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Abstract This paper presents a new approach for solving a class of complicated
nonlinear programming problems arises from optimal power flow with transient sta-
bility constraints (denoted by OTS) in power systems. By using a functional trans-
formation technology proposed in Chen et al. (IEEE Trans. Circuits Syst. I Fundam.
Theory Appl. 48:327–339, 2001), the OTS problem is transformed to a semi-infinite
programming (SIP). Then based on the KKT (Karush-Kuhn-Tucker) system of the re-
formulated SIP problem and the finite approximation technology, an iterative method
is presented, which develops Wu-Li-Qi-Zhou’ (Optim. Methods Softw. 20:629–643,
2005) method. In order to save the computing cost, some typical computing tech-
nologies, such as active set strategy, quasi-Newton method for the subproblems com-
ing from the finite approximation model, are addressed. The global convergence of
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the proposed algorithm is established. Numerical examples from power systems are
tested. The computing results show the efficiency of the new approach.

Keywords Optimal power flow (OPF) · Transient stability constraint (TSC) ·
Semi-infinite programming (SIP) · Quasi-Newton algorithm

1 Introduction

A practical electric power system can be described by a system of differential and
algebraic equations (DAE) as follows:

ẋ = F(x(t), y(t), z̄)

G(x(t), y(t), z̄) = 0 (1.1)

H(x(t), y(t), z̄) ≤ 0,

where t means time, vectors x(t) ∈ Rnx and y(t) ∈ Rny are state variables such as
power outputs of generators, voltage values and angles, while z̄ ∈ Rnz is control vari-
able such as transformer tap positions, phase shifter angle positions and shunt capac-
itor/reactors. Generally, z̄ is independent of t . The inequality in (1.1) includes some
line current limits, all variables limits and stability requirements of power systems;
F = (F1, . . . ,Fnx )

T : Rnx+ny+nz → Rnx , G = (G1, . . . ,Gny )
T : Rnx+ny+nz → Rny

and H = (H1, . . . ,Gm)T : Rnx+ny+nz → Rm are assumed continuously differen-
tiable.

The steady-state operation of power systems is independent to the time t and sat-
isfies ⎧

⎪⎪⎨

⎪⎪⎩

F(x, y, z) = 0,

G(x, y, z) = 0,

H(x, y, z) ≤ 0.

(1.2)

One of typical research problems in power systems is Optimal Power Flow (OPF).
An OPF problem finds the optimal operation with particular objective, such as the
minimizing the cost of generation, the maximal social profit, etc. We assume that
the control variable z̄ is unchanged during the operation process, then based on the
system description of (1.1) and the initial steady-state operation (1.2), general OPF
problems in power systems can be described as

min
(x̄,ȳ,z̄,x(t),y(t))

f (x̄, ȳ, z̄)

s.t. F 0(x̄, ȳ, z̄) = 0

G0(x̄, ȳ, z̄) = 0

H 0(x̄, ȳ, z̄) ≤ 0,

ẋ(t) = F(x(t), y(t), z̄), with x(0) = x̄

G(x(t), y(t), z̄) = 0,

H(x(t), y(t), z̄) ≤ 0, t ∈ [0, T ],

(1.3)

where (x̄, ȳ, z̄) ∈ Rnx × Rny × Rnz indicates the variable in the steady-state (or ini-
tial operation state), i.e., the corresponding state variable at t = 0; G0 and H 0 are
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the descriptions of the system and the operating constraint at the steady-state case,
respectively. The requirements of the system operation and stability are involved in
the inequalities of (1.3).

In power systems, when the system suffers some big disturbances, the structure of
the system will happen change. This means that the functions defined in DAE of (1.3)
(i.e., F,G,H ) have different versions. For that case, we need to consider the recovery
operation in the system, which indicates by the DAE with the inequality limit H in
the model. This is the transient stability analysis in power systems. Combining with
the OPF consideration, problem (1.3) is called OPF with transient stability constraints
(for abbreviation OTS) in power systems. Since the variable (x(t)T , y(t)T )T is con-
trolled (or coupled) by the initial operation point (x̄T , ȳT , z̄T )T , this implies that the
aim of (1.3) is to find (x̄T , ȳT , z̄T )T under the optimal and the stable operation re-
quirement during t ∈ [0, T ]. It can be seen that when the system is just considered
the steady-state operation condition (1.2), OTS is reduced to normal OPF problems,
which belongs to nonlinear optimization problems and is studied extensively from
theory to computing methods (see [12] and references therein).

The OTS research has been attracted many researchers and obtained plentiful re-
search results in literature, including power system engineers and nonlinear optimiza-
tion researchers, see [1, 3, 9, 12, 14] and references therein. On the one hand, an
OTS describes the practical operation and operating requirements; on the other hand,
OTS can analyze some disturbances happened in the system (see [1, 24]). From the
viewpoint of applications, the most concerned question for OTS problems is how to
design effective numerical methods for solving the problem. The ordinary used nu-
merical method for OTS is discretization approach (see [24] and references therein),
which discretizes the differential equations to algebraic equations and reduces (1.3)
to a nonlinear programming problem, then uses some numerical methods of non-
linear optimization problems to get the solution. The main difficult in discretization
approach is the high dimension problem due to the discretization variables, which
limits the practical application in power systems, especially for large numbers of dis-
turbances. Recently, a new method was presented in [1] where the OTS problem was
converted into semi-infinite programming (SIP) problems by using functional analy-
sis. The advantage of new method is that the variable dimension of the transformed
problem is equal to one of the steady-state, i.e., the dimension of (x̄T , ȳT , z̄T )T .

We note that by using the functional transformed method for solving the OTS
problems, the key work is the approach for solving the reformulated SIP problems.
Hence, our attention in this research is to design efficient numerical methods for OTS,
combing with the special structure of the reformulated SIP and the new approach in
SIP problems. Motivated by the recently works for SIP problems (see [6, 7, 17, 20,
21] and reference therein), especially for the recent Newton-type methods [11, 13, 16,
23], we develop the method proposed in [23] for solving the OTS problems. We first
reformulate the OTS problem to a SIP problem by using a similar way in [1]. Then the
KKT system of the reformulated SIP problem is addressed. By using a complemen-
tarity function, the KKT system of the reformulated SIP problem is further converted
to semismooth equations (see [15]). Based on the system of semismooth equations,
we extend the method of [23] to the KKT system of the reformulated problem. Some
special strategies for saving the computing cost are discussed, and the global conver-
gence of the algorithm is analyzed. A global quasi-Newton method is presented to



498 X. Tong et al.

solve the subproblem occurred in the iterative approach. Numerical examples from
power systems are tested the new method.

The rest of this paper is organized as follows. Section 2 reformulates the OTS
problem to a SIP problem and considers its correlative computations. In Sect. 3, an
iterative method is presented for solving the reformulated SIP problem, and the con-
vergence is addressed. In Sect. 4, a quasi-Newton approach is discussed for subprob-
lems occurred in the iterations. Two types of OTS problems in power systems are
tested in Sect. 5. Some comments are drawn in the last section.

