This article was downloaded by: [National Cheng Kung University]

On: 2 October 2010

Access details: Access Details: [subscription number 791473930]

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-
41 Mortimer Street, London W1T 3JH, UK

Communications in Algebra
Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title~content=t713597239

Dade's Invariant Conjecture for the Symplectic Group Sp,(2<*<*) and the
Special Unitary Group SU, (2*<>**) in Defining Characteristic

Jianbei An?* Frank Himstedt’; Shih-Chang Huang®

@ Department of Mathematics, University of Auckland, Auckland, New Zealand ® Technische
Universitat Minchen, Zentrum Mathematik - M11, Boltzmannstr. 3, Garching, Germany © Department
of Mathematics, National Cheng Kung University, Tainen, Taiwan

Tl

e

Online publication date: 14 June 2010

To cite this Article An, Jianbei , Himstedt, Frank and Huang, Shih-Chang(2010) 'Dade's Invariant Conjecture for the
Symplectic Group Sp (2°-"*") and the Special Unitary Group SU (2***"*) in Defining Characteristic', Communications in
Algebra, 38: 6, 2364 — 2403

To link to this Article: DOI: 10.1080/00927870903400105
URL: http://dx.doi.org/10.1080/00927870903400105

PLEASE SCROLL DOWN FOR ARTICLE

Full terns and conditions of use: http://wwinformworld.coniterns-and-conditions-of-access. pdf

This article nay be used for research, teaching and private study purposes. Any substantial or
systematic reproduction, re-distribution, re-selling, |loan or sub-licensing, systematic supply or
distribution in any formto anyone is expressly forbidden.

The publisher does not give any warranty express or inplied or nmake any representation that the contents
will be conplete or accurate or up to date. The accuracy of any instructions, formul ae and drug doses
shoul d be independently verified with primary sources. The publisher shall not be liable for any |oss,
actions, clains, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly
or indirectly in connection with or arising out of the use of this nmaterial.



http://www.informaworld.com/smpp/title~content=t713597239
http://dx.doi.org/10.1080/00927870903400105
http://www.informaworld.com/terms-and-conditions-of-access.pdf

15: 02 2 Cctober 2010

[ National Cheng Kung University] At:

Downl oaded By:

Communications in Algebra®, 38: 2364-2403, 2010 Tavl .
¢ r &Franci
Copyright © Taylor & Francis Group, LLC xajz&?rangqou? s
ISSN: 0092-7872 print/1532-4125 online

DOI: 10.1080/00927870903400105

DADE’S INVARIANT CONJECTURE FOR THE SYMPLECTIC
GROUP Sp,(2") AND THE SPECIAL UNITARY GROUP
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In this article, we verify Dade’s projective invariant conjecture for the symplectic group
Sp4(2") and the special unitary group SU,(22") in the defining characteristic, that is,
in characteristic 2. Furthermore, we show that the Isaacs-Malle-Navarro version of
the McKay conjecture holds for Spy(2") and SU,(2*") in the defining characteristic,
that is, Spy(2") and SU,(2*") are good for the prime 2 in the sense of Isaacs, Malle,
and Navarro.
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1. INTRODUCTION

Let G be a finite group and p a prime dividing the order of G. There
are several conjectures connecting the representation theory of G with the
representation theory of certain p-local subgroups (i.e., the p-subgroups and their
normalizers) of G. For example, it seems to be true, that if P is a Sylow p-subgroup
of G, then the number of complex irreducible characters of G of degree coprime
with p equals the same number for the normalizer N (P).

This conjecture, called McKay conjecture [19], and its block-theoretic version
due to Alperin [1] were generalized by various authors. In a series of articles [8-10],
Dade developed several conjectures expressing the number of complex irreducible
characters with a fixed defect in a given p-block of G in terms of an alternating
sum of related values for p-blocks of certain p-local subgroups of G. In [9], Dade
proved that his (projective) conjecture implies the McKay conjecture. In [15], Isaacs,
Malle, and Navarro reduced the McKay conjecture to a question about finite simple
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groups. In particular, they showed that every finite group will satisfy the McKay
conjecture if every finite non-abelian simple group is “good.”

In this article, we show that Dade’s invariant conjecture holds for the
symplectic group Sp,(2") and the special unitary group SU,(2?*) in the defining
characteristic, i.., in characteristic 2. Since Sp,(2") and SU,(2>") have a trivial
Schur multiplier and a cyclic outer automorphism group except in the two cases
Sps(2) and SU,(4) (in which the exceptional Schur multiplier is 2), it follows
that Dade’s inductive conjecture is also true for Sp,(2") and SU,(2*") in these
cases. In the exceptional Schur multiplier case, we show that Dade’s projective
invariant conjecture holds for Sp,(2) and SU,(4). As an application of our results
on characters fixed by certain outer automorphisms, we prove that Sp,(2") and
SU,(2>") are good for the prime 2.

The methods are similar to those in [2]. By a corollary of the Borel and
Tits theorem [5], the normalizers of radical 2-chains of Sp,(2") and SU,(2*") are
exactly the parabolic subgroups. So we count characters of these chain normalizers
which are fixed by certain outer automorphisms. Our calculations are based on the
character table of Sp,(2") in the character table library of the Maple [7] part of
CHEVIE [12] and the character tables of the parabolic subgroups of Sp,(2") and
GU,(2*") which have been computed in [13] and [20]. Since GU,(2*") = Z,.,, x
SU,(2*") and Z,._, is a 2'-group, it follows that the verifications of the conjectures
for SU,(2%") is equivalent to that for GU,(2%") (see the remarks in Sections 7 and 9).

This article is organized as follows. In Section 2, we fix notation and state
Dade’s invariant and projective invariant conjectures in detail. In Section 3, we state
and prove some lemmas from elementary number theory which we use to count
fixed points of certain automorphisms of Sp,(2") and GU,(2?"). In Section 4, we
compute the fixed points of the outer automorphisms of Sp,(2") and GU,(2*") on
the irreducible characters of the parabolic subgroups. In Sections 5 through 8, we
verify Dade’s conjecture for Sp,(2") and GU,(2%") in the defining characteristic and
in Section 9, we deal with the McKay conjecture for Sp,(2") and GU,(2*") in the
defining characteristic. Details on irreducible characters and conjugacy classes are
summarized in tabular form in Appendices A, B, and C.

2. THE CONJECTURES

Let R be a p-subgroup of a finite group G. Then R is radical if O,(N(R)) =
R, where O,(N(R)) is the largest normal p-subgroup of the normalizer N(R) :=
Ng(R). Denote by Irr(G) the set of all irreducible ordinary characters of G, and by
BIk(G) the set of p-blocks. If H < G, Be Blk(G), and d is an integer, we denote by
Irr(H, B, d) the set of characters y € Irr(H) satisfying d(y) = d and b(3)¢ = B (in
the sense of Brauer), where d(y) = log,(|H|,) —log,(x(1),) is the p-defect of y and
b(y) is the block of H containing y.

Given a p-subgroup chain C: Py < P, <--- <P, of G, define the length
|C|:=n,C,:Py< P, <--- <P, and

N(C) = Ng(C) := Ng(Py) N Ng(Py) N -+ N Ng(P,).
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The chain C is said to be radical if it satisfies the following two conditions:

(a) Py = 0,(G); and
(b) P, = 0,(N(Cy)) for 1 <k <n.

Denote by & = %(G) the set of all radical p-chains of G.

Let Z be a cyclic group and G = Z - G a central extension of Z by G, and C €
%(G). Denote by Nz (C) the preimage n~'(N(C)) of N(C) in G, where n is the natural
group homomorphism from G onto G with kernel Z. Let p be a faithful linear
character of Z and B a block of G covering the block B(p) of Z containing p. Denote
by Irr(Nz(C), B. d, p) the set of irreducible characters y of Nz(C) such that ¢ lies
over p, d(y) = d and B(xp)G B and set k(Nz(C), B.d,p) = [Irr(Nz(C), B.d, p)|.

If, moreover, E is an extension of G centrahzmg Z and Ni(C, ) is the
stabilizer of (C, ) in E, then NE/G(C V) = N;z(C, 1//)/NA(C lp) is a subgroup of
E/G For a subgroup U< E/G denote by k(Nz(C), B, .d, U, p) the number of
characters  in Irr(Nz(C), B, d, p) such that N ig(Coy) = U. In the notation above,
Dade’s projective invariant conjecture is stated as follows.

Dade’s Projective Invariant Conjecture (Sce [10]) If 0,(G)=1 and B is a
p-block of G covering B(p) with defect group D(B) # 0 (Z) then

> (=D)“k(Ng(C). B.d. U. p) =0,

Ce%/G

where %/G s a set of representatives for the G-orbits of %.
In addition, if E/G is cyclic and u = |U]|, then we set

k(Nz(C), B, d, u, p) = k(Nz(C), B, d, U, p).

In parLicular, if Z=1 and p is the trivial character of Z, then G=Gand Bis a
block B of G; we set U = U and

k(Ng(C), B, d, U) = k(Nz(C), B, d, U, p).
Then the projective invariant conjecture is equivalent to the invariant conjecture.

Dade’s Invariant Conjecture (See [10]). If O0,(G) =1 and B is a p-block of G
with defect D(B) # 1, then

> (=D“k(Ng(C), B, d, U) = 0.

CeR/G

Let Aut(G) and Out(G) be the aut/gn,l\orphism and outer automorphism
groups of G, respectively. We may suppose E/G = Out(G). If moreover, Out(G) is
cyclic, then we write

k(N4 (C), B, d, |U|) := k(N4(C), B, d, U).
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For G € {Sp,(2"), SU,(2*")}, Out(G) is cyclic and the Schur multiplier of G
is trivial except in the two cases Sp,(2) and SU,(4), in which the exceptional Schur
multiplier is 2. So the invariant conjecture for G is equivalent to the inductive
conjecture. In the exceptional Schur multiplier case, the projective invariant
conjecture is equivalent to the inductive conjecture for Sp,(2) and SU,(4).

3. NOTATION AND LEMMAS FROM ELEMENTARY NUMBER THEORY

From now on, we assume that p = 2, n is a positive integer and ¢ = 2". We
denote by N = {0, 1,2, ...} the set of natural numbers including zero. In the next
section, we will use the following lemmas, the first one is [2, Lemma 3.1].

Lemma 3.1. Suppose m,n,ac€Z with m,n>0. Then gcd(a™ —1,a"—1)=
|ad — 1| where d := ged(m, n).
Lemma 3.2. Lert t be a positive integer with t | n. Then the following hold:

1) gedR'—1,g—1)=2"—-1;
g
(i) ged(2'—1,9+1) =1,

20+ 1 if 2t|n,

d2'+1,9g—1) =
(i) ged +1.g -1 =771 T
if 2t|n,

iv) ged(2 +1,q+1) =
(V) eed@+Lat D=1 1 ironin

Proof. (i) is clear by Lemma 3.1.

(i) Suppose d = ged(2' —1,g+1). By (i), d|g—1and so d|ged(¢g— 1,9+
1)=1.

(iii) Suppose 2¢|n. There are k,1,,n, € N with 2t¢, and 2|n, such that
=21, n=2n, Hence 2'+1=—((=22)v—1) and ¢g—1=(=2¥)n—1.
So Lemma 3.1 implies ged(2'+1,q— 1) =ged((—2%)% — 1, (=2¥) —1) =
|(=22) — 1] =2+ 1.

Suppose 2t4n. If d|2'+1,g—1,thend|g+1,9—1andsod|ged(g+1,q—
1) =1.

(iv) Suppose 2t|n. If d|2'+1,q+ 1, then d|2* —1 and so d|2"—1 as
2t|n. Thusd|g—1,g+1and d|ged(g+1,9g—1) = 1.

Suppose 2t{n. There are k,t,n, € N with odd r,n, such that ¢ =2F.
t,, n=2F-n, So we get 2 +1=—((-22)«—1) and g+ 1= —((—2%)w —1).
Now, Lemma 3.1 implies ged(2' +1,¢+ 1) = ged((—=2%)w — 1, (=2%)w — 1) =
[(=22)u — 1| =2 + 1. O

Lemma 3.3. Let t be a positive integer with t | 2n. Then the following hold:

. 1 if t|n,
42 —1,q+1) =
(1) ged( ¢+ !2f/2+1 if 1 n;

(i) ged(2 — 1,2 — 1) =2/ — 1;
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1 if 2t|n or ttn,
t —
(iii) ged(2'+1,g+1) = 2"+ 1 if t|nand 2tfn;
, 20+ 1 if t|n,
t 2 _ —
(iv) ged(2'+ 1,4 —1) 1 if thn;
1 if t|n,
t 2 —
(v) ged2'+ 1,97+ 1) = 2041 if thn

Proof. (i) If t|n, then (i) follows by Lemma 3.2(ii).

