, y) = 2 sin((x − y)2) and g(y) = 1. The
same as result in Example 1, we cannot find the optimal solution (see Figure 3).
We implement Example 2 by discretization method with N = 1000, we obtain the
optimal objective value 1.412739 and approximate optimal solution is

h∗(x) =











































































































14.6972 if x ∈ [−1.0995,−1.0963];

38.8489 if x ∈ [−1.0963,−1.0921];

14.8452 if x ∈ [−1.0921,−1.0889];

10.6013 if x ∈ [−0.3173,−0.3151];

76.0138 if x ∈ [−0.3151,−0.3119];

69.8384 if x ∈ [−0.3119,−0.3087];

69.7603 if x ∈ [0.3110, 0.3142];

76.0692 if x ∈ [0.3142, 0.3174];

10.6235 if x ∈ [0.3174, 0.3206];

13.5457 if x ∈ [1.0889, 1.0921];

41.4194 if x ∈ [1.0995, 1.1027];

13.4259 if x ∈ [1.1027, 1.1059];

0 elsewhere,

From Figure 4, the inequality constraint
∫ π/2

−π/2
2 sin((x − y)2)h∗(x) dx − 1, for y ∈

[−π/2, π/2], becomes active near 0, ±0.9 and ±0.5π.
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Figure 3. Optimal so-
lution for P1000
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Figure 4. Inequality
Constraint in P1000

Finally, we list the numerical results obtained in Table 2. Since δ(µk) is negative,
we obtain an approximate value for Example 2. Defining a discrete measure µ̄ on
X = [−π/2, π/2] as follows:

µ̄(−π

2
) = µ̄(

π

2
) = 1 , µ̄(0) = 3 and µ̄(x) = 0 if x 6= ±π

2
, 0,

then we have
∫

X dµ̄(x) = 5 and from Theorem 2.4,
∣

∣V (P )−V
(

SIP(Yk)
)∣

∣ ≤ | 5δ(µk) |.
In Table 2, our algorithms also perform much better than discretization method.
Even though the difference of CPU time, which record in Table 1 and Table 2,
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between Algorithm 2.1 and Algorithm 2.2 is small, we believe that Algorithm 2.2
will be much efficiency when the set of active points is large.

Y1 optval cpu iter δ(µk)
Discretizaion - 1.412739 63.9204 - -
Algorithm 1 {±π/2} 1.412729 3.2798 7 -7.5753e-6
Algorithm 2 {±π/2} 1.412797 3.2339 7 -3.8378e-6
Algorithm 1 {±π/2,±0.9, 0} 1.412797 1.1998 1 -2.8189e-5
Algorithm 2 {±π/2,±0.9, 0} 1.412797 1.0792 1 -2.8189e-5

Table 2: Numerical results for Example 2

5. Conclusion. In this paper, we present two algorithms to solve the infinite-
dimensional linear programming in L1 spaces. This kind problem is related to the
general capacity problem. The value of optimal solution h∗(x) for the problem (P) is
unbounded for some x ∈ X , that is, the optimal solution does not exist for problem
(P), this is the main difference between problem (P) and problem (GCAP). As the
optimal solution does not exist, we construct a sequence of approximate solution to
approximate the optimal solution of problem (P). The numerical results obtained
also show that the optimal solution h∗(x) for problem (P) is not bounded. We have
good numerical results, which compare with traditional discretization method, listed
in Table 1 and Table 2.
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