Some notation are used in this paper. For a smooth (continuously differentiable)
function � : Rn → Rm, we denote the Jacobian of � at x ∈ Rn by �′(x), which is an
m × n matrix. We denote the transposed Jacobian of � by ∇�(x). Moreover, for a
smooth function F(x, y) : Rnx+ny → Rn, Fx and Fy mean the partial derivative of F

with respect to x and y, respectively. For a nonsmooth function G(x), ∂G(x) means
the generalized Jacobian of G at x in the sense of Clarke [2]. The Euclidean norm is
denoted by ‖ · ‖.

2 Reformulation of OTS problems

In this section, we transform OTS to a SIP problem via a similar technology pro-
posed in [1], some related problems such as the derivative of functions, the stability
constraints, are also discussed.

2.1 Reformulated SIP problem

We first make the following assumption.

Assumption 2.1 For any points (x(t)T , y(t)T )T satisfying G(x(t), y(t), z̄) = 0,
H(x(t), y(t), z̄) ≤ 0, it holds that det(Gy(x(t), y(t), z̄)) �= 0 for t ∈ [0, T ], where
Gy = ∂G/∂y.

Assumption 2.1 is a typical one in DAE problems, which can realize the trans-
formation of the DAE problem to a differential equation. In the stability analysis of
power systems, except for the singularity bifurcation study, this assumption is a com-
mon one and the system satisfies it for the most cases [1, 8]. Under above assumption,
from G(x(t), y(t), z̄) = 0 and the implicit function theorem, it exists an unique C1

mapping q for each t ∈ [0, T ]
y(t) = q(x(t), z̄), t ∈ [0, T ] (2.1)

in the neighborhoods of (x(t)T , z̄T )T satisfying G(x(t), q(x(t), z̄), z̄) = 0. Then the
constraints dependent on the time t in (1.3) are changed equivalently to the follows:

ẋ = F(x(t), q(x(t), z̄), z̄), (2.2)

H(x(t), q(x(t), z̄), z̄) ≤ 0 (2.3)
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with x(0) = x̄ at t = 0. Furthermore, the differential equations can be handled by an
integral approach. Let φt (x̄, z̄) denote the trajectory of x(t). Then, (2.2) implies

x(t) ≡ φt (x̄, z̄) = x̄ +
∫ t

0
F(φt (x̄, z̄), q(φt (x̄, z̄), z̄), z̄)dt. (2.4)

Finally, the OTS problem (1.3) is transformed to the following type of nonlinear
programming problem:

min
(x̄,ȳ,z̄)

f (x̄, ȳ, z̄) ≡ f̄ (x̄, ȳ)

s.t. F 0(x̄, ȳ, z̄) = 0

G0(x̄, ȳ, z̄) = 0

H 0(x̄, ȳ, z̄) ≤ 0,

H(φt (x̄, z̄), q(φt (x̄, z̄), z̄), z̄) ≤ 0, t ∈ [0, t̄].

(2.5)

The remarkable advantage of this equivalent model (2.5) is that it has the same
variables (x̄T , ȳT , z̄T )T as ordinary OPF problems with steady-state stable con-
straints. Since the second inequality constraint in (2.5) includes time t ∈ [0, T ], this
is a typical semi-infinite programming (SIP) problem. Furthermore, this methodology
can handle multi-disturbances where H in (2.5) is denoted by Hk(·) (k = 1, . . . , l)

with l time disturbances in power systems.

2.2 Jacobian computation

In this subsection, we consider the Jacobian computation of function H in (2.5),
which will be used in the proposed algorithm. We have the following conclusion.

Proposition 2.1 Suppose that Assumption 2.1 holds. The Jacobian of function H has
the following computing formulas:

∂H

∂x̄
= [Hx − Hy(Gy)

−1Gx

]∂φt

∂x̄
, (2.6)

∂H

∂z̄
= [Hx − Hy(Gy)

−1Gx

]∂φt

∂z̄
− Hy(Gy)

−1Gz̄ + Hz̄, (2.7)

where Hx indicates ∂H
∂x

, i.e., the derivative of H with respect to x. Other notations

have the same meaning; ∂φt

∂x̄
and ∂φt

∂z̄
satisfy

⎧
⎨

⎩

d
dt

(
∂φt

∂x̄
) = [Fx − Fy(Gy)

−1Gx] ∂φt

∂x̄

(
∂φt

∂x̄
)|t=0 = I

(2.8)

⎧
⎨

⎩

d
dt

(
∂φt

∂z̄
) = [Fx − Fy(Gy)

−1Gx] ∂φt

∂z̄
− Fy(Gy)

−1Gz̄ + Fz̄

(
∂φt

∂z̄
)|t=0 = 0

(2.9)

with I ∈ Rnx×nx to be the identical matrix.
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Proof Since y(t) = q(x(t), z̄) satisfies G(x(t), y(t), z̄) = 0, it holds
{

Gx + Gy
∂q
∂x

= 0,

Gz̄ + Gy
∂q
∂z̄

= 0.
(2.10)

Then from the related variables of H and the derivative computation, we derive that

∂H

∂x̄
= Hx

∂φt

∂x̄
+ Hy

∂q

∂x

∂φt

∂x̄
= [Hx − Hy(Gy)

−1Gx

]∂φt

∂x̄
, (2.11)

where the second equality is due to the result in (2.10).
Similar to the derivation above, we also have

∂H

∂z̄
= Hx

∂φt

∂z̄
+ Hy

(
∂q

∂x

∂φt

∂z̄
+ ∂q

∂z̄

)

+ Hz̄

= [Hx − Hy(Gy)
−1Gx

]∂φt

∂z̄
− Hy(Gy)

−1Gz̄ + Hz̄, (2.12)

where the second equality comes from (2.10). This proves the result (2.6)–(2.7).
Equations (2.6)–(2.7) shows that the Jacobian of H with respect to (x̄, z̄) can

be obtained via the computation of ∂φt

∂x̄
and ∂φt

∂z̄
. To this end, we make the further

derivations.
We compute the derivative of (2.4) with respective to x̄ and obtain that

∂φt

∂x̄
= I +

∫ t

0

[

Fx

∂φt

∂x̄
+ Fy

∂q

∂x

∂φt

∂x̄

]

dt

= I +
∫ t

0

[
Fx − Fy(Gy)

−1Gx

]∂φk
t

∂x̄
dt, (2.13)

where the second equality comes from (2.10). Then (2.8) follows by computing the
derivative of (2.13) with respective to t .

By using the same way to the system (2.4) with respective to x̄, it is not difficult
to get

∂φt

∂z̄
=
∫ t

0

[

(Fx − FyG
−1
y Gx)

∂φt

∂z̄
− FyG

−1
y Gz̄ + Fz̄

]

dt.

From above expression, we can derive the expression (2.9) by calculating the deriva-
tive of ∂φt

∂z̄
with respect to t . We prove the conclusion. �

Proposition 2.1 presents the Jacobian computing formula of the constraint func-
tion H by solving the first ordinary differential equations.