Suppose 1 n. There are k, t,, n, € N with 2|t, and 21 n, such that r = 2% - 7,,
n=2%n, Hence2' — 1 = (=2%)» —land ¢+ 1 = —((—=2%)™ — 1). So Lemma 3.1
implies ged(2' — 1, g+ 1) = ged((—=22)w — 1, (=22 — 1) = |(=22 )2 — 1| =
202 4 1.

(ii) is clear by Lemma 3.1.

(v) Suppose t|n. If d|2'+1,4*+1, then d|2* —1 and 2* —1[2 - 1=
¢* —1,so0 that d | ged(¢*> — 1, 4> +1) = 1.

Suppose ¢t n. There are k, t,, n, € N with odd ¢,n, such that t =21 .¢ n=
2. pn,. By Lemma 3.1, 2' + 1 = —((=22"")u — 1) | (=22"") — 1. S0 2/ + 1| ¢* + 1.

(iii) Suppose 2t|nand d|2' + 1, g+ 1. Then, by Lemma 3.2(iii), d | ¢ — 1 and
sod|ged(g—1,9+1)=1.

Suppose t|n and 2¢{n. There are k,t,,n, € N with odd 7,n, such that
t=2.1, n=2F.n, Hence 2+ 1=—((=22)« —1) and g+ 1 = —((=22)w —
1). So Lemma 3.1 implies ged(2' + 1, ¢+ 1) = ged((—=22) — 1, (=22 ) — 1) =
|(—22k)’u — 1| =2"+ 1. Suppose t{n. If d|2'+ 1, g+ 1, then by (v), d|¢*+ 1 and
sod|ged(g*+1,¢4°—1)=1.

(iv) Suppose t|n. Then 2¢|2n and 2+ 1]2% — 1. Hence 2' +1[2 — 1=
2
g — 1.

Now suppose tfn. If d|2+1,¢>—1, then by (v), d|¢*+1 and hence
dlged(@+ 1,4~ 1) =1L -

Lemma 3.4. Let t € N\{0} with t|2n. Define 6 := 1 if t|n and & := % if tf n. Then

2(51 1 . 2 ’
ecd(2 41,4 — 1y = {2 T F2alnorifn
1 if t|n and 2tfn.

Proof. Suppose 2t |n. There are k,t,,n, € N with 2{¢, and 2|n, such that t =
2k.¢,, n=2k.n, Hence 2" "+ 1 =—((=2%)"" —1) and ¢* — 1 = (—22)> — 1.
So Lemma 3.1 implies ged (2" + 1, ¢* — 1) = ged ((—=22 )t — 1, (=22)2 — 1) =
|(=2%)e — 1] =2+ 1.

Suppose t|n and 2t{n. Let d =ged(2"" +1,¢* — 1), so that d|2>") — 1.
Thereisanodd n, € Nsuchthatn = -n,n—t=t-(n, — 1) =2t - "' By Lemma
3.1, ged (220 — 1, 4> — 1) = 2% — 1,50 d | 2% — 1 and 2* = 1 (mod d). Thus

1

Mu—
2

0=2""+1=2""" +1=2 (modd),

and d =1 as d is odd.



15: 02 2 Cctober 2010

Downl oaded By: [National Cheng Kung University] At:

DADE’S INVARIANT CONJECTURE 2369

Suppose 7{n. There are k,1,,n, € N with 2|7, and 2tn, such that ¢ =
2k.1, n=2k-n, Hence 2"+ 1 = —((=2¥)w" —1) and ¢* — 1 = (—2%) — 1.
So Lemma 3.1 implies ged(2"" + 1, ¢* — 1) = ged (=22 )t — 1, (=22)>% — 1) =
|(=22)u/2 — 1| =2/ 4 1. O

4. ACTION OF AUTOMORPHISMS ON IRREDUCIBLE CHARACTERS

Let G € {Sp,(2"), GU,(2*")}, and let O = Out(G) and A = Aut(G). If G =
Sps(2"), then O = (B) with > = «, where « is a field automorphism of order n; and
if G = GU,(2*"), then O = (a), where o is a field automorphism of order 2n. We
fix a Borel subgroup B and distinct maximal parabolic subgroups P and Q of G
containing B as in [13, 20].

In this section, we determine the action of O on the irreducible characters
of B, P, Q, and G. Our notation for the parameter sets of these groups is similar
to that of CHEVIE and is given in Tables A.1 and A.6 in the Appendix A. The
correspondence between the CHEVIE notation and that of Enomoto (respectively,
Nozawa) is given in Tables A.2-A.4 (respectively Tables A.7-A.10).

The first column of Tables A.1 and A.6 defines a name for the parameter
set which parameterizes those characters which are listed in the second column of
the table. The list of parameters in the third column of Tables A.l1 and A.6 in
Appendix A is of the form

k=0,...,n, —1
k=0,...,n —1 or 1 =0, . ..nm—1
where the n;’s are polynomials in ¢ with integer coefficients. In the first case, the
parameter k can be substituted by an element of Z, but two parameters which differ
by an element of n,Z yield the same character. In the second case, the parameter
vector (k, /) can be substituted by an element of Z x Z, but two parameter vectors
which differ by an element of n,Z x n,Z yield the same character. In other words,
k can be taken to be an element of Z, and (k, /) can be taken to be an element
of Z, xZ,, The groups Z, and Z, x Z,, are also called character parameter
groups (see Section 3.7 of the CHEVIE [12] manual). The next lines of Tables A.1
and A.6 list elements which have to be excluded from the character parameter
group. The remaining parameters are called admissible in the following. Different
values of admissible parameters may give the same character. The fourth column
of Tables A.l1 and A.6 defines an equivalence relation on the set of admissible
parameters. If no equivalence relation is listed we mean the identity relation. The
parameter set is defined to be the set of these equivalence classes. Finally, the last
column of Tables A.1 and A.6 gives the cardinality of the parameter set.

We consider the example ,I; in Table A.1. The character parameter group is
Z,, xZ, . The parameter vectors (k,[) and ([, k) yield the same character and
the equivalence class of (k, 1) is {(k, ), (I, k)}. Hence, the characters py,(k, /) are
parameterized by the set

ply ={(k, D), (L} (kD) €Zyy X2,y 1, qg— 11k =1}

If we want to emphasize the dependence of a parameter set, say ,/;, from g we write
pI5(g). Tables A.1 and A.6 do not give any detailed information about the parameter
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sets g1y, ¢lh, gls» gly» gls and gL, gls, glss los 1y, TESPEctively, since we will not
need an explicit knowledge of these sets (note that these parameter sets parameterize
the regular semisimple irreducible characters of G). The data in Tables A.1 and A.6
is taken from [13] and [20].

The action of O = Out(G) on the conjugacy classes of elements of G, B, P and
Q induces an action of O on the sets Irr(G), Irr(B), Irr(P) and Irr(Q) and then an
action on the parameter sets. Using the values of the irreducible characters of G, B,
P, and Q on the classes listed in the last column of Tables A.2-A.4 and A.7-A.10,
we can describe the action of O on the parameter sets.

For an O-set I and each subgroup H < O let C,(H) denote the set of fixed
points of I under the action of H. In the following proposition we determine
|C,;(H)| where I runs through all (disjoint) unions of parameter sets which are
listed in Table A.5 (respectively, Table A.11) except for I, U oL U I3 U g1, U ;s
(respectively, I, U oI5 U I U Iy U 51,,). This last union of parameter sets will be
treated separately since it requires different methods.

Proposition 4.1. Let G =Sp,(2"), t|n, and let 1 # ;I, U ;LU gl U I, U gl be
one of the (disjoint) unions of parameter sets listed in Table A.5. If H = (') is a
subgroup of O, then the second column of Table A.5 show the number of fixed points
|C;(H)| of I under the action of H.

Proof. We have to consider the following parameter sets /.

First let 1€ {ghy glisYeligUclinUchos sls, sl7 U pls, pls, ply U
plios olss ol U o110} The degrees and character values on the conjugacy classes listed
in Tables A.3 and A.4 show C,(H) = I and hence |C,(H)| = |I|. We demonstrate
this for the parameter set [ = pIy U pl;,. The degrees in Table A.3 show that
»0,(0) and ,0,(1) are the only irreducible characters of P of degree 1g(q> —1).
Furthermore, ,0,(0) and ,0,(1) are the only irreducible characters of P of degree
3a(q —1)*. Hence, ,0,(0)" € {,0,(0),,05(1)} and ,0;(0)* € {,05(0),5 05(1)}. The
class representatives in Table II-1 in [13] show that the conjugacy class A, is fixed
by «, and we can see from the character Table II-2 of P in [13] that the values of
p0,(0) and ,0,(1) on A, are different. Similarly, the values of ,0;(0) and ,05(1)
on A, are different. So ,0,(k)* = p0,(k) and ,0;(k)* = p0;(k) for k=0,1 and
|C,(H)| = 1]

In each of the following cases, we have that the action of « on I is given
by x* = 2x for all x € I using the character values on the classes listed in the last
column of Tables A.2-A.4. We demonstrate this for the parameter set [ = p1; U p1.
The degrees in Table A.3 show that the ,y;(k, [)’s are the only irreducible characters
of P of degree ¢ + 1, so py3(k, )" = pys(k', I') for some {(k',1'),...} € pI;. We see
from the class representatives in Table II-1 in [13] that « acts on the semisimple
conjugacy classes of P like the 2nd power map which implies that the values of
pr3(K', 1) and pys(2k, 21) on the semisimple classes coincide. Then, the character
values of py;(k,[) (see the character Table II-2 in [13]) imply that the values of
pr3(K', 1) and py;(2k, 21) coincide on all classes, hence py;(k', I') = py;(2k, 21) and
therefore py;(k, [)* = py;(2k, 21). Similarly, py;(k)* = py,(2k). Hence, x* = 2x for all
xel.

Let 1 e{slsVUgls. 617U gly, Lo U glias I U glizs pls U pl, oI5 U plg}. So
these unions of parameter sets are isomorphic H-sets, so that we can assume
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I =l Ugl. If x={k,—k} eI, then x € C;(H) if and only if (2 —1)k=0 or
2"+ 1Dk =0. Let

C, = {{k,—k} € C,(H) | (2' £ 1)k =0},

so that C,(H) = C_UC, and C_NC, = . We claim

-1
C_= {{k, —k} € ;1| k is a multiple of 261t 1}.

The inclusion 2 is clear. Let x ={k,—k} € C_. If x € I, then (2'—1)k=0
modg + 1 and Lemma 3.2(ii) implies k = 0, which is impossible. Hence x € ;I
and (2’ — 1)k =0 modg — 1. By Lemma 3.2(i), k is a multiple of (¢ — 1)/(2" — 1),
proving the claim. Now we consider C,.

If 2t|n, we claim C, = {{k, —k} € ;Is| k is a multiple of (¢ — 1)/(2' + 1)}.
The inclusion D is clear. Let x ={k,—k} € C,. If x e ;L then 2'+1)k=0
mod g + 1 and Lemma 3.2(iv) implies k = 0, which is impossible. Hence x € 5/, and
2"+ 1)k =0 mod ¢ — 1. By Lemma 3.2(iii), £ is a multiple of (¢ —1)/(2"+ 1) and
the claim holds.

If 2t¢n, we claim C, = {{k, —k} € ;I3 |k is a multiple of (¢ + 1)/(2" + 1)}.
The inclusion D is clear. Let x ={k, —k} € C,. If x € 4l;, then 2"+ 1)k=0
mod g — 1 and Lemma 3.2(iii) implies & = 0, which is impossible. Hence x € ;I; and
(2'4+ 1)k =0 modg + 1. By Lemma 3.2(iv), k is a multiple of (¢ +1)/(2" + 1) and
the claim holds.

Thus in all cases, |C;(H)| = |C_| +|C,| =32 + % =2~ L.

Let I =41, If (k,1) €I, then (k,]) € C,(H) if and only if (2' — 1)k =0 and
(2'=1)/=0modg — 1. By Lemma 3.2(i), this is equivalent with k, / are multiples
of £=. Thus, |C,(H)| = (2' — 1)~

Let 1€ {3hy shs, slys sls, pls phos plis ol ohos o). I k€I, then ke
C/(H) if and only if (2'—1)k=0 modg—1. So we get C,(H)={ke
I |k is a multiple of (¢ — 1)/(2" — 1)} and |C,(H)| =2" — 1.