3 Iterative algorithm

This section will develop the iteration method of [23] to the reformulated SIP prob-
lem (2.5). The optimal condition is studied, and a new algorithm is constructed. The
convergence of the algorithm is also investigated.
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3.1 Optimal conditions of the reformulated SIP problem

Denote n = nx + ny + nz, w = (x̄T , ȳT , z̄T )T and h = (h1, . . . , hm)T with

hi(w, t) ≡ Hi(φt (x̄, z̄), q(φt (x̄, z̄), z̄), z̄), (i = 1, . . . ,m), t ∈ [0, T ]. (3.1)

Let w∗ ≡ ((x̄∗)T , (ȳ∗)T , (z̄∗)T )T be a solution of the reformulated SIP prob-
lem (2.5). Under some constrained qualification conditions, for each i = 1, . . . ,m,
there exists a nonnegative integer pi ≤ n, multipliers λ∗ ∈ Rnx , μ∗ ∈ Rny , γ ∗ ∈ Rm0 ,
(u

j
i )

∗ and attainers (t
j
i )∗ for i = 1, . . . ,m; j = 1, . . . , pi satisfying the following so-

called KKT system of (2.5) (see [6, 23])

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇f (w∗) +∑nx

i=1 λ∗
i ∇F 0

i (w∗) +∑ny

i=1 μ∗
i ∇G0

i (w
∗) +∑m0

i=1 γ ∗
i ∇H 0

i (w∗)

+∑m
i=1(

∑pi

j=1(u
j
i )

∗∇hi(w
∗, (tji )∗)) = 0,

F 0(w∗) = 0,

G0(w∗) = 0,

γ ∗
i ≥ 0, H 0

i (w∗) ≤ 0, γ ∗
i H 0

i (w∗) = 0, i = 1, . . . ,m0,

(u
j
i )

∗ > 0, hi(w
∗, (tji )∗) = 0, i = 1, . . . ,m, j = 1, . . . , pi,

hi(w
∗, t) ≤ 0, i = 1, . . . ,m, t ∈ [0, T ].

(3.2)

It is well-known that under some second order sufficient conditions at w∗, the point
w∗ satisfying (3.2) is a solution of the reformulated SIP problem (2.5) (see Theo-
rem 3.3 in [19] and Theorem 4.1 in [18]).

3.2 Iterative approach

Our objective is to find the solution of (3.2). Based on the KKT system of SIP, some
Newton-type methods are presented (see [11, 13, 16, 23]). In our recent work [22],
we presented a smoothing quasi-Newton algorithm for the reformulated SIP problem.
However, the feasibility of infinite constraints did not take into account in [22]. More-
over, it exists the difficulty to decide pi in (3.2). Whereas [23] handled the infinite
constraints better for a simple SIP problem, and pi did not give for the algorithm. Mo-
tivated by the work of [23], this subsection will present a new algorithm for solving
the reformulated SIP problem. We main state the algorithm, the detailed description
for the algorithm is referred to [23].

Let �k be a finite subset of � = [0, T ]. We make an approximate nonlinear pro-
gramming problem of (2.5) as follows:

min
(x̄,ȳ,z̄)

f (x̄, ȳ, z̄), z̄) ≡ f̄ (x̄, ȳ)

s.t. F 0(x̄, ȳ, z̄) = 0

G0(x̄, ȳ, z̄) = 0

H 0(x̄, ȳ, z̄) ≤ 0,

h(x̄, ȳ, z̄, ti) ≤ 0, ti ∈ �k,

(3.3)
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where h is defined in (3.1). Then we have an approximate system of (3.2) according
to problem (3.3) as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇f (w) +∑nx

i=1 λi∇F 0
i (w) +∑ny

i=1 μi∇G0
i (w) +∑m0

i=1 γi∇H 0
i (w)

+∑m
i=1(

∑

t
j
i ∈�k

u
j
i ∇hi(w, t

j
i )) = 0,

F 0(w) = 0,

G0(w) = 0,

γi ≥ 0, H 0
i (w) ≤ 0, γiH

0
i (w) = 0, i = 1, . . . ,m0,

u
j
i ≥ 0, hi(w, t

j
i ) ≤ 0, u

j
i hi(w, t

j
i ) = 0, i = 1, . . . ,m, t

j
i ∈ �k.

(3.4)

We call (3.4) the subproblem for solving (2.5). Denote the solution of (3.4) as

vk ≡ ((wk)T , (λk)T , (μk)T , (γ k)T , (uk)T
)T ∈ Rn+nx+ny+m0+mmk

with mk = |�k|. It is easy to see that: (i) since the system (3.4) is the KKT system of
nonlinear programming problems with finite constraints, there exist many effective
methods for solving it; (ii) if wk is feasible, i.e., h(wk, t) ≤ 0, ∀t ∈ � = [0, T ], then
vk is a KKT point of (2.5).

Based on the observation, our aim is to design some iterative methods for the
finite KKT system (3.4) and obtain the solution of the KKT system (3.2) with infinite
constraints. Combining with our observation and objective, two computation related
problems will be considered:

• The number of �k is large for a better approximation of �, especially for the large
k, which will result the computing difficult for solving the subproblem (3.4) due to
the large inequality constraints;

• To check the feasibility of wk is equivalent to test whether the following holds for
each i ∈ {1, . . . ,m}

max
t∈�

hi(w
k, t) ≤ 0. (3.5)

This will be done by finding a global solution of maxt∈� hi(w
k, t) and is not an

easy work.

In order to overcome the computing difficulties, two computation technologies
are adopted in our iterative method. One is the active set method; other is the ap-
proximate solved method for test the feasibility of wk . The algorithm is stated as
follows.

Algorithm 3.1 (The iterative Algorithm)

Step 0. Given a prescribed number δ0 > 0 and ε ∈ (0,1). Given the finite subset
�0 = {t0

1 , . . . , t0
p0

} ⊂ � such that for all i ∈ {1, . . . ,m}, {w ∈ Rn : hi(w, t) ≤ 0,∀t ∈
�0} �= ∅. Let k := 0.
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Step 1. Solve the KKT system (3.4) to get vk,0 ≡ ((wk,0)T , (λk,0)T , (μk,0)T , (γ k,0)T ,

(uk,0)T )T . Stop if hi(w
k,0, t) ≤ 0 for all t ∈ � = [0, T ] and i = 1, . . . ,m. Let l := 1,

go to Step 3.
Step 2. Solve the KKT system (3.4) to get vk,l ≡ ((wk,l)T , (λk,l)T , (μk,l)T , (γ k,l)T ,

(uk,l)T )T . Stop if hi(w
k,l, t) ≤ 0 for all t ∈ � = [0, T ] and i = 1, . . . ,m. Set

vk = vk,l .
Step 3. Find a tkpk+l ∈ � such that for some i ∈ {1, . . . ,m}, it has hi(w

k,l, tkpk+l) > δk .

Then let �k := �k ∪ {tkpk+l} and set l := l + 1, go to Step 2. If there does not exist

such tkpk+l ∈ � satisfying hi(w
k,l, tkpk+l ) > δk for all i = 1, . . . ,m, then let vk = vk,l

and go to Step 4.
Step 4. Set k := k + 1. Let Ek−1 = {t ∈ �k|hi(w

k−1,l , t) = 0, i ∈ {1, . . . ,m}} =
{tk1 , . . . , tkpk

} and δk = εδk−1, l := 1, and go to Step 5.

Step 5. Find a tkpk+l ∈ � such that hi(w
k,l, tkpk+l ) > δk for some i ∈ {1, . . . ,m} and

let �k = Ek−1 ∪ {tkpk+l}. Set l := l + 1, go to Step 2.