Let I = pI3 U pI;. First, we compute |C,, (H)|. Let

(k. oY eC, (H) | 2k=k 21=1} ifi=1,
UKD, LRy e C(HY [ 2k =1, 2=k} ifi=2.

If x ={(k, 1), (I, k)} € pL;, then x € U, if and only if (2’ — 1)k =0and 2'—1)I=0
mod g — 1. By Lemma 3.2(i), this is equivalent with that k, / are multiples of 2",—__11
Hence |U,| = (2" = 2)(2' = 1)/2.

Suppose 2t | n. If x = {(k, ]), (I, k)} € pl;, then x € U, if and only if 2’k = [ and
2'l = kmodg — 1. So, we get (2* — 1)k = 0 mod ¢ — 1, and this is equivalent with k
being a multiple of (¢ — 1)/(2% — 1). Now exclude those solutions with k = I, which
means (2’ — 1)k = 0 mod g — 1. This gives us |U,| = 2'(2" — 1)/2.

Suppose 2ttn. If {(k,I),(l,k)} € Uy, then (2* —1)k=0 modg— 1. By
Lemma 3.2(i) and (iii), this is equivalent with (2"’ — 1)k =0 modg — 1. Then k =
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2'k = I, a contradiction to the definition of ,I;. Hence, U, = @. So

(2 — 1) if 2| n,

H)| = =
1€, (H)] = U/ + 10| {(T Cye_bvp e
Next we calculate |C,, (H)|. If x = {k, gk} € pI;, then x € C,. (H) if and only
if 2'—1)k=0 or 2'— ¢k =0 mod(qg+ 1)(¢ —1). Suppose 2'—1)k= 0. By
Lemma 3.2(i) and (ii), it follows that gcd(2"'—1,(¢+ 1)(g—1)) = ged(2' — 1, g —
1)=2"—1. Thus (¢g+1)- l) |k. But then (¢+1)|k, a contradiction to the
definition of ,I,. So we have proved that x € C,, (H) if and only if (2' —q)k =0
mod(g + 1)(g — 1).

Suppose 2t|n. If {k, gk} € C,,(H), then (2'—¢g)k =0 mod(q+1)(g—1).
Thus 2" — 1)k =0 modg —1 and (2" 4+ 1)k =0 modg + 1. Lemma 3.2(iv) implies
(g + 1) | k, a contradiction to the definition of »/;. Hence in this case C,;, (H) = 0.

Suppose 2¢t n. We claim

(g—1
C.,.(H) = {{k, gk} € pI; | k is a multiple of %}.

Let k = %m for some m € Z. Because t|n and 2¢tn we have 2t|n —t.

Then we get 2"+ 1)(2' —1) =2* —1]|2""—1. Thus (2" — 1)k = #}g}_l)(q +
D(g—1)-m=0 mod(¢g+1)(g—1). So (2'"—¢gk=0 mod(q+1)(¢—1) and
{k, gk} € C . (H).

Conversely, suppose {k, gk} € C,.. (H). Then (2' — g)k = 0 mod(g + 1)(g — 1).
Hence (2'+ 1)k =0 modg+ 1 and (2’ — 1)k =0 modg — 1. By Lemma 3.2(i) and
(iv), this is equivalent with £ |k and £= | k. Since £ | g+ 1 and =} g — 1 and
since ged(g+1,g—1) =1, we have ged(#£5, ) = 1. Therefore % | k,
and the claim holds. So by the definition of ,/;, we get |C,. (H)| =2'(2" — 1)/2. So
in both cases, |C;(H)| = |C,,,(H)| + |C,. (H)| = 2' = 1)*.

Let I = 413U y1;. First, we compute |C ;, (H)|. Let

[k D, (ke =DYeC ()| 2k =k 2I=1)  ifi=1,
kD (kDY eC (B | 2k =k 20 =—1)  ifi=2.

If x = {(k, 1), (k, =1)} € , 15, then x € U, if and only if (2' — 1)k =0and (2' - 1) =
0 mod g — 1. By Lemma 3.2(i), this is equivalent with k, [ are multiples of £— 1 . Hence
Uil =(2"-2)2" - 1)/2.

Suppose 2t |n. If x = {(k, 1), (k, =I)} € ,15, then x € U, if and only if (2' —
1)k =0and (2" + 1)/ =0 modg — 1. Hence

={{(k,l),(k “D)e 175 ll‘ka dﬁ z}

and |U,| =2'(2" — 1)/2.
Suppose 2t{n. If x = {(k, 1), (k, =I)} € ,15, then x € U, if and only if (2' —
k=0 and 2"+ 1)/ =0 modg — 1. By Lemma 3.2(iii), the second congruence is
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equivalent with /=0 modg — 1, a contradiction to the definition of ol5. Hence,
U2 = @. SO

Q' —1)? if 2¢ | n,
|C,,(H)| = |U\[ + |Uy| = .
Q' —2)2' = 1)/2  if2tfn.

Next we calculate |CQ,7 (H)|. Let

oo [UED. (DY e C 2k =k 21=1) ifi=1,
kD (ko -DY e C, () |2k =k 21 =1} ifi=2.

If x = {(k, ), (k, =)} € o1, then x € U, if and only if (2’ — 1)k =0 modg — I and
(2" = 1) =0modg + 1. By Lemma 3.2(i) and (ii), this is equivalent with % | k, and
(¢ + 1) |1, a contradiction to the definition of ,/,. Hence, U; = #.

Suppose 2t |n. If x = {(k, 1), (k, 1)} € y,I;, then x € U, if and only if (2’ —
1)k=0 modg —1 and (2 + 1)/ =0 modg + 1. By Lemma 3.2(i) and (iv), this is
equivalent with % | k, and I = 0 mod ¢ + 1, a contradiction to the definition of ol
Hence, U, = 0.

Suppose 2t n. If x = {(k, 1), (k, =)} € ,I;, then x € U, if and only if (2' —
1)k=0modg — 1 and (2" + 1)/ =0 mod g + 1. Hence

q—1 qg—1
97 "k and I
2r—1‘ an 2t+1‘ }

U, = {{(k, D). (k. ~D)} € ol

and |U,| =2'(2" — 1)/2.
So

1o (ED] = (U] + U] = | warin,
= + =
of DU e~ 2 it 2t

So in both cases, |C,(H)| = |C,, (H)| + |C, . (H)| = (2 — 1)2. O

ols
PrOpOSition 4.2. Let G = GU4(227!)’ t|2n, and I ?é GIZ U GIS U G16 U GI9 U Gllo be
one of the (disjoint) unions of parameter sets listed in Table A11. If H=(«') is a
subgroup of O, then the second and third columns of Table A.11 show the number of
fixed points |C,(H)| of I under the action of H.

Proof. We have to consider the parameter sets in Table A.11.

In each of the following cases, we have that the action of « on [ is given
by x* = 2x for all x € I using the character values on the classes listed in the last
column of Tables A.7-A.10.

Suppose I € {¢1}, gl12> 113> 6lia> slas Bls» plss plos pligs ols}. 1f k € 1, then k €
C,(H) if and only if (2' — 1)k =0 mod g + 1.

Suppose ¢ | n. Then by Lemma 3.3(i), this is equivalent with k = 0 mod g + 1.
So we get |C,(H)| = 1.
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Suppose tfn. Then by Lemma 3.3(i), this is equivalent with (22 + 1)k =
0 modg+ 1. So we get C,(H) = {k € I |k is a multiple of (¢ + 1)/(2/> + 1)} and
€, (H)| = 22 4+ 1.

Let I € {3V gly, g4 U gLy, plg U pI;}. Then these unions of parameter sets
are isomorphic H-sets, so that we can assume I = ;I; U ;I,,. First, we compute
|C , (H)|. Let

Gl3

o [Me—a e anize=n =t
Tk —gky e C, (H) |2k = —qk}  ifi=2.

Gls
If x={k, —gk} € ;I;, then x € U, if and only if (2’ - k=0 modg®>—1. By
Lemma 3.3(ii), this is equivalent with k is a multiple of ‘;,—:11 So

2'=2)/2 if t|n,
|U1| = .
2" — 217 — 2)/2 if ttn.

Suppose ¢ |n. If x = {k, —gk} € 5;I;, then x € U, if and only if (2'+ ¢)k =0
mod g*> — 1. Then (2"~ + 1)k = 0 mod ¢*> — 1. By Lemma 3.4, this is equivalent with
(2" + 1)k =0 mod ¢> — 1 if 2¢| n, and k = 0 mod ¢*> — 1 if 2¢{ n. So by the definition
of ;I;, we get

21/2 if 2t|n,
|Us| = [ .
0 if 2t4 n.

Suppose ttn. If x = {k, —qgk} € 5I;, then x € U, if and only if 2'+ ¢)k=0
modg®> — 1. Then (2""+ 1)k =0 modg* — 1. By Lemma 3.4, this is equivalent
with (272 + 1)k = 0 mod ¢*> — 1. By Lemma 3.3(i), it follows that gcd(2/?> + 1, (¢ +
D(g—1) =ged2”>+1,g4+1)=27+1.S0 (¢ — 1) - {22 |k. But then g — 1 | k, a

21241
contradiction to the definition of ;/;. Hence in this case U, = . So

20— 1 if 21| n,
L) =10+ Uy = {2 =2)/2 if £|n and 214 n,
(21 =272-2)2  ifttn.

|C

G

Next we calculate |C , (H)|. Let

¢l

i

Uk D By eC, (1) [ 2k=k2I=1} ifi=1,
kD, oY eC, ()| 2k=121=k ifi=2.

If x ={(k,]), (I, k)} € gI,5, thenx € U, if and only if (2’ — 1)k =0and 2' = 1)/ =0
mod g + 1.

Suppose ¢ | n. By Lemma 3.3(i), this implies k =/ mod g + 1, a contradiction
to the definition of ;I,,. Hence, U, = 0.

Suppose 7t n. By Lemma 3.3(i), this is equivalent with k, [ are multiples of
o+ So we get |U,| = 2/2(2/* 4+ 1)/2.

21241"
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Suppose ¢ | n. If x = {(k, ]), (I, k)} € 515, then x € U, if and only if 2’k =/ and
2'l =k modq+ 1. From these two congruences, we get (2% — 1)k =0 mod g + 1.
By Lemma 3.3(i), this is equivalent with (2’ + 1)k = 0 mod ¢ + 1. By Lemma 3.3(iii),
this is equivalent with k = 0 mod ¢ + 1 if 2¢ | n, and (2" + 1)k = 0 mod g + 1 if 2¢{ n.
Thus, we have

0 if 2¢ | n,

|Us| = .
2172 if 24 n.

Suppose tfn. If x ={(k, 1), (I, k)} € ;I,,, then x € U, implies (2* — 1)k =0
and (2* — 1)l =0 mod g + 1. By Lemma 3.3(iii), this is equivalent with (2’ — 1)k =
0 modg+ 1. Then k =2k =1 mod g + 1, a contradiction to the definition of ;1I,,.
Hence in this case U, = 4. So

0 if 2t | n,
|C,r, ()| = Uy + |Us] = {27/2 if £|n and 21t n,
22022 +1)/2  if thn.

So, in all cases, |C;(H)| = |C_;,(H)| + |C,.,(H)| =2" - 1.

Let I e{;;Uglg glsUglis}. Then these unions of parameter sets are
isomorphic H-sets, so that we can assume [ = ;I,U ;l,;. First, we compute
|C,.,(H)|. Let

o [ (D, gk DY € € |2k =k, 21 = 1) ifi=1,
UK D, (—gk, DY € C (H) |2k = —gk, 2 =1} ifi=2.

If x = {(k, 1), (—gk, 1)} € ;I;, then x € U, if and only if (2' — 1)k =0 mod¢*> — 1
and 2" — 1)/ =0 modgqg + 1.

Suppose ¢ | n. By Lemma 3.3(i) and (ii), this is equivalent with % |kand [ =0
mod g + 1. Hence, |U;| = (2' —2)/2.

Suppose #{n. By Lemma 3.3(i) and (ii), this is equivalent with g?—:ll | k and
54 | 1. So by the definition of ;I;, we get |U}| = (2" — 2% — 2)(22 + 1)/2.

Suppose ¢ |n. If x ={(k, 1), (—qk, )} € ;I;, then x € U, if and only if (2" +
@)k =0 modg®> —1 and (2' — 1)/ =0 modg+ 1. Then (2" + 1)k =0 modg* — 1
and / =0 modg + 1. By Lemma 3.4, the first congruence is equivalent with (2" +
k=0 modg®— 1 if 2¢|n, and k =0 mod¢*> — 1 if 2¢{n. So by the definition of
ol we get

202 if 2t|n,

U, =
%1=10 if 204 n.