Step 6. If there do not exist i and tkpk+l ∈ � such that hi(w
k,l, tkpk+l ) > δk , then let

δk := εδk , go to Step 5.

We give some explanations for Algorithm 3.1.

(i) The finite set �k is an approximate set of the infinite set �; The constant ε is
the descend scale of δk ;

(ii) Ek defined in Algorithm 3.1 indicates active set at k-th iteration, which begins to
work on the case hi(w

k, t) ≤ δk for all t ∈ � and i ∈ {1, . . . ,m}. This technology
is to decrease the number of approximate set �k ;

(iii) The number δk is a key scale in the algorithm. On the one hand, it is used to set
new approximate set �k if there exists tk and i such that hi(w

k, tk) ≥ δk (see
Step 2); on the other hand, it is an index to decide whether the active set Ek

works or not;
(iv) The test of feasibility, i.e., test maxt∈� hi(w

k, t) ≤ 0 for all i = 1, . . . ,m, is
replaced by finding tk such that hi(w

k, tk) ≥ δk for some i.

In order to prove the global convergence of Algorithm 3.1, we need to introduce
some measures for discrete sets. Let �k = {t̄ k0 , t̄ k1 , . . . , t̄ k

p∗
k
} and �∗ = {t∗1 , t∗2 , . . . , t∗p}.

Here �∗ is the index satisfying the KKT system (3.2). Define the discrete measure
σ ∗ and σk with finite support as

σ ∗(t) =
{

u∗
i , if t = t∗i , i = 1,2, . . . , p

0, if t /∈ �∗,

σk(t) =
{

uk
i , if t = t̄ ki , i = 0,1, . . . , p∗

k

0, if t /∈ �k .
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Then the KKT systems (3.2) and (3.4) can be written as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇f (w∗) +∑nx

i=1 λ∗
i ∇F 0

i (w∗) +∑ny

i=1 μ∗
i ∇G0

i (w
∗) +∑m0

i=1 γ ∗
i ∇H 0

i (w∗)
+∑m

i=1

∫ ∇hi(w
∗, t)dσ ∗ = 0,

F 0(w∗) = 0,

G0(w∗) = 0,

γ ∗
i ≥ 0, H 0

i (w∗) ≤ 0, γ ∗
i H 0

i (w∗) = 0, i = 1, . . . ,m0,
∫

hi(w
∗, t)dσ ∗ = 0, i = 1,2, . . . ,m,

h(w∗, t) ≤ 0, t ∈ � = [0, T ].

(3.6)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇f (w) +∑nx

i=1 λi∇F 0
i (w) +∑ny

i=1 μi∇G0
i (w) +∑m0

i=1 γi∇H 0
i (w)

+∑m
i=1

∫ ∇hi(w, t)dσk = 0,

F 0(w) = 0,

G0(w) = 0,

γi ≥ 0, H 0
i (w) ≤ 0, γiH

0
i (w) = 0, i = 1, . . . ,m0,

∫
hi(w, t)dσk = 0, i = 1, . . . ,m,

h(w, t) ≤ 0, t ∈ �k.

(3.7)

The global convergence of Algorithm 3.1 is stated as follows.

Theorem 3.1 Let {vk} = {((wk)T , (λk)T , (μk)T , (γ k)T , (uk)T )}. Suppose that the
infinite sequence {vk} generated by Algorithm 3.1 is bounded. Then there exists a
subsequence of {vk} converging to the KKT point of (2.5).

Proof (i) First we prove that at each iteration k with given δk > 0, the cycling between
Step 2 and Step 3 is finite under the condition of the theorem. Let the interior cycling
index be l. Suppose that the interior iteration between Step 2 and Step 3 is infinite.

Let wk,nl → wk,∗ as l → ∞. We claim that for all i = 1, . . . ,m and l, it holds

hi(w
k,∗, tknl

) ≤ 0. (3.8)

Otherwise, there exist at least one i and a positive integer N such that hi(w
k,∗, tknN

) >

0. Therefore, there is a positive N̄ > N large enough such that for such i it holds
hi(w

k,nN̄ , tknN
) > 0. On the other hand, since N̄ > N and the solution condition of

the KKT system (3.4), we have hi(w
k,nN̄ , tknN

) ≤ 0 for all i = 1, . . . ,m, which yields
a contradiction. Thus (3.8) holds. Let tknl

→ t∗ as l → ∞. Taking limit for such in-
equality with l → ∞ yields

hi(w
k,∗, t∗) ≤ 0. (3.9)

On the other hand, the assumption, i.e, the iteration is infinite between Step 2 and
Step 3, implies that at least one index i it holds hi(w

k,nl , tknl
) > δk when l → ∞.
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Without loss of the generality, taking limit for such inequality yields

hi(w
k,∗, t∗) ≥ δk > 0.

This is a contradiction. We prove the finite iteration between Step 2 and Step 3.
Note that for each k, t ∈ � and i ∈ {1, . . . ,m}

hi(w
k, t) ≤ δk, and δk → 0. (3.10)

(ii) We prove that any limit point of the infinite sequence {vk} generated by Al-
gorithm 3.1 is a KKT point of the reformulated SIP problem, i.e., satisfying (3.2)
or (3.6).

From the bounded assumption, there exists a subsequence of {vk}, denoted by
{vnk }, such that vnk → v∗ = ((w∗)T , (λ∗)T , (μ∗)T , (γ ∗)T , (u∗)T )T . We assume that

the measure of discrete set holds σnk

weakly−→ σ ∗. �

At the iterative point vnk , from (3.7) we have the following derivation:

∥
∥
∥
∥
∥
∇f (w∗) +

nx∑

i=1

λ∗
i ∇F 0

i (w∗) +
ny∑

i=1

μ∗
i ∇G0

i (w
∗) +

m0∑

i=1

γ ∗
i ∇H 0

i (w∗)

+
m∑

i=1

∫

∇hi(w
∗, t)dσ ∗

∥
∥
∥
∥
∥

=
∥
∥
∥
∥
∥
(∇f (wnk ) +

nx∑

i=1

λ
nk

i ∇F 0
i (wnk ) +

ny∑

i=1

μ
nk

i ∇G0
i (w

nk ) +
m0∑

i=1

γ
nk

i ∇H 0
i (wnk )

+
m∑

i=1

∫

∇hi(w, t)dσnk
) −
(

∇f (w∗) +
nx∑

i=1

λ∗
i ∇F 0

i (w∗)

+
ny∑

i=1

μ∗
i ∇G0

i (w
∗) +

m0∑

i=1

γ ∗
i ∇H 0

i (w∗) +
m∑

i=1

∫

∇hi(w
∗, t)dσ ∗

)∥
∥
∥
∥
∥

≤ ∥∥∇f (wnk ) − ∇f (w∗)
∥
∥+

nx∑

i=1

∥
∥λ

nk

i ∇F 0
i (wnk ) − λ∗

i ∇F 0
i (w∗)

∥
∥

+
ny∑

i=1

∥
∥μ

nk

i ∇G0
i (w

nk ) − μ∗
i ∇G0

i (w
∗)
∥
∥

+
m0∑

i=1

∥
∥γ

nk

i ∇H 0
i (wnk ) − γ ∗

i ∇H 0
i (w∗)

∥
∥

+
m∑

i=1

∥
∥
∥
∥

∫

∇hi(w
nk , t)dσnk

−
∫

∇hi(w
∗, t)dσ ∗

∥
∥
∥
∥. (3.11)
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Then from the weak convergence conditions and the triangle inequality, it is not dif-
ficult to derive that the right of (3.11) tends to zero. The first relationship of (3.2)
is proved. Except the last relationship, i.e., the feasibility of infinite constraints, the
other expressions in (3.2) can be proved by using the same way.

Next we prove that w∗ is feasible for all i = 1,2, . . . ,m. The feasibility needs to
prove maxt∈� hi(w

∗, t) ≤ 0. Since

hi(w
nk , t) ≤ δnk

, for i = 1, . . . ,m, ∀t ∈ �,

and

δnk
→ 0 as k → ∞, hi(w

∗, t) ≤ 0 for i = 1, . . . ,m, ∀t ∈ �.

Thus we have proved that w∗ is feasible.

4 Quasi-Newton method for the subproblem

Since just the first derivate is available in the approximate KKT system (3.4) arising
from OTS problem, we consider a quasi-Newton method for the subproblem (3.4) at
each iteration k in this section.

Let ψ : R2 → R be the Fischer-Burmeister function [5] defined by

ψ(a, b) =
√

a2 + b2 − (a + b).

This function has the following typical property

ψ(a, b) = 0 ⇐⇒ a ≥ 0, b ≥ 0 and ab = 0

and is called a complementarity function in literature [4]. Moreover, φ is semismooth
and its generalized Jacobian in the sense of Clarke [2] has the following result:

∂ψ(a, b)

∂a
=
{

a√
a2+b2

− 1, if a2 + b2 �= 0

α − 1, if a2 + b2 = 0

∂ψ(a, b)

∂b
=
{

b√
a2+b2

− 1, if a2 + b2 �= 0

β − 1, if a2 + b2 = 0

with ‖(α,β)‖ ≤ 1.
Denote mk = |�k| and

hk
(i,j)(w) ≡ hi(w, tj ), i = 1, . . . ,m, tj ∈ �k. (4.1)
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Based on the function ψFB , the system (3.4) is reformulated equivalently to a
system of semismooth equations for each iteration k as follows:
⎛

⎜
⎜
⎜
⎜
⎜
⎝

∇f (w) +∑nx

i=1 λi∇F 0
i (w) +∑ny

i=1 μi∇G0
i (w) +∑m0

i=1 γi∇H 0
i (w) +∑m

i=1

(∑mk

j=1 u
j
i ∇hk

(i,j)(w)
)

F 0(w)

G0(w)

ψ(−H 0
i (w), γi ), (i = 1, . . . ,m0)

ψ(−hk
(i,j)(w),u

j
i ), (i = 1, . . . ,m; j = 1, . . . ,mk)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

= 0.

(4.2)
Denote (4.2) as

ϒk(w,λ,μ,γ,u) =

⎛

⎜
⎜
⎝

Lk(w,λ,μ,γ,u)

F 0(w)

G0(w)

�k(w,γ,u)

⎞

⎟
⎟
⎠= 0 (4.3)

with

Lk(w,λ,μ,γ,u) = ∇f (w) +
nx∑

i=1

λi∇F 0
i (w) +

ny∑

i=1

μi∇G0
i (w)

+
m0∑

i=1

γi∇H 0
i (w) +

m∑

i=1

(
mk∑

j=1

u
j
i ∇hk

(i,j)(w)

)

, (4.4)

�k(w,γ,u) = (�k
i (w,γ,u)

)T
i=1,...,m0+mmk

≡
(

ψ(−H 0
i (w), γi), (i = 1, . . . ,m0)

ψ(−hk
(i,j)(w),u

j
i ), (i = 1, . . . ,m, j = 1, . . . ,mk)

)

. (4.5)

Consider that just the first derivative of h is available in the reformulated SIP prob-
lem arising from power systems, we will provide a global quasi-Newton algorithm
for (4.3) proposed in [10]. To this end, we denote the following notations.

For a given constant ε > 0, define

ψε(a, b) =
{√

a2 + b2 − (a + b), if
√

a2 + b2 ≥ ε

(1/2ε)[(a2 + b2) − 2ε(a + b) + ε2], if
√

a2 + b2 < ε,

which is a smoothing function of ψ(a, b). Then the smoothing function of �k defined
in (4.5) has the following version

�k,ε(w,γ,u) = (�k,ε
i (w,γ,u)

)T
i=1,...,m0+mmk

≡
(

ψε(−H 0
i (w), γi), (i = 1, . . . ,m0)

ψε(−hk
(i,j)(w),u

j
i ), (i = 1, . . . ,m; j = 1, . . . ,mk)

)

. (4.6)

The function ϒk(w,λ,μ,γ,u) in (4.3) can be rewritten by a splitting form as

ϒk(w,λ,μ,γ,u) ≡ ϒk,ε(w,λ,μ,γ,u) + �k,ε(w,γ,u), (4.7)
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where

ϒk,ε(w,λ,μ,γ,u) =

⎛

⎜
⎜
⎝

Lk(w,λ,μ,γ,u)

F 0(w)

G0(w)

�k,ε(w,γ,u)

⎞

⎟
⎟
⎠ ,

(4.8)

�k,ε(w,γ,u) =

⎛

⎜
⎜
⎝

0
0
0

(�k(w,γ,u) − �k,ε(w,γ,u))

⎞

⎟
⎟
⎠ .

By using this splitting version, it is clearly that for ε > 0, the function
ϒk(w,λ,μ,γ,u) is composed of the differentiable function ϒk,ε and the non-
differentiable function �k,ε . Moreover, it is not difficult to derive that the non-
differentiable function �k,ε is uniformly restricted by the small parameter ε and
satisfies

‖�k,ε(w,γ,u)‖ ≤ (
√

n + m0 + mmk/2)ε.

Denote

I ε,0(w,γ ) =
{
i|
√

(H 0
i (w))2 + γ 2

i ≥ ε
}
,

(4.9)

J ε,0 =
{
i|
√

(H 0
i (w))2 + γ 2

i < ε
}
;

I ε,k(w,u) =
{
(i, j)|

√

(hk
(i,j)(w))2 + (u

j
i )

2 ≥ ε
}
,

(4.10)

J ε,k =
{
(i, j)|

√

(hk
(i,j)(w))2 + (u

j
i )

2 < ε
}
.

Put

α
ε,0
i =

⎧
⎨

⎩

γi√

(H 0
i (w))2+γ 2

i

− 1, if i ∈ I ε,0(w,γ ),

γi

ε
− 1, if i ∈ J ε,0(w,γ );

(4.11)

β
ε,0
i =

⎧
⎪⎨

⎪⎩

−H 0
i (w)

√

(H 0
i (w))2+γ 2

i

− 1, if i ∈ I ε,0(w,γ ),

−H 0
i (w)

ε
− 1, if i ∈ J ε,0(w,γ );

α
ε,k
(i,j) =

⎧
⎪⎨

⎪⎩

u
j
i√

(hk
(i,j)

(w))2+(u
j
i )2

− 1, if (i, j) ∈ I ε,k(w,u),

u
j
i

ε
− 1, if (i, j) ∈ J ε,k(w,u);

(4.12)

β
ε,k
(i,j)

=

⎧
⎪⎨

⎪⎩

−hk
(i,j)

(w)
√

(hk
(i,j)

(w))2+(u
j
i )2

− 1, if (i, j) ∈ I ε,k(w,u),

−hk
(i,j)

(w)

ε
− 1, if (i, j) ∈ J ε,k(w,u).