Suppose ttn. If x={(k,l),(—gk,1)} € gI;, then x € U, if and only if
2"+ @k =0 modg®> —1 and (2 — 1)/ =0 modg + 1. Then the first congruence
is equivalent with (2"~"+ 1)k =0 mod¢> — 1. By Lemma 3.4, this is equivalent
with (272 4+ 1)k =0 modg* — 1. By Lemma 3.3(i), it follows that ged(2/? + 1,
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(g+1D(g—1) =ged2”+1,g+1)=2"+1. So (¢—1)- |k But then

q— 1|k, a contradiction to the definition of ;I,. Hence in this case U, = #. So

20— 1 if 2t | n,
L (H)| =0+ U] = {(2"=2)/2 if £|n and 214 n,
(21 =22 =) +1)/2  iftfn.

IC

G

Next we calculate |C_; (H)|. Let

U m) komoD) € €y () |2k =k 2= 12 m=m) =1,
Tk Lm), kom DY eC, (H)|2k=k2l=m2m=1} ifi=2.

clie
If x={(k,l,m), (k,m, 1)} € 5li¢, then x € U, if and only if 2'—1)k=0, (2' —
Dl=0and 2'—1)ym=0modg + 1.

Suppose ¢ | n. By Lemma 3.3(i), this is equivalent with k = [/ and / = m mod g +
1, a contradiction to the definition of ;I,;. Hence, U, = 0.

Suppose 71 n. By Lemma 3.3(i), this is equivalent with k, I and m are multiples
of 5. So we get |Uj| =272(2' — 1)/2.

Suppose ¢ | n. If x = {(k, I, m), (k, m, 1)} € ¢l;5, then x € U, if and only if (2" —
Dk=0, 2'l=m and 2'm =1 modg + 1. From the last two congruences we get
(2" = 1)k=0and (2 — 1)l = 0 mod g + 1. By Lemma 3.3(i), this is equivalent with
k=0 and 2+ 1)/ =0 modg+ 1. By Lemma 3.3(iii), the second congruence is
equivalent with / = 0 mod ¢ + 1 if 27| n, and (2' + 1)/ = 0 mod ¢ + 1 if 2¢{ n. So by
the definition of 51,4, we get

0 if 2¢ | n,

|U2| = .
2072 if 2ttn.

Suppose t1n. If x = {(k, [, m), (k, m, )} € ;I then x € U, if and only if (2" —
k=0, 2'l=m and 2'm =1 modg+ 1. From the last two congruences we get
(2* — 1)l =0 modgq + 1. By Lemma 3.3(iii), the second congruence is equivalent
with (2’ — 1)/ =0 modg + 1. Then [ =2l = m modg + 1, a contradiction to the
definition of ;I,;. Hence in this case U, = #. So

0 if 2t | n,

(H)| = U [+ |0, =122 if t|n and 2t{n,
2220 —1)/2 i tfn.

|C

che

Thus,

21 if ] n,

|C1(H)| = |CGI7(H)| + |CGII(,(H)| = (2[/2 " 1)(2[ o2 1) i t)(n.

Let I € {517, gLis» glio> o1} If (k, 1) €I, then (k,[) € C,(H) if and only if
2'—1k=0and 2'—1)/=0modg + 1.
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Suppose ¢ | n. By Lemma 3.3(i), this is equivalent with &, [ are multiples of g +
1. Then k = I mod ¢ + 1, a contradiction to the definition of 1. So we get |C,(H)| =0.
Suppose 7t n. By Lemma 3.3(i), this is equivalent with k, / are multiples of
So we get |C,(H)| = 272(2"* +1).
Let I =41, If (k,1) € I, then (k,]) € C,(H) if and only if (2' — 1)k =0 and
(2" — 1) = 0 mod ¢* — 1. By Lemma 3.3(ii), this is equivalent with k, [ are multiples
of 2= Thus, |C,(H)| = (2' — 1)?.

Let I € {3hy, ply, oIy, o} If (k, 1) € I, then (k, [) € C,(H) if and only if (2" —
Dk=0modg*—1and (2'— 1)/ =0modgq+ 1.

Suppose ¢ | n. By Lemma 3.3(i) and (11) this is equivalent with £ = r|kand [=0
mod g + 1. So we get C,(H) = {(k, ) e I'| % "_1 |k and g+ 1|1} and |C,(H)| =2'—-1.

Suppose #4n. By Lemma 3.3(i) and (11) this is equlvalent with f—= = T |k and
(272 +1)i=0 modg+ 1. So we get C,(H) ={(k,l)el|i{= = — | k and 2%;11 |1} and
|C,(H)| = (2" = )27 +1).

Let I € {315, 3ls, ply, ply, ply}. If k €1, then k € C,(H) if and only if (2’ —
1k =0 modg® — 1. So we get C,(H) = {k € I | k is a multiple of (¢> — 1)/(2" — 1)}
and |C,(H)| =2" — 1.

Let I =, If (k,I) €1, then (k,]) € C,(H) if and only if 2'—1)k=0
modg + 1 and (2’ — 1)/ =0 modg* — 1.

Suppose t | n. By Lemma 3.3(i) and (ii), this is equlvalent with k =0 modg + 1
and I L|1. So we get C,(H) ={(k,l)eI|q+1]|kand = = — |1} and |C;(H)| =2' —
L.

2'/2+1

Suppose 1 n. By Lemma 3.3(i) and (ii), this is equivalent with (2’/2 + Dk =
0 modg+1 and £=1 111 So we get C,(H) = {(k,]) € I|54 |k and £ |[} and
G (H) = (2 + 1)(2 - 1),

Let I € {317, 17, o1y, o110} If (k, 1) € I, then (k, 1) € C,(H) if and only if (2 —
1)k=0and 2" — 1)/ =0 modgq + 1.

Suppose ¢ | n. By Lemma 3.3(i), this is equivalent with k = 0 and / = 0 mod g +
1. So we get C,(H) ={(k,]) e I|q+ 1|k, !} and |C;(H)| = 1.
Suppose ¢t n. By Lemma 3.3(i), this is equivalent with k, / are multiples of
So we get |C,(H)| = (27* + 1)2.
Let I = 13U pls. First, we compute |C,, (H)|. Let

2//2+1

o [HED.@oYeC, @ 2k=k 21=1) ifi=1,
UKD, kY e C(HY [ 2k =1, 2=k} ifi=2.

Ifx= {(k D), (I, k)} € pl;, then x € U, if and only if (2 — 1)k = 0 and (2’ — 1)l =
mod ¢*> — 1. By Lemma 3.3(ii), this is equivalent with &, [ are multiples of £— Hence
Ul = 2 =22 = 1)/2.

Suppose ¢ | n. If x = {(k, 1), (I, k)} € pI5, then x € U, if and only if 2’k = [ and
2'l = k mod ¢* — 1. From these two congruences we get (2% — 1)k =0 mod ¢*> — 1,
and this is equivalent to k being a multiple of (¢*> — 1)/(2* — 1). Excluding those
solutions with k = [ mod ¢*> — 1, we get |U,| = 2/(2" — 1)/2.

Suppose ¢t n. If x = {(k, 1), (I, k)} € pI5, then x € U, if and only if 2’k = [ and
2'l = k mod¢* — 1. From these two congruences we get (2% — 1)k =0 mod ¢*> — 1.
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By Lemma 3.3(iv), this is equivalent with (2’ — 1)k = 0 mod ¢*> — 1. Then k = 2'k =
1, a contradiction to the definition of ,I;. Hence, U, = #. So

Q' —1)? if ¢ n,
|C,.,(H)| = |U\| + |Uy| = .
Q' —2)2' —1)/2  iftfn.

Next we calculate |C,, (H)|. If x = {k, ¢k} € pl, then x € C,, (H) if and only if
2'—1Dk=0 or (2'—¢*)k=0 mod(q*+ 1)(¢*> — 1). Suppose (2 — 1)k = 0. By
Lemma 3.3(i), it follows that ged(2' — 1, (> + 1)(¢* = 1)) = gcd(2' =1, ¢* — 1) =
2" — 1. Thus (¢* + (‘5:11) | k. But then (¢*> + 1) | k, a contradiction to the definition
of pls. So we have proved that x € C,; (H) if and only if (2' — ¢ )k = 0 mod(q* +
(g - 1).

Suppose | n. If {k, g*k} € C ; (H), then (2' — ¢*)k = 0 mod(q* + 1)(¢* — 1).
Thus (2' — )k = 0 modg®> — 1 and (2'+ 1)k =0 mod(¢> + 1). By Lemma 3.3(ii)
and (v), we get &= = - |k, and (¢>+ 1) |k, a contradiction to the definition of .
Hence in this case CP 1, (H) = 0.

Suppose 7t n. We claim

1) (g— 1
C,,.(H) = {{k, 7k} € oI | k is a multiple of M}.

2+ D2 —1)

2 2
Let k = % -m for some m € Z. Because ¢ |2n and ¢t n, we have 2¢|2n — t.

Since (2' — 1)(2" + 1) =22 —1|2>*~" — 1, we then get 2" — 1)k = ﬁﬁ(e]z +
(@ —1)-m=0mod(g> + 1)(¢> — 1). So (2 — )k = 0 mod(q> + 1)(¢* — 1) and
{k, ¢’k} € Cpls(H)'

Conversely, suppose {k, ¢°k} € C,, (H). Then (2' — ¢*)k = 0 mod(q* + 1)(¢* —
1). Hence (2 + 1)k = 0 modg? + land 2'=1)k=0 modq — 1. By Lemma 3.3(i1)

and (v), this is equivalent with £ +l + |k and £= = L | k. Since Z,Ill |¢*+1and £ | ¢* —
1 and since ged(q® +1, 4% — 1) =1, we have gcd(g,ﬂ, Z,_l) 1. Therefore

W | k, and the claim holds. So by the definition of ,I5, we get |C,, (H)| =

22" = 1)2.

So in both cases, |C;(H)| = |C,,.(H)| + |C,, (H)| = 2' — 1)*.

Let I = y1; U ,lg. First, we compute |C , (H)|. Let

o [ D. (6 —ab) € € |2k = k.21 = 1) ifi=1,
KD (ko —g) € C(H) | 2k =k, 2= —ql}  ifi=2.

If x = {(k, ), (k, —ql)} € oI5, then x € U, if and only if (2’ — 1)k =0 and (2' - 1)/ =

. . . . . . : 2_1
0 modg® — 1. B.y. Lemma 3.3(ii), this is equivalent with k, / being multiples of £—.
So by the definition of ,1;, we get

. 2 — )2 —2)/2 if 1] n,
"l - -2 -2)2  iftin
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Suppose t|n. If x = {(k, 1), (k, —ql)} € ,I;, then x € U, if and only if (2' —
k=0 and (2'+ ¢)l =0 modg® — 1. Then ‘5—:11 |k and (2"~ 4 1)] = 0 mod ¢*> — 1.
By Lemma 3.4, the second congruence is equivalent with (2 4+ 1)/ = 0 mod ¢*> — 1 if
2t|n, and [ = 0 mod ¢* — 1 if 27f n. So by the definition of ,I;, we get

22— 1)/2  if 2t|n,

U,| =
%1=10 if 24 n.

Suppose tf{n. If x = {(k, 1), (k, —ql)} € oI5, then{(k, I), (k, —ql)} € U, if and
only if (2' — 1)k =0 and (2’ + ¢)l =0 mod ¢*> — 1. Then % |k and 2"+ 1)l =
0 modg? — 1. By Lemma 3.4, the second congruence is equivalent with (272 +
1)/ = 0 mod ¢*> — 1. By Lemma 3.3(i), it follows that gcd(2/> + 1, (¢ + 1)(g — 1)) =
ged(2/24+1,g+1)=2"2+1.S0 (g — 1) - ¥ | 1. But then ¢ — 1|, a contradiction

21241
to the definition of ,/;. Hence in this case U, = #. So

2 — 1) if 2t | n,
C,, () = U] + U] = { 2 = 1)(2' = 2)/2 if #|n and 24 n,
Q' — 1) =272 —2)/2  if t}n.

Next we calculate |C , (H)|. Let
ols

Uk om), (kom, D} € Cpp(H) |2k =k, 21 =1,2m=m) ifi=1,
Gk m), (kom DY € Cp(H) | 2k =k 2T =m 2m =1} ifi=2.