(4.13)
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Define a matrix as

Qk(w,γ,u) =

⎛

⎜
⎜
⎜
⎜
⎝

0 ∇F 0(w) ∇G0(w) ∇H 0(w)diag(β
ε,0
i (w,γ )) ∇hk(w)(β

ε,k
i (w,u))

∇F 0(w)T 0 0 0 0
∇G0(w)T 0 0 0 0
∇H 0(w)T 0 0 diag(αε,0(w,γ )) 0
∇hk(w)T 0 0 0 diag(αε,k(w,u))

⎞

⎟
⎟
⎟
⎟
⎠
.

(4.14)

Let the iterative index for the k-th subproblem (3.4) be l. Throughout this section,
the index (l, k) means the l-th subproblem iteration with the outer iteration k. Denote
V = (w,λ,μ,γ,u). Select a positive ηl satisfies

∞∑

l=0

ηl ≤ η < ∞ (4.15)

with a positive constant η > 0.

Algorithm 4.1 (Quasi-Newton algorithm)

Step 0. Choose constant ρ ∈ (0,1), κ ∈ (0,1),0 < ν < 2/
√

m0 + mmk , σ1 > 0,

σ2 > 0, the initial multiplier of inequality (γ−1, u−1) > 0. ηl satisfies (4.15). Choose
an initial point V0 = ((w0)T , (λ0)T , (μ0)T , (γ 0)T , (u0)T )T ∈ Rn+nx+ny+m0+mmk , a
symmetric positive definite matrix B0 ∈ R(n+nx+ny+m0+mmk)×(n+nx+ny+m0+mmk),
and ε0 ≤ (ν/2)‖ϒk(V0)‖, the initial step-length of line search τ−1 = 1. Let l := 0.

Step 1. Let

ql = τ−1
l−1

⎛

⎜
⎜
⎜
⎜
⎝

Lk(wl + τl−1L
k(Vl), λ

l,μl, γ l, ul) − Lk(Vl)

0
0
0
0

⎞

⎟
⎟
⎟
⎟
⎠

+ Q(k,l)ϒk,εl (Vl),

where Q(k,l) is defined in (4.14) at point (wl, γ l, ul). Solve the linear equation

Blp + ql = 0 (4.16)

to get pl .
Step 2. If

‖ϒk(Vl + pl)‖ ≤ κ‖ϒk(Vl)‖, (4.17)

then let τl = 1 and go to Step 4. Otherwise, go to Step 3.
Step 3. Let jl be the smallest nonnegative integer j such that τ = ρj satisfies the

follows

‖ϒk,εl (Vl +τpl)‖2 −‖ϒk,εl (Vl)‖2 ≤ σ1‖τϒk,εl (Vl)‖2 −σ2‖τpl‖2 +ηl‖ϒk,εl (Vl)‖2,

(4.18)
and let τl = ρjl .
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Step 4. Let Vl+1 = Vl + τlpl .
Step 5. Update Bl by the BFGS formula

Bl+1 = Bl − Blsls
T
l Bl

slBlsl
+ ζlζ

T
l

ζ T
l sl

, (4.19)

where

sl = Vl+1 − Vl, (4.20)

and ζl is determined by the follows:

ζl = rl + χl‖ϒk,εl (Vl)‖sl (4.21)

with

rl =

⎛

⎜
⎜
⎜
⎜
⎝

Lk(wl + Lk(Vl+1) − Lk(Vl), λ
l,μl, γ l, ul) − Lk(Vl)

0
0
0
0

⎞

⎟
⎟
⎟
⎟
⎠

+ Qk,l
(
ϒk,εl (Vl+1) − ϒk,εl (Vl)

)

χl = 1 − 1

‖ϒk,εl (Vl)‖ min
{ rT

l sl

‖sl‖2
,0
}
.

Step 6. If εl < ν‖ϒk(Vl+1)‖, take εl+1 = εl . Otherwise, determine εl+1 by

εl+1 ≤ min

{
ν

2
‖ϒk(Vl+1)‖, 1

2
εl

}

. (4.22)

Step 7. Let l := l + 1. Go to Step 1.

Under some mild conditions, the global and locally superlinear convergence of
Algorithm 4.1 can be proved, see the reference [10] for details.

5 Numerical examples

In this section, two OTS problems arising from power systems are tested by Algo-
rithm 3.1. One is an Available Transfer Capability (ATC) calculation for a single-
machine infinite-bus model system, and other is the Economic Dispatch (ED) prob-
lem for a system of two generators with six buses. Both of examples are chosen
from [1] with some modifications. Algorithm 3.1 described in Sect. 3 has been im-
plemented in MATLAB 7.0. The tests were conducted on a Pentium IV 2.50 GHz
computer with 256 MB of RAM, running on Microsoft Windows XP Professional
operating system.
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Fig. 1 Single-machine
infinite-bus model system

5.1 Available transfer capability calculation with transient stability constraints

A simple model of one-machine infinite-bus system with a single disturbance is con-
sidered (see Fig. 1). For this example, all variables are fixed except rotor angel δ(t) of
the generator-A. The dynamics of generator-A is described by the second-order swing
equation. The relationships of real and reactive power (P,Q) during the disturbance
process are expressed as follows:

• Pre-disturbance system at t = 0 with the initial variable δ̄:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

X = 0,

P (δ̄) = sin δ̄
0.5 ,

Q(δ̄) = 1−cos δ̄
0.5 .

• During-disturbance system for t ∈ (0, t1]:
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

X = ∞,

P (δ̄) = 0,

Q(δ̄) = 0.

• Post-disturbance system for t ∈ [t1, T ]:
⎧
⎪⎪⎨

⎪⎪⎩

X = 0.9,

P (δ(t)) = sin δ(t)
0.9 ,

Q(δ(t)) = 1−cos δ(t)
0.9 ,

where t1 is the fault-clearing time, and T is the study period of the distur-
bance.

The ATC computation can be carried out by OPF models (see [1]). For the single-
machine infinite-bus system, the ATC with transient stability constraints has the fol-
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lowing version:

max
δ̄

P (δ̄)

s.t. 0 ≤ P(δ̄) ≤ 2

− 2 ≤ Q(δ̄) ≤ 2
{

dδ(t)
dt

= ω(t) with δ(0) = δ̄

dω(t)
dt

= ω0
M

(P (δ̄) − P(δ(t))) − D
M

ω(t) with ω(0) = 0

δ(t) ≤ δmax, t ∈ [0, T ],

(5.1)

where the system parameters are: D = 3,M = 5s,ω0 = 314 rad/s, δmax = 2.5(≈
0.8π), and with various choices of t1 and T = 2s. The last three expressions in (5.1)
are called transient stability constraints (for abbreviation TSCs). In order to test the
effect of TSCs for the system under the disturbance, we solve ATC problem for two
cases, i.e., involving TSCs and without TSCs respectively. The later one is the ordi-
nary OPF problem.