If x = {(k, I, m), (k, m, )} € yl, then x € U, if and only if (2' — 1)k = 0 mod ¢*> — 1,
and 2'—1)/=0and 2' — 1)m =0 modg + 1.

Suppose t|n. Then (2" — 1)k =0 modg®> — 1, and /=0 and m =0 modq +
1. This is equivalent with g:—j |k, and /=m modg+ 1, a contradiction to the
definition of , /5. Hence, U, = 0.

Suppose t{n. Then (2 — 1)k =0 modg> — 1, and (27> + 1) =0 and (277> +

1)m =0 mod g + 1. Hence
I, m}
and |U,| = 272272+ 1)(2" = 1)/2.

Suppose ¢ |n. If x = {(k, [, m), (k,m, )} € ,I;, then x € U, if and ogly if (2" —
Dk=0 modg®>—1, 2'l=m ancl 2m=1 modg+ 1. By Lemma 3.3(1), we get
from the last two congruences, % |k and 2* —1)I=0 modg+1, 2"+ 1I=0
mod g + 1. By Lemma 3.3(i) and (iii), the second congruence is equivalent with / = 0

modgq + 1 if 2¢|n, and (2' + 1) =0 mod g + 1 if 2¢{ n. So by the definition of , /g,
we get

7 —1

2t —1

q+1

U = {{(k, I, m), (k,m, 1)} € ,l 1

‘k and

0 if 2t | n,
|U2| = .
202" =1)/2 if 2t n.
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Suppose t{n. If x = {(k, [, m), (k, m, 1)} € ,I;, then x € U, if and only if (2 —
Dk=0modg>—1, and 2’/ =m and 2'm = modg + 1. By Lemma 3.3(i) we get
from the last two congruences, we get % |k and (2* — 1)/ =0 modg+ 1. By
Lemma 3.3(iii), the second congruence is equivalent with (2’ — 1)/ =0 modgqg + 1.
Then [ =2'l = m mod g + 1, a contradiction to the definition of ,I;. Hence in this

case U, = . So

0 if 2¢ | n,
(D = U] 10y = L 22— 1)2 if ¢ n and 2011,
22 4 12— 1)/2  if thn.

So in both cases, |C;(H)| = |C,,,(H)| + |C, ()| = 2 — 1),
Let I = ,lg U ,l,,. First, we compute |C , (H)|. Let

kD, (=g} € €, (H) | 2k =k, 21 = 1} ifi=1,
kD (ko =g} € €, (H) | 2k =k, 21 = —ql}  ifi=2.

If x = {(k, ), (k, —ql)} € ol then x € U, if and only if (2' — 1)k =0 modg + 1 and
2'—1I=0modg>— 1.
Suppose | n. By Lemma 3.3(i) and (ii), this is equivalent with ¢ + 1|k and

£=1|1. So we get U] = (2' —2)/2. 7
Suppose 71 n. Then 54 |k and £ | 1. So we get |U}| = (22 + 1)(2" — 2% —
2)/2.

Suppose t|n. If x = {(k, 1), (k, —ql)} € y,l;, then x € U, if and only if (2" —
Dk=0modg+1 and (2'+ ¢)l =0 modg*> — 1. Then ¢+ 1|k and 2" +1)[ =0
mod g® — 1. By Lemma 3.4, the second congruence is equivalent with (2 + 1)/ =0
mod ¢*> — 1 if 2¢| n, and [ = 0 mod ¢* — 1 if 2¢{ n. So by the definition of , I, we get

212 if 2| m,

|Us| =
o if 204 n.

Suppose 11 n. If {(k, [), (k, —ql)} € U,, then 2" — 1)k =0modg+ 1 and 2' + ¢)l =
0 modg® — 1. Then ;2. [k and (2" + 1)/ =0 modg® — 1. By Lemma 3.4, the
second congruence is equivalent with (272 + 1)/ = 0 mod ¢> — 1. By Lemma 3.3(i),
it follows that gcd(2/2 + 1, (¢ + 1)(g — 1)) = ged(2”* +1,g+ 1) = 27>+ 1.So (¢ —
1) - 2(,"/7—:1)1 | 1. But then ¢ — 1|/, a contradiction to the definition of ,/;. Hence in this
case U, = . So

2'—1 if 2¢ | n,
(H)| =0 +|0,| = (2" -2)/2 if 1| n and 24 n,
Q72 +1)(2' =27 =2)/2  if t{n.

|C

ols
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Next we calculate |C ; (H)|. Let

ol

U {k.Lm), (k.m. D}y € C,, (H)[2k=k 21=12m=m} ifi=]1,
. (k,l,m), (k,m,D)}e C, (H)|2k=k, ,2l=m2m=1} ifi=2.
oln

If x = {(k, [, m), (k,m, 1)} € I, then x € Uy ifand only if 2' — Nk =0, (2' = 1) =
0and 2'— 1)m =0 modg + 1.

Suppose ¢|n. Then k =0, l =0 and m = 0 mod ¢ + 1. This is equivalent with
g+ 1]k, and I =m modg+ 1, a contradiction to the definition of ,I;;. Hence,
U, =0.

Suppose tfn. Then (2/2+1)k=0, 27+ 1)I=0 and Q27’+1)m=0
mod g + 1. Hence

U = {{(k, Lom), (km, DY € ol | 55—

|
9+ ‘k,l,m}

and |U,| = 2/2(2"7 4+ 1)?/2.

Suppose t | n. If x = {(k, [, m), (k, m, )} € ,1,;, then x € U, if and only if (2 —
Dk=0, 2"l=m and 2'm =1 modq + 1. From Lemma 3.3(1) and the last two
congruences, we get ¢ + 1|k and (2 — 1) = 0 mod ¢ + 1. By Lemma 3.3(i) and (iii),
the second congruence is equivalent with / = 0 modg + 1 if 2¢|n, and (2' + 1)/ =0
mod g + 1 if 274 n. So by the definition of ,1;;, we get

0 if 2t | n,
272 if 2t n.

Suppose tfn. If x = {(k,1,m), (k,m,1)} € 5I};, then x € U, if and only if
2'—=1k=0, 2l=m and 2'm =1 modg+ 1. From Lemma 3.3(i) and the last
two congruences, we (2% —1)/=0 modg+ 1. By Lemma 3.3 (iii), the second
congruence is equivalent with (2’ — 1)/ =0 modg + 1. Then [ =2l = m mod g + 1,
a contradiction to the definition of ,1;;. Hence in this case U, = #. So

0 if 2¢| n,
1C, o ()| = |Uy| + U] = 122 if 7| n and 2¢4n,
2222 4 1)2/2 if tfn.

Thus,

21 if ¢n,

1G] = 1€, (D] +1Cos, (HD)] = :(2,/2 FDE-D e g

Next, we deal with the regular semisimple irreducible characters of G.
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Proposition 4.3. Ler G =Sp,(2"), t|n, 1(2"):=c(2")U ;L (2" U ;;(2") U
cLi(2") U I5(2") and H = {(a') a subgroup of O. Then

C/(H)| = (2" = D)™

Proof. Let IF be the algebraic closure of IF - and let T be the maximal torus of
G = Sp,(FF) and W = N5(T)/T the Weyl group.

Let y = y(x) be an irreducible character of Sp,(2") labeled by the parameter
x given in [13]. Then y(x)* = x(2x). (Using the character values on the classes listed
in the last column of Tables A.3, we know that the action of « on the parameter
sets is given by x* = 2x.) In addition, let (s, u) be the semisimple and unipotent
labels of y(x). Then x € I(2") if and only if (s, u) = (s, 1) with s regular, so that
Cz(s)=T. Here and in the following, we identify Sp,(2") with its dual group since
these groups are isomorphic to each other. Thus y* = y if and only if (s)% = (5)g;
namely, s* = s for some w € W, where (s); is the conjugacy class of G containing
s. Thus z* = yif and only if s € C7(o'w™"); namely, s is a regular element of Sp,(2'),
since Cy(’w™") is a maximal torus of Sp,(2’). But a regular element s of Sp,(2)
labels an irreducible character = i ; of Sp,(2') such that its parameter y (see [13])
lies in 1(2"). It follows that

Ciany(H) = 1(2)
as H-sets, and |C;on (H)| = [I(2')| = (2" — 1)*. O

Proposition 4.4. Let G = GU,(¢?), t|2n, I := 51, U ;I U 51U g1y U 1,y and H =
(o' a subgroup of O. Then:

(a) |C;(H)| is equal to the number of those regular semisimple conjugacy classes of G
which are stabilized by o';

(b) If ttn (resp., t|n), then |C,(H)| is equal to the number of regular semisimple
conjugacy classes of GU,(2") (resp., Sps(2"));

(0) IC,(H)| = (2" =1

Proof. We use an argument similar to the one in [2, Proposition 4.2]. The set I
parameterizes the regular semisimple irreducible characters of G. We fix some
notation. Let IF,, be a finite field with q* elements, IF an algebraic closure of IF,»
and G = GL4(]F) Let y: G — G be a graph automorphism of order 2 and a ﬁeld
automorphism % : G — G obtained from the map IF — TF, x — x2. Setting F:=7%" o
y=yod" we get G=GU,(¢*) = G = GL,(¢*)" = {g € G|F(g) = g}. Since the
restriction @|; : G — G of o to G generates Out(G), we can assume o|; = o.

For L € {G, G}, let ¥ Free(L) be the set of all regular semisimple conjugacy
classes of L. If p is an endomorphism of L, then let ¥, (L)” := {C € ¥, (L) | C* =
C} be the set of p-stable regular semisimple conjugacy classes of L. Finally, let
Irr® (G) be the set of regular semisimple irreducible characters of G.

reg
By [4, Corollary 3.10, p. 197] of Springer—Steinberg, the map C — C nG
is a bijection from ,L,g(G)F onto ,Lg(G) and this bijection induces a bijection
between the set of regular semisimple conjugacy classes of G fixed by o' and the set
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of F-stable regular semisimple conjugacy classes of G fixed by &'. It follows that,
since @' raises every element of a maximally split torus of G to its 2'-power, the
automorphism ¢’ maps each regular semisimple conjugacy class (g); of G to the
class (g%'). In other words, o' acts on the regular semisimple conjugacy classes of G
like the 2'th power map (this does not mean, that ¢’ maps every regular semisimple
element of G to its 2'th power).

(a) Since G = GU,(¢?) is isomorphic to its dual group (in the sense of [6,
Section 4.4, p. 120]), the number | ,%(G)“ | of fixed points of o’ on #,,,(G) is equal
to the number of fixed points of o' on Irry; (G). By definition, the latter equals
|C,(H)].

(b) In this part of the proof, we imitate an argument which is used in the
proof of [3, Lemma 4.1]. As we have seen at the beginning of this proof, there is a
bijection from the set of regular semisimple conjugacy classes of G fixed by o' onto

,eg(G)<F ™) the set of fixed points of mg(G) under the action of the group (F, o).
So by (a). we have [C;(H)| = |%,,,(G)" | = |%,,,(G) "]

Case 1. Suppose 1{n, then (F,o') = (a"o0y, &) = (oc’/zoy o) = (@ o).

i 726 oy
Thus |CI(H)| - | reg(G) /oyl - | reg(G )| Sll’lCC G = GU4(2Z) we get
|C,(H)| = |%,,,(GU,(2"))|, proving (b) in this case.

Case 2. Suppose t|n, then (F,%') = (@" 0y, a') = <y, ’) = (& °). 7 o'). Thus
C(H)| = |%,0(G) "] = | 5,0 (G)* N S, (G) | = |H,0(G" ) N F,,, (G ). But

reg

reg | reg reg

G)' NG =GU,(2*) N GL,(2).

By [16, Table 3.5.B], GU,(2*) has a maximal subgroup isomorphic to Sp,(2") and
as shown in the proof of [16, Proposition 4.5.6] this maximal subgroup is contained
in GL,(2"). Thus GU,(2*) N GL4(2') = Sp,(2) and [C;(H)| = |Z,,(Sps(2")]-

(c) From the character tables of GU,(2') and Sp,(2’) in [20] and the
CHEVIE library we get that if #{n, then the number of regular semisimple
conjugacy classes of GU,(2") is equal to (2’ — 1)? . Similarly, if ¢ | n, then the number
of regular semisimple conjugacy classes of Sp,(2") is equal to (2" — 1)%. O

5. DADE’S INVARIANT CONJECTURE FOR Sp,(2")

In this section, we prove Dade’s invariant conjecture for G = Sp,(2") in the
defining characteristic. By [14, p. 152], G has only two 2-blocks, the principal block
B, = By(G) and one defect-0-block (consisting of the Steinberg character). Hence
we have to verify Dade’s conjecture only for B,,.