Case-I: ATC Calculation Involving TSCs. We choose the parameters in Algo-
rithm 3.1 as

Error = 1.0e−6, δ0 = 1.0e−5, ε = 0.01, δ̄0 = 0.314,

where Error is the stopping-test; δ̄0 is the initial iteration. The differential equations
and the subproblem of finite nonlinear programming (3.4) in Algorithm 3.1 are solved
by ode45 code and “fmincon” code in MATLAB, respectively. The computing results
with the different fault clearing times are reported in Table 1. where δ̄∗ is the opti-
mal solution of OTS at the initial point t = 0; Out-Iter indicates the outer iteration
number in Algorithm 3.1; Total-Iter means the total iteration number involving the
subproblem calculation; CPU is the computing time.

According to the solution of (5.1) with t1 = 0.3 and the given disturbance, the
dynamic track of the differential equations with the initial point δ̄∗ = 0.2401 is shown
in Fig. 2 for the real-line curve. From the trajectory we can see that, the system tends
to stability. Make a small variation to the initial point, say δ̄ = 0.25/rad, then the
system tends instability under the disturbance, see Fig. 2 for the dot-line curve with
the same clearing time t1.

Table 1 Results of OTS by Algorithm 3.1

t1/s 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

δ̄∗/rad 0.4589 0.3410 0.2401 0.1716 0.1271 0.0975 0.0770 0.0624 0.051

Out-Iter 1 1 3 2 2 2 2 3 2

Total-Iter 8 11 13 22 14 10 11 19 7

CPU/s 20.81 26.14 31.92 41.13 29.92 22.57 23.45 35.67 16.16
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Fig. 2 The trajectory of the
disturbance starting from
δ̄ = 0.2401/rad

Fig. 3 The trajectory of the
disturbance without TSC,
δ̄ = 1.5789

Case-II: ATC Calculation without TSCs.
Without the TSCs, the ATC problem is a normal OPF problem as

max
δ̄

P (δ̄)

s.t. 0 ≤ P(δ̄) ≤ 2

−2 ≤ Q(δ̄) ≤ 2.

(5.2)

By using the “fmincon” code in MATLAB, we find the solution of (5.2) is δ(0) =
δ̄∗ = 1.5789. Then under the disturbance with the clearing time t1 = 0.3 and the
initial point δ̄∗ = 1.5789, the trajectory of the solution of the differential equations is
shown in Fig. 3, which indicates that the system is instable under the disturbance.
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5.2 Economic dispatch (ED) problem with transient stability constraints

Consider a system of two generators with six-buses and the economic dispatch (ED)
problem, which is the modification of example in [1]. Suppose that the disturbance
happens between 3-bus and 4-bus, see Fig. 4 for the system and the disturbance. We
use the second generator as a reference bus, and set D1

M1
= D2

M2
= d0, then the OTS

problem is described as

min
(δ̄,V̄ ,pL)

∑2
i=1[αiP

2
gi(δ̄, V̄ ) + βiPgi(δ̄, V̄ ) + γi]

s.t. G0(δ̄, V̄ ,pL) = 0

H 0(δ̄, V̄ ,pL) ≤ 0
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

dδg12(t)

dt
= ωg12(t)

with δg12(0) = δg1(0) − δg2(0)

dωg12(t)

dt
= ω0

M
[Pg1(δ̄, V̄ ) − PE1(t)] − ω0

M
[Pg2(δ̄, V̄ ) − PE2(t)] − d0ωg12(t)

with ωg12(0) = 0.

|δgi(t) − δc(t)| ≤ δmax (i = 1,2), ∀t ∈ [0, T ],

(5.3)

where the details of the model (5.3) are given as follows:
(i)

V̄ = (V̄1, V̄2, V̄3, V̄4)
T , δ̄ = (δ̄1, δ̄2, δ̄3, δ̄4)

T , pL = (PL1,PL2,QL1,QL2)
T .

δg12(t) = δg1(t) − δg2(t), ωg12 = ωg1(t) − ωg2(t).

{
Pg1 ≡ Pg1(V̄ , δ̄) = V 2

g1G
′
11 + Vg1Vg2(G

′
12 cos δ̄g12 + B ′

12 sin δ̄g12)

Pg2 ≡ Pg2(V̄ , δ̄) = V 2
g2G

′
22 + Vg1Vg2(G

′
12 cos δ̄g12 − B ′

12 sin δ̄g12)

Fig. 4 Two-generators system
with 4-buses
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with
⎛

⎝
G′

11 + jB ′
11 G′

12 + jB ′
12 G′

13 + jB ′
13

G′
21 + jB ′

21 G′
22 + jB ′

22 G′
23 + jB ′

23
G′

31 + jB ′
31 G′

32 + jB ′
32 G′

33 + jB ′
33

⎞

⎠

=
⎛

⎝
0.3780 − j1.0985 0.3333 + j0.6054 −0.7113 + j0.4931
0.333 + j0.6054 0.3278 − j1.0651 −0.6611 + j0.4597

−0.7113 + j0.4931 −0.6611 + j0.4597 1.3725 − j0.9528

⎞

⎠

Vgi cos δgi + jVgi sin δgi = (V̄i cos δ̄i + jV̄i sin δ̄i

)+ PLi − jQLi

V̄i cos δ̄i − jV̄i sin δ̄i

χ ′
di ,

(i = 1,2);
(ii) G0(δ̄, V̄ ,pL) = 0 is the power flow equations with six-buses as

G0(δ̄, V̄ ,pL)

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

PL1 − V̄1[V̄1G11 + V̄3(G13 cos δ̄13 + B13 sin δ̄13) + V̄4(G14 cos δ̄14 + B14 sin δ̄14)]
PL2 − V̄2[V̄2G22 + V̄4(G24 cos δ̄24 + B24 sin δ̄24)]

PL3 + V̄3[V̄1(G31 cos δ̄31 + B31 sin δ̄31) + V̄3G33 + V̄4(G34 cos δ̄34 + B34 sin δ̄34)]
PL4 + V̄4[V̄1(G41 cos δ̄41 + B41 sin δ̄41) + V̄2(G42 cos δ̄42 + B42 sin δ̄42) + V̄3(G43 cos δ̄43 + B43 sin δ̄43) + V̄4G44]

QL1 − V̄1[−B11V̄1 + V̄3(G13 sin δ̄13 − B13 cos δ̄13) + V̄4(G14 sin δ̄14 − B14 cos δ̄14)]
QL2 − V̄2[−B22V̄2 + V̄4(G24 sin δ̄24 − B24 cos δ̄24)]

QL3 + V̄3[V̄1(G31 sin δ̄31 − B31 cos δ̄31) − B33V̄3 + V̄4(G34 sin δ̄34 + B34 cos δ̄34)]
QL4 + V̄4[V̄1(G41 sin δ̄41 − B41 cos δ̄41) + V̄2(G42 sin δ̄42 − B42 cos δ̄42) + V̄3(G43 sin δ̄43 − B43 cos δ̄43) − B44V̄4]

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

where

δ̄ij = δ̄i − δ̄j (i, j = 1,2,3,4); V̄2 = 1.0, δ̄2 = 0 (reference bus).