As in the previous section, let O = Out(G) = (f), and o is the field
automorphism of G with order n, where o = *. Fix a Borel subgroup B and
maximal parabolic subgroups P and Q of G containing B as in [13]. In particular,
we may assume that f§ stabilizes B, § permutes P and Q, so « stabilizes P and Q.

According to a corollary of the Borel-Tits theorem [5], the normalizers of
radical 2-subgroups are parabolic subgroups. The radical 2-chains of G (up to
G-conjugacy) are given in Table 1, where A = Aut(G) = G x ().
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Table 1 Radical 2-chains of G

c Ng(C) N4(©)
C, {1} G A

C, {1} < O,(P) P P x (o)
C; {1} < 0,(P) < O0,(B) B B x (o)
Cy {1} < 0,(0) o 0 % (o)
Cs {1} < 0,(Q) < 05(B) B B % (x)
Cs {1} < 05(B) B B x ()

Thus, Dade’s invariant conjecture for G is equivalent to

> k(Ng(C(), By d,u) = 3 k(Ng(C(i)), By, d, u) (5.1)

ie{1,3,5} i€{2,4,6}

for all d € N and u | 2n.

Theorem 5.1. Let n be a positive integer and B a 2-block of G = Sp,(2") with
positive defect. Then B satisfies Dade’s invariant conjecture.

Proof. By the proceeding remarks, we can suppose B= B, and prove (5.1).
Suppose u |2n and set 7 := 27” and H := (o). Let S € {G, B, P, Q}. By the character
tables in [13], we have k(S, By, d, u) = 0 when d & {3n, 3n + 1, 4n}.

Case 1. Suppose u|n. Since a subgroup of order u in O is also a subgroup
of (a), it follows that (5.1) is equivalent to

k(G, By, d, u) + k(B, By, d, u) = k(P, By, d, u) + k(Q, By, d, u). (5.2)
(1) If d = 3n, then Table A.2 implies, that (5.2) is equivalent to

S IC,, (B + Y 1C,, (B)] = Y 1C,, (H) + Y IC, ()

Jjelg JjeJp JjeJp J€Jg

with the index sets J; := {10, 11,12,13}, Jy:={4,5}, J, :={2,5,6} and J, :=
{2,5, 6}. By Tables A.2 and A.5, we have

k(G, By, d,u) +k(B, By, d, u) = Y C,r,(H)| + > C,1,(H)| = 42" = 1)

Jjelg JeJp

and

k(P, By, d, u) +k(Q, By, d,u) = 3 _ |C, (H)| + 3 |C,, (H)| =42 — 1).

jelp Jj€lg

Thus (5.2) holds in this case.
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(i) If d = 3n+ 1, then Table A.3 implies, that (5.2) is equivalent to

S IC,, () + Y 1€, (B = X |C,, ()] + Y [C,, (1)

JjeJlg JjeJp Jjeip J€Jp

with the index sets J; :={15,16,17,19}, Jp:={7,8}, Jp:={9,10} and J, :=
{9, 10}. By Tables A.3 and A.5, we have

K(G. By, d.u) + k(B. By, d.u) = 3 |C,, (B)| + 3 |C,, (H)] = 8

J€Jg JeJp

and

k(P. By, d, u) +k(Q, By, d,u) = }_ |C,, (H)| + }_ |C,, (H)| = 8.

jelp Jj€lo

Thus (5.2) holds in this case.
(iti) If d = 4n, then Table A.4 implies, that (5.2) is equivalent to

S IC,, ()] + Y 1€, ()] = X |C,, ()] + X [C,, (1)

jelg jelp jelp Jj€lg

with the index sets J;:={1,2,3,4,5,6,7,8,9,14}, Jz:={1,2,3,6}, Jp:=
{1,3,4,7,8} and J, := {1, 3,4,7, 8}. By Tables A.4 and A.5, we have

k(G, By, d, u) +k(B, By, d,u) = Y |C,, (H)| + Y |C,, (H)| = 2"
j€lg ‘ Jj€Jlp
and

K(P, By, d, 1) + k(Q. By dou) = Y |C, (H)| + Y |C,, (H)| = 2+,

jelp Jj€lo

Thus (5.2) also holds in this case.

Case 2. Suppose utfn, so that t::%

equivalent to

is odd. Equation (5.1) is now

k(G, By, d, u) = k(B, By, d, u) (5.3)

for any u|2n with 1 = 2 odd.

(i) Suppose d = 3n. Let (k) = gy (k), ¥ (k') = gys(k') € Irr(B, By, d), where
k € gl,, k' € gI5. Since A’j = A;, as B-classes, it follows by the values of y(k) and
¥’ (k") on A, and A, that § swaps the two families {y(k)} and {y'(k')}. Since «
stabilizes each family {y(k)} and {y'(k)} and since p' = [foc%, it follows that f’
swaps {y(x)} and {y'(x)}. In particular,

2(k), 7' (K') & Cuix(s .0 (B) (5.4)
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for k € g1, k' € gI5. Thus, ' does not fix any character in {zy,(k), gxs(k)}, and so

C]rr(B,BO,Sn) (ﬁ[) = 0.
Since f§ swaps the G-classes A, and A;;, it follows from the values of characters
of Irr(G, By, d) on A, and A, that 8 acts on Irr(G, B, d) as

(10(K), 211 (k) (12 (k) 713 (K)).

Thus, ' does not fix any character in {y,y(k), 1, (k), x12(k), x15(k)}, and so

CIrr(G,BO,3n) (ﬁt) = 0.

Thus (5.3) holds in this case.

(i1)) Suppose d = 3n + 1. The values of characters of Irr(G, By, 3n + 1) on the
G-classes A, and A5, imply that 8 acts on Irr(G, By, 3n+ 1) as

(0,)(05, 05)(05).
Note that there is a typo in the character table of G in [13]: the degrees of 0,, 0,
have to be swapped. So Ciy g g, 3041)(B) = {0, 05}

Similarly, the values of characters of Irr(B, By, 3n+ 1) on the B-classes Ay,
and A, imply that f acts on Irr(B, By, 3n+ 1) as

(50,(0))(50,(1), 505(0))(505(1)).
It follows that
CIrr(B,BO,3n+l)(ﬁt) = {302(0)’ 393(1)}~

Thus (5.3) holds in this case.

(iii) Suppose d =4n. Using the degrees or values of characters on the
G-classes A,, A;; and B-classes Ay, A5, we get the action of § on Irr(G, By, d) by

(0G0 0@ 7)) (@), 12(a)) (ks D), 15 (K 1) (a(my ), g4 (m', 1)
(15(b)> 25 (0)) (x6(€)s 27(c")) (x3(d) %9(d')) (0y)

and on Irr(B, By, d) by (py;(k, 1), gy (K", 1)) (522(0), 3 (i) (50,). In particular,
0y € CIrr(G,BO,4n)(ﬁ[)7 50, € CIrr(B,BO,4n)(ﬁl)’ (5.5

%6(K)s x7(k), 15(K), 29(K) & Crrec.py.am (B and yo(k), 13(k) & Crr(p p,.am (B) for any
integer k. Let

Qs = {1k, D), 12(k), 13(k, 1), yq(k, 1), 1s(k) [ k, 1 € N}

be a subset of Irr(G, By, 4n), and let y € Q. Then y =y, and s is regular, where
s and 1 are the semisimple and unipotent labels of y, respectively. Thus y € Cy, (")
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if and only if (s)ﬁr = (s)g, which is equivalent to s € C#(f'w), where w € W with
W and T given in the proof of Lemma 4.3 and s € T. Since f* = o and ' acts
as an involution on Cg; (o) = Sp,(2"), it follows that y € C, (') if and only if s
can be regarded as a regular element of the Suzuki group “B,(2"). Moreover, if
regular elements s and s’ of 2B,(2") are >B,(2')-conjugate, then they are G-conjugate.
Conversely, if (s); = (s"); for some regular elements s, s’ of G and (s)g = (9)g>
then we may suppose s, s € *B,(2) and 5o ()25, = (5)25,0)- By the character
table of 2B,(2') in the CHEVIE library, the number of regular semisimple conjugacy
classes of *B,(2') is 2' — 1. Thus |Cq ()| =2 —1, and it follows by (5.5) that

|CIrr(G,BO,4n) (BI)| =2

Similarly, let Qg = {zx,(k, )| (k,l) € gI,} and y € Qg Since O,(B) is a
subgroup of the kernel of each y € Q, we may suppose Qp = Irr(7), where T =
B/Oy(B) ~Z, | x Z, ;. Now f" acts on both T and Irr(7). By Brauer’s permutation
Lemma, [21, Chapter 3, Lemma 2.19], |Cyyqy(B)| = |Cr(B")]. But Cr(B') =~ Zy_,
and by (5.5), it follows that Cy,g g, 4y (B") = 2. Thus (5.3) holds in this case. This
completes the proof the Theorem 5.1. d

6. DADE’S PROJECTIVE INVARIANT CONJECTURE FOR 2.Sp,(2)

Let C be a radical 2-chain of Sp,(2). The character table of N, ;) (C) and
N, 5p,2)2(C) can easily be computed using GAP [11] or MAGMA [17].

Let H € {N;5,,2)(C), Ny, 22(C)}, and let ¢ be a linear character of Z :=
Z(2.Sp4(2)). Denote by Irr(H | &) the subset of Irr(H) of all characters covering &.
Then Irr(H) = Irr(H | 1) U Irr(H | p), where p € Irr(Z)\{1}. But since we can identify
Irr(H | 1) with Irr(H/Z) and have H/Z € {Ng,,2,(C), Ns,,2)2(C)}, we see that Dade’s
projective invariant conjecture for 2.Sp,(2) is equivalent with Dade’s invariant
conjecture for Sp,(2) and 2.Sp,(2). By Theorem 5.1, Dade’s invariant conjecture
holds for Sp,(2), so it suffices to show that the conjecture holds for 2.Sp,(2).

Theorem 6.1. Let B be a 2-block of G = 2.Sp,(2) with defect group D(B) # O,(G).
Then B satisfies Dade’s projective invariant conjecture.

Proof. By the remarks in Section 5, we can assume B= By(2.Sp4(2)). Let
N(C) = N;(C) for C e %(Sps(2)) and E = G.2=2.Sp,(2).2. Set k(j,d,u):=
k(N(C)), B, d,u) for j=1,...,6. The values k(j, d, u) in Table 2 can be derived
from the Tables in Appendix B.

Hence Y-¢ ,(—1)!%Ik(N(C)), B, d, u) = 0 and the theorem follows. O

7. DADE'S INVARIANT CONJECTURE FOR SU,(22")

In this section, we prove Dade’s invariant conjecture for K = SU,(2*") in the
defining characteristic. By [14, p. 152], K has only two 2-blocks, the principal block
B,(K) and one defect-0-block (consisting of the Steinberg character). Hence we have
to verify Dade’s conjecture only for B,(K).

Let G = GU,(2*") and O = Out(G) = («), where « is a field automorphism of
G of order 2n. Fix a Borel subgroup B and maximal parabolic subgroups P and Q
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Table 2 Values of k(j, d, u)

Defect d 5 5 4 4 Otherwise
Value u 2 1 2 1 Otherwise
k(1, d, u) 4 12 2 2 0
k(2,d, u) 0 16 0 4 0
k(3, d, u) 0 16 0 4 0
k4, d, u) 0 16 0 4 0
k(5, d, u) 0 16 0 4 0
k(6, d, u) 4 12 2 2 0

of G containing B as in [20]. In particular, we may assume that o stabilizes B, P,
and Q.
Suppose G = GU,(2*") and L € {G, P, Q, B}. Then

L=7Z,_ xLg

for a unique parabolic subgroup Lg of SU,(22"). Let B € BIk(G) with D(B) # 1,
so that B = B, x B, where B, = By(SU,(2*")) and B/& is a block of Z,. sy\ch thit
Irr(B,) = {p} for some p € Irr(Z,.,,). If, moreover, B, € Blk(L) such that Bf = B,
then B, = B, x By(L;). Let y € Irr(B,) and ¢ € O, so that y = p x y, for some y, €
Irr(By(Lg)) and d(y) = d(y,). Thus x” = p” x %5 and so

o

1=y ifandonlyif p°=p and x5 = .
It follows that for any d and U < Out(GU,(22")) = Out(SU,(22"))
k(L,B,d, U, p) =k(Lg, By,d, U) or 0 (7.1)

accordingNas pE Cm(zzm)(ﬁ) orpéd Clj\r(zzm)(’l}). R
Let B, be the union of 2-blocks B € Blk(GU,(2°")) such that D(B) # 1, and
tﬁ = |Clrr(an+1)(U)|' Then

k(L. By, d, U) = t;k(Lg. By, d., U). (7.2)

Since t; is independent of L, it follows that the invariant conjecture for both
SU,(2*") and GU,4(2>") is equivalent to

> (=DIk(NG(C), By, d, U) =0. (1.3)

CeR/G

By a corollary of the Borel-Tits theorem [5], the normalizers of radical
2-subgroups are parabolic subgroups. The radical 2-chains of G (up to G-conjugacy)
are given in Table 3.

Since Cs and Cg have the same normalizers N;(Cs) = Ng(Cg) = B and
N,(Cs5) = N,(C4) = B x 0O, it follows that for all d, u € N and B € Blk(G)

k(Ng(Cs), §0a d, u) = k(Ng(Ce), §07 d, u).
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Table 3 Radical 2-chains of G

c Ng(C) N4 (©)
C {1} G A

C, {1} < 0,(P) P P x (o)
Cs {1} < 0,(P) < 0,(B) B B x (o)
Cy {1} < 0,(Q) (0] 0 % ()
Cs {1} < 0,(Q) < 0,(B) B B % (o)
Ce {1} < 05(B) B B x (o)

Thus the contribution of Cs and Cy in the alternating sum of Dade’s invariant
conjecture is zero. It follows by (7.3) that Dade’s invariant conjecture for both G
and K is equivalent to

k(G, By, d, u) + k(B, By, d, u) = k(P, By, d, u) + k(Q, By, d, u) (7.4)
for all d € N and u | 2n.

Theorem 7.1. Let n be a positive integer and B a 2-block of SU,(2*") with positive
defect. Then B satisfies Dade’s invariant conjecture.

Proof. By the proceeding remarks, we can assume B = B, and G = GU,(¢*").
Suppose u |2n and set ¢ := % and H := («'). Let S € {G, B, P, Q}. By the character
tables in [20], we have k(S, By, d, u) = 0 when d ¢ {3n, 4n, 5n, 6n}.

(i) If d = 3n, then we have

~ if t|n,
k(G, By, d, u) = IC, (H)| =
’ je{%.:lfi} o0 (2741 ifttn,
and
if ¢|n,

B 1
k(Q. By, d, u) = |C,;,(H)| =
(Q, By, d,u) =[C,,,(H)| {(21/2+1)2 if t{n,

by Tables A.7 and A.11. Thus (7.4) holds in this case.
(i1) If d = 4n, then Table A.8 implies, that (7.4) is equivalent to

S IC,, ()] + Y 1€, ()] = X |C,, ()] + X [C,, (1)

j€Jg j€Jp jelp =)

with the index sets J;; := {4, 12, 20}, Jp := {5, 7}, J, := {2, 10} and J,, := {6, 10, 11}.
By Tables A.8 and A.11, we have

> 1,1+ T IC,, i = {2 e
. + =
= Gl = Blj 202212 4 1)(22 + 2) if t1n,
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and

S 1C, )+ X IC =1 i t]n,
) + ) =
Pl PrANs 2222+ )22 +2) i thn.

Thus (7.4) also holds in this case.

(iii)) If d = 5n, then Table A.9 implies that (7.4) is equivalent to

S IC,, ()] + Y 1€, (B)] = X IC,, (1) + X |C,, (H)

Jj€Jg = JeIp J€Jg

with the index sets J; := {8, 14, 15, 17, 21}, J, := {6, 8}, Jp := {6, 7,9} and Jo =
{2,7}. By Tables A.9 and A.11, we have

S IC, @+ Y10, = el
L(H)| + -
P P 2R £ 22 +2)  if thn,
and
2t if |,
|C. . (H)|+ ) |C  (H)|=
,ZJ: = ,% ol 2222+ 1)(277 +2)  ifttn.

Thus (7.4) also holds in this case.
(iv) If d = 6n, then Table A.10 implies, that (7.4) is equivalent to

S IC,, (B + Y 1€, (B = Y IC,, (H)] + Y |C,, (H)

jelg JjeJp JjeJp J€lg

with the index sets J; :={1,2,3,5,6,7,9,10, 16, 19,22}, J,:={1,2,3,4}, Jp:=
{1,3,4,5,8} and J, := {1, 3,4, 5, 8}. By Tables A.10 and A.11, we have

S 1¢,, i+ Y16, =17 i
v + . =
= 6l = Bl; 2. 23[/2(2z/2 +1) if t4n,
and

¥ (G, 0]+ X 16, = | i

. + . =

P P 2.292022 4 1) if tfn.

Thus (7.4) also holds in this case. O

Note that it follows by (7.1) and Theorem 7.1 that Dade’s projective invariant
conjecture also holds for any block B € Blk(GU,(2?")) with positive defect.
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Table 4 Values of k(j, d, u)

Defect d 7 7 6 6 5 5 4 4 3 Otherwise
Value u 2 1 2 1 2 1 2 1 2 Otherwise
k(1,d, u) 4 4 2 4 4 10 1 2 1 0
k(2,d, u) 4 4 2 0 4 2 0 0 1 0
k(3, d, u) 4 4 2 0 4 6 0 0 0 0
k4, d, u) 4 4 2 4 4 14 1 2 0 0

8. DADE’S PROJECTIVE INVARIANT CONJECTURE FOR 2.SU,(4)

Let C be a radical 2-chain of SU,(4). The character table of N, gy, 4 (C) and
N, su,42(C) can either be found in the library of character tables distributed with
GAP [11] or computed directly using MAGMA [17].

Let H = N,guy,4(C) or Nygy,).(C), and let ¢ be a linear character
of Z:=27(2.SU,(4)). Denote by Irr(H|&) the subset of Irr(H) consisting of
characters covering ¢. Then Irr(H) = Irr(H | 1) U Irr(H | p), where p € Irr(Z)\{1}.
But Irr(H | 1) = Irr(H/Z) and H/Z = Ngy,4(C) or Ngy,4)2(C), so Dade’s projective
invariant conjecture for 2.SU,(4) is equivalent to Dade’s invariant conjecture for
SU,(4) and 2.SU,(4). By Theorem 7.1, Dade’s invariant conjecture holds for
SU,(4), so it suffices to show that the conjecture holds for 2.SU,(4).

Theorem 8.1. Let B be a 2-block of G = 2.SU,(4) with defect group D(B) # O,(G).
Then B satisfies Dade’s projective invariant conjecture.

Proof. By the proceeding remarks in Section 7, we can assume B= B,(2.SU,(4)).
Let N(C) = Ng(C) for C € %(SU,(4)) and E = G.2 = 2.5U,(4).2.

Set k(j, d, u) := k(N(Cj), B, d,u) for j =1, ...,6. Note that the contributions
of the chains Cs and C, to the alternating sum cancel. The values k(j, d, u) for j =
1,...,4 in Table 4 can be derived from the Tables in Appendix C.

Hence Y, (=1)IS/k(N(C)), B, d, u) = 0, and the theorem follows. a

9. McKAY’S CONJECTURE FOR Sp,(2") AND SU,(22")

In [15], Isaacs, Malle, and Navarro reduced the McKay conjecture to a
question about finite simple groups. They showed that every finite group will satisfy
the McKay conjecture if every finite non-abelian simple group is good in the sense
of [15, Section 10]. From Tables A.5 and A.11, we can derive the following theorem.

Theorem 9.1. Let n € N_, and K € {Sp,(2"), SU,(2*")}. Then K is good for the
prime 2 in the sense of [15, Section 10].

Proof. We use the notation of [15, Section 10] and have to show that the
conditions (1)—(8) in [15, Section 10] are satisfied for X := K and p = 2. Note that K
has trivial Schur multiplier except when K = SU,(4) or Sp,(2)’, and in which case, 2
is good for SU,(4) and Sp,(2)’ by [18]. Thus we only have to consider S := X =K,
so that Aut(K) acts trivially on Z := Z(X) = {1}.
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Let T:= B be our Borel subgroup of S and A := Ny (Bs), so that T is the
normalizer of the Sylow 2-subgroup O,(B,) of S and T is stabilized by A. Since
T < S, it follows that the conditions (1) and (2) of [15, Section 10] hold.

Since A = By x O and Aut(S) = S x O, it follows that the conditions (3) and
(4) of [15, Section 10] are equivalent to that there exists an O-equivariant bijection
0 — 0* from Irry(S) to Irr, (7), where for any L < S, Irr, (L) is the subset of
Irr(L) consisting of characters of odd degrees. Since O is cyclic, it follows that the
conditions (3) and (4) of [15, Section 10] are then equivalent to

k(S, By, d(By), u) = k(T, By, d(By), ) 9.1)

for any u € N_,, where B, is the principal block of S and the defect d(B,) is the
integer such that |D(B,)| = 2¢®). It follows by (7.2) that (9.1) is equivalent to

k(G, By, d(B,), u) = k(B, By, d(B,), u), 9.2)

where G = Sp,(2") or GU,(2%"), B, = B,(S) or B, = Uao B, d(B,) =4n or 6n
according as S = Sp,(2") or SU,(2?"), and B is a Borel subgroup of G and u € N_,,.
If G = Sp,(2"), then the irreducible characters of G and B with defect 4n are given
by Table A.4. If G = GU,(2*"), then the irreducible characters of G and B with
defect 6n are given by Table A.10. It follows from Tables A.5 and A.11 and the
proof of Case 2(ii) of Theorem 5.1 that (9.2) holds, and so the conditions (3) and
(4) of [15, Section 10] hold.

For 0 € Irr, (S) we set M(0) = A, to be the stabilizer of 0 in A and let
M = (S, M(0)) < Aut(S). Then N, (T) = TM(0), C,,(S) = Z(S) = {1}, and so the
conditions (5), (6), and (7) of [15, Section 10] hold. Since Out(K) is cyclic, it follows
that the condition (8) of [15, Section 10] is satisfied automatically. This completes
the proof. |

Note that Theorem 9.1 implies that the McKay conjecture for p = 2 is true
for Sp,(2") and SU,(2%").

APPENDIX A

Table A.1 Parameter sets for the irreducible characters of the parabolic subgroups G = Sp4(2"), B, P, Q

Equivalence Number of
Parameter set Characters Parameters relation characters
ol 11k, D) See the remarks in Section 4 @—2)2;&
ch 12(K) See the remarks in Section 4 @
b 13(k, 1) See the remarks in Section 4 @
cly 14 (k, 1) See the remarks in Section 4 "(”TZZ)
cls 15(k) See the remarks in Section 4 %2
cls = ¢l %6(k), 17 (k) k=0,..., g—2k#0 {k = —k} &=

(continued)
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Table A.1 Continued
Equivalence Number of
Parameter set Characters Parameters relation characters
ey =cly 18 (k), 19 (k) k=0,....,¢:k#0 {k = —k} 3
6¢ho = ¢l 210(k), 11 (k) k=0,....,9=2k#0 {k=—k} 2
¢l =¢li3 212(K). 113(k) k=0,....¢:k#0 {k = —k} 1
cha=-=¢hy 0y, ....05 1
o, w71 (kD) k1=0,....q-2 (q-1)?
gl =" =3l pla(k), o prs(k)  k=0,...,9-2 q—1
816 80, 1
sly = ply 505 (k), 505(k) k=0,1 2
phy=ph P11 (k). pr2 (k) k=0,....,q-2 -1
vl pra(k, D) k1=0,...,q=2 {(k, 1) = DD
g—1tk—1 (1. k)
pls pa(k) k=0,....,9-2 g—1
rls p2s(k) k=0,...,q—-2k#0 {k = —k) o2
rls p26(k) k=0,....q:k#0 (k= —k} 1
ol pi7(K) k=0,...,q" =2 {k = gk} e
g+ 11k
plg 0 1
ply = plio p05(k), P63 (k) k=0,1 2
ol =oh ANy k=0,...,9-2 g—1
ols oty (k. 1) ki1=0,...,q—2; {(k, 1) = 2-1)g-2)
1#0 (k, —1)}
ols o1, (k) k=0,....,9—2 g—1
ols o7, (k) k=0,...,9—2k#0 (k= —k} =2
ols o (k) k=0,...,¢:k#0 {k = —k} 1
ol7 o (k. D) k=0,...,9-2 {(k,]) = e l)
1=0,....,q:1#0 (k, —1)}
ol o) 1
oly = olio 00, (k), o0 (k) k=0,1 2
Table A.2 The irreducible characters of the chain normalizers in Sp,(2") of defect 3n
Character Degree Param. set Param. Nozawa Number Class
G Z10(k) g(g+D(¢*+1) clio T (¢-2)/2 €, G
111 (k) a(g+1)(g* +1) ¢ln T, (g—2)/2 €, G
112(k) g(g—D(¢*+ 1) ¢l T, q/2 G, Gy
113(k) a(g—1)(g* +1) ¢l T, q/2 G, Cy
B 814(k) q(g—1) sl4 Ty q-1 G
ss(k) qa(g—1) 8ls Ty -1 C
p pl2(k) q rh T, q-—1 C
pis(k) 41(512 =1 pls T, (g—2)/2 G
pe(k) q(g —1)? rls T, q/2 o
0 015 (k) q obh T, qg—1 (&3
o5 (k) q(g*—1) ols T, (g—2)/2 C
o5 (k) q(g —1)? ols T, q/2 C,
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Table A.3 The irreducible characters of the chain normalizers in Sp,(2") of defect 3n + 1. Note that
there is a typo in [13]: the degrees of 0,, 0, € Irr(G) have to be swapped