PL3 + jQL3 = 1.0 + j0.1, PL4 + jQL4 = 1.0 + j0.1.
⎛

⎜
⎜
⎝

G11 + jB11 G12 + jB12 G13 + jB13 G14 + jB14
G21 + jB21 G22 + jB22 G23 + jB23 G24 + jB24
G31 + jB31 G32 + jB32 G33 + jB33 G34 + jB34
G41 + jB41 G42 + jB42 G43 + jB43 G44 + jB44

⎞

⎟
⎟
⎠

=
⎛

⎜
⎝

1.4819 − j14.8401 0 −1.183 + j9.858 −0.2989 + j4.9821
0 0.4988 − j9.9751 0 −0.4988 + j9.9751

−1.183 + j9.858 0 3.1632 − j29.660 −1.9802 + j19.802
−0.2989 + j4.9821 −0.4988 + j9.9751 −1.9802 + j19.802 2.7779 − j34.7591

⎞

⎟
⎠;

(iii) H 0(δ̄, V̄ ) ≤ 0 is the system limits in the static operation station (or initial
operation) with respect to the voltage upper and lower bounds, and two pairs of in-
equalities for generator outputs

1.0 ≤ Vgi ≤ 1.5; 0.25 ≤ Pgi(δ̄, V̄ ) ≤ 2.0 (i = 1,2);
(iv) For the differential equations involved in the model (5.3), it has the following

relationship:

PE1(t) = V 2
g1G

′
11 + Vg1Vg2(G

′
12 cos δg12(t) + B ′

12 sin δg12(t)),
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PE2(t) = V 2
g2G

′
22 + Vg1Vg2(G

′
12 cos δg12(t) − B ′

12 sin δg12(t)),

where the difference of differential equations between the during-disturbance and the
post-disturbance is the parameters in PE1(t) and PE2(t), which can be deduced and
have the following results:
During-disturbance.

⎛

⎝
G′

11 + jB ′
11 G′

12 + jB ′
12 G′

13 + jB ′
13

G′
21 + jB ′

21 G′
22 + jB ′

22 G′
23 + jB ′

23
G′

31 + jB ′
31 G′

32 + jB ′
32 G′

33 + jB ′
33

⎞

⎠

=
⎛

⎝
0.0233 − j1.7507 0.0058 + j0.0385 −0.0290 + j1.7123
0.0058 + j0.0385 0.0262 − j1.5574 −0.0322 + j1.5189

−0.0290 + j1.7123 −0.0320 + j1.5189 0.0610 − j3.2312

⎞

⎠

Post-disturbance.
⎛

⎝
G′

11 + jB ′
11 G′

12 + jB ′
12 G′

13 + jB ′
13

G′
21 + jB ′

21 G′
22 + jB ′

22 G′
23 + jB ′

23
G′

31 + jB ′
31 G′

32 + jB ′
32 G′

33 + jB ′
33

⎞

⎠

=
⎛

⎝
0.4084 − j1.0545 0.3166 + j0.5363 −0.7250 + j0.5183
0.3166 + j0.5363 0.3156 − j0.9714 −0.6322 + j0.4351

−0.7250 + j0.5182 −0.6322 + j0.4351 1.3572 − j0.9533

⎞

⎠ ;

(v) δc(t) =
∑2

i=1 Miδgi (t)
∑2

i=1 Mi

is called the center of inertia (denoted by COI), which

is the ordinary expression of the transient stability in multi-machines systems. In
details, the stability of systems is shown by the difference of |δgi(t) − δc(t)|. Then
the last constraint in (5.3) is set |δgi(t) − δc(t)| = |δg1(t) − δg2(t)| ≤ δmax (i = 1,2)

since M = M1 = M2 in this example;
(vi) Some parameters involved in (5.3) are given by

M = 5; D = 3; ω0 = 1; δmax = 2.5(≈ 0.8π).

The other system parameters in the OTS model (5.3) are listed in Table 2.
Let the disturbance clearing time be t1 = 5 s and the study period be T = 20 s.

The parameters of Algorithm 3.1 works same as the single-machine infinite-bus sys-
tem (see the last subsection). The solution methods for differential equations and the
subproblem in Algorithm 3.1 are used the same ways in the last numerical example.
The computing results for the ED problem with TSCs are reported in Table 3. where
Fuel cost indicates the optimal objective of ED problem; V̄ ∗ = (Vg1,Vg2,V1,V2,

Table 2 The system parameters
αi βi γi

Generator-1 0.0 4250.0 12068.0

Generator-2 1.13 1304.5 18720.0
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Table 3 Solution of ED with TSCs by Algorithm 3.1

Fuel cost Pg1 Pg2 Vg1 Vg2 V1 V2 V3 V4

35512.2 0.7381 1.2156 1.0 1.4044 0.9538 1.011 0.9538 0.9512

Fig. 5 The trajectories of two
generators under TSCs

Fig. 6 The trajectory of the
difference |δg1(t) − δg2(t)|
under TSCs

V3,V4)
T is the optimal solution of ED with TSCs (initial operation in the distur-

bance). Here we just give the optimal voltage value V̄ ∗. The optimal angle value δ̄∗
with respect to generators is involved in the following trajectory figures. From the op-
timal value ((V̄ ∗)T , (δ̄∗)T )T (i.e., the initial operation point), we draw the trajectory
of angles for two generators and the difference of |δgi(t) − δc(t)| (i = 1,2) in Figs. 5
and 6, respectively. Two figures show that for this case, the system is stable under the
disturbance.
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Table 4 Solution of ED without TSCs

Fuel cost Pg1 Pg2 Vg1 Vg2 V1 V2 V3 V4

34112 0.2500 1.7310 1.0462 1.5000 0.9796 1.011 0.9680 0.9738

Fig. 7 The trajectories of two
generators without TSCs

Fig. 8 The trajectory of the
difference |δg1(t) − δg2(t)|
without TSCs

In order to compare the effect of TSCs, we also compute ED without TSCs, i.e.,
a normal OPF solution problem. The optimal solution ((V̂ ∗)T , (δ̂∗)T )T is reported in
Table 4.

Similar to Figs. 5 and 6, we draw the trajectories of δg1(t), δg2(t) and |δg1(t) −
δg2(t)| under the disturbance with the clearing time t1 = 5 s and the optimal point
((V̂ ∗)T , (δ̂∗)T )T , respectively, see Figs. 7 and 8.
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Two figures indicates that the system is instable for the optimal value without
TSCs as an initial operation point. Therefore thought the optimal ED value without
TSCs is better than one of ED with TSCs, the cost is the stability.

Two examples of power systems show that, on the one hand, the OPF with TSCs
models is important in the stability operation of power systems; On the other hand,
the approach proposed in this paper is valid.

6 Final comments

This paper develops some iterative methods in SIP problems to a class of compli-
cated SIP problems arising from OTS in power systems. The convergence of the new
algorithm is established. According to the specific construction of the reformulated
SIP problem, a quasi-Newton type method is also presented for the subproblems.
Suitable mathematical method and computing technology are used to save the com-
putation cost. Two actual power systems are used to test the approach proposed in
this paper. Numerical results show the validity of the reformulation and approach.
From the actual background of power systems for stability analysis, there exist some
general OTS problems to be studied, such as OTS problems with variable disturbance
clearing time, OTS problems with critical disturbance clearing time (CCT). Both of
these are interesting problems in power systems and are our further research topics.
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