Character Degree Param. set Param. Nozawa Number Class
G 0, q(q +1)*/2 chis 1 Az
0, q(g®> +1)/2 6l 1
0; q(g* +1)/2 6l 1 Az
05 q(q — 1)2/2 cho 1
B 80, (k) q(g —1)*/2 sl7 2 Ayrs As
505 (k) q(q — 1)2/2 sls 2 Ayps Asy
P p05(k) q(¢* = 1)/2 plo 2 Ay
p05(k) q(q — 1)2/2 rlio 2 Ay
Q 00, (k) a(q® = 1)/2 oly 2 Ay
Q9’3(k) q(q — 1)2/2 QIIO 2 Ay
Table A.4 The irreducible characters of the chain normalizers in Sp,(2") of defect 4n
Character Degree Param. set Param. Nozawa Number Class
G k) (g+ 1@ +1) ol S (¢—=2)(q—-4)/8 B
12(k) q' -1 ch R, q(q —2)/4 G. G
13k, 1) q* -1 cls T, xT, q(qg —2)/4 By
14k, 1) (g=DXg*+1D) 6l Sy q(qg —2)/8 B,
x5(k) (¢ =1y 6ls R; q*/4 Bs
16(k) (g+D(@+1) 6ls T, (g—2)/2 G
x7(k) (g+ D@+ 1) 6l T, (¢—2)/2 D,
13(k) (=D +1) cly T, q/2 G
xo(k) (=@ +1 cly T, q/2 D,
0o 1 clia 1
B s (k, D) 1 sl Ty x Ty (g—1)? B
82%2(k) q—1 sh Ty g—1 Cy
13(k) g—1 sl3 T, g—1 G
80, (g—1) sls 1
P p11 (k) 1 24 T, g—1 G
pr3(k, 1) q+1 rls So (¢—1D(@=-2)/2 B
p14(k) -1 2 T, g—1 G
p17(k) q—1 ply R, q(q—1)/2 G. G
0, (=D —-1) ply 1
(VAL 1 oli Ty q—1 G
o3 (k. 1) q+1 ofls Ty x Ty (¢—1(@-2)/2 B
07, (k) g -1 ol Ty q—1 G
o5 (k, 1) q—1 oly Ty x T, q(q—1)/2 B,
Qell (a—=D(@ -1 ols 1
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Table A.5 Number of fixed points of H = (') on parameter sets of the
irreducible characters of the parabolic subgroups of Sp,(2"). The unions
of parameter sets in this table are disjoint unions

Number of fixed points

Parameter set / |C;(H)| if t|n
chiVghVUghUglUgls @ -17
ols U ols 21
ol U oly 21
¢hoYcln 2'—1
¢l Vel 2'—1
un 1
clisYalicVghiUglo 4
o @1y
sh 2 -1
515 21
sl 21
o5 2”1
sl 1
NATINA 4
W, 271
ol 21
pl3Upl; @ -1y
ol 21
WUl 21
ols 1

plo U plio 4
ol 21
ob 21
oz U ol 2" —1)?
ols 21
ols U ol 21
ols 1

ols U olo 4

Table A.6 Parameter sets for the irreducible characters of the parabolic subgroups G = GU,(2*"), B, P, Q

Equivalence Number of
Parameter set Characters Parameters relation characters
6l 11 (k) k=0,....q ‘]jrl ,
b 12 (k, 1) See the remarks in Section 4 (7 =g=D(g"=g=4)
2
ol =gl 13k, 7a(k) k=0,....¢" =2 {k=—qk} e
q— 11k
20,2
cls 15 (k) See the remarks in Section 4 4 (‘14’1)
2
oo 16k, 1, m) See the remarks in Section 4 w
ol = ol w5k ) k=0,...¢ =2 (kD= (gD
1=0,....q9 (—gk, )}
q— 11k
clo 2o(k, 1) See the remarks in Section 4 %@2_”

(continued)



15: 02 2 Cctober 2010

[ National Cheng Kung University] At:

Downl oaded By:

2396

AN ET AL.

Table A.6 Continued

Equivalence Number of
Parameter set Characters Parameters relation characters
oo x10(k) See the remarks in Section 4 W
el 111 (k) k=0,....q9 q+1
6l x12(k) k=0,....q q+1
6l 113(k) k=0,....q9 g+1
6l 214(k) k=0,....q q+71
clis =l nis(k, 1, m), k,l,m=0,....q {(k, 1, m) = w
116k, 1, m) k#Lmyl#k,m (k, m, 1)}
m#k,l
¢l =chs xr(k, D), k,1=0,....q q(g+1)
=l ns(k, 1), k#1
x19(k, 1)
oo 120 (ks ) ko 1=0,....q (kD) = (1 k) )
k1
6l 121 (k. 1) k,1=0,....q q(g +1)
k#1
ol () k1=0,....q {(k, 1) = (L, k)} 2l
k#1
2 s (k, 1) k1=0,...,4=2 (> =1
sh ot (k. 1) k=0,....4° =2 (g+1(g* =1
[=0,...,q
sl o3 (k) k=0,....4° =2 g —1
Bla 04 (k) k=0,....q qg+1
sl ptts(k. 1) k=0.....q (g+ 1@ =1
[=0,...,4*—2
sls g0 (k) k=0,....4° =2 ¢ -1
sl 07 (k) k,1=0,....q (g+1)?
ls poig (k) k=0,....q g+1
pli = ph pB1(k), k=0,....,¢° =2 q*—1
B (k)
ol pBs (k. 1) k=0, =2 {((kD=(k) L2
k#1
2 pPa(k. 1) k=0,....4° =2 (g+ D=1
[=0,...,q
rls pBs(k) k=0,....q q+1
ols pBs(0) k=0,...¢=2  f{k=—qk) L2
q— 1tk
vk pBy(k. D) k1=0,....q (kD) = (1K) o)
k#1
s WBy() k=0,..q' =2 [k=qk) £l
a + 1tk
rlo = plyo pBo(k), k=0,....q q+1
pPro(k)
ol = oh o (k. D), k=0,....4" =2 (g+1(@ -1
o7, (ks D) 1=0,....q
ols o D) 1=0,...,¢=2 {(k])=(k—q)} LD
q—1t1
ols 07,(k) k=0,....,4° =2 ¢ -1
ols 075(k) k=0,....q q+1

(continued)
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Table A.6 Continued
Equivalence Number of
Parameter set Characters Parameters relation characters
2 g
ol o7k, 1) k=0,....q ((k, 1) = (k, —ql)} (gtl)lg ~g-2)
1=0,....4° =2
q—111
o o1, (k) k1=0,....q (g+ 17
ols ovg(k. 1.m) k=0,....,4* =2  {(k,l,m)=(k,m, 1)} LoD
LLm=0,....q
l#m
oy = ol o7 (k. D), k1=0,....q (g+ 1)
otk 1) R
ol o7y, (k. 1, m) kilm=0,....q {((k.l,m)=(k,m1)} L4
l#m
Table A.7 The irreducible characters of the chain normalizers in GU4(2%") of defect 3n
Character Degree Param. set Param. Nozawa Number Class
G 113(k) (@ —q+1) 6l I g+1 Ay
nis(k, 1) (g — (g +1) ¢l L q(qg +1) Aq
0 ) Plg—1) olo Iy x I (g+1)? An
Table A.8 The irreducible characters of the chain normalizers in GU,(2>") of defect 4n
Character Degree Param. set Param. Nozawa Number Class
2 3 £-q-2
G (k) g+ (g +1) cls Jy — G
x12(k) (P +1) cln I q +11 Ay
120 (ks 1) P+ D)(g* —q+1) oo I @ Ay
B pas(k, 1) g—1) ls Iy x Jy (@+D(@ -1 B
o7 (k, 1) q*(q—1)? sl7 I x I, (g+1) Ay
P pBy(k) 'S rh Jo ¢ -1 G
pPro(k) (g—D(g +1) rlio I g+1 , Ay
0 grlkD) (¢~ 1) os I x 0y g2 B,
o7o(ks D) -1 olo Iy x 1 (g+ 1)2 Aj
QV“(/‘, 1, m) qz(q_ 1)2 ol I x I w As
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Table A.9 The irreducible characters of the chain normalizers in GU,(2>") of defect 5n

AN ET AL.

Character Degree Param. set Param. Nozawa Number Class
2,

G (kD) 9@+ 1)(g*+1) cls Js w B,
114 (k) o —q+1) clis I ‘1+21 A
nstk.lom) qlg=1D(@+ D@ —q+1)  ¢hs I A= An
x17(k, 1) qlg — 1D (g +1) ¢l I q(g+1) Ag
121 (k, 1) AP +D(F—q+1) ¢l I q(g+1) Ag

B pog(k) 4(42 -1 8ls Jo > —1 G
g (k) q(g—1D(¢* = 1) sls I ‘12‘" 1 A

P pPe(k) 0(44 =1 rls Ji % G
PPk alg—17(4 +1) ol I . A
pBo(k) g(g — D@+ 1) rlo I q+1 A

0 o)k 1) q oh Jo x I g+ (P -1 B
otk ) qlg—1(g*—1) ol L (q+1)* Ag

Table A.10 The irreducible characters of the chain normalizers in GU,(22") of defect 6n. We use the
abbreviation 1 := (¢ — D(¢* + D(¢* — g+ 1)

Character Degree Param. set Param. Nozawa Number Class
G k) 1 cli I q2+1 , A,
12k, 1) @+ D@+ D@ +1) oh Js S
2,
13 (k) (g+ (@ +1) el Ji 1127112 G
15(k) @+ (@ =D +1) als 8, o E,
ek lom) (g =@+ D¢ +1) als Js UUEES By
12k, D) (@ + 1 +1) ol J, le—ad ¢
1o (k. 1) (@~ D(g* ~ 1) oo R, detb@h - p,
21 (g—
Tk, L,m,n)  (g— Dy clio I w Ay
116(k, 1, m) n clis I del) App
119(k, 1) (g—D(@+1) clio L Q(QT 1) Ag
(k. 1) @+ D@ —q+1) b L o Ay
B goy (k1) 1 sl Jo x Jy (‘12 -1 Cs
% (k. 1) q-—1 sl Jo x 1 (g+D(g*=1) B,
523 (k) -1 513 Jo -1 G
04 (k) (=D -1 sla I g+1 A
P pp(k) 1 pl Jo -1 ol
2 (>=D(?-2)
pPa(k, 1) g +1 rl Jo x Jo 2 Cs
pBa(k, 1) (g=D(@+1) ply Jo x Iy (g+D(&-1) B
»Bs(k) (a—D(g* —1) s I g+1 Ay
2 i Cied )
pBs(k) q-—1 pls S —a E,
0 o (kD) 1 ol Jo x Iy (g+D(g*—1) B,
N (> =1)(*~4-2)
Qy3(k, ) qg+1 ol Jo x J 3 G
074(k) (g+ D@ -1 ols Jo g —1 G
075(k) (q* = 1)? ols I qg+1 , A
o0vg(k, 1, m) g—1 ols Jox I datlie 1) B;
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Table A.11 Number of fixed points of H = («') on parameter sets of the
irreducible characters of the parabolic subgroups of GU,(2?"). The unions
of parameter sets in this table are disjoint unions

Number of fixed points |C,(H)|

Parameter set / if t|n if ttn

ol 1 22 41
chUglsUglgUglyUgl @ -1y @ -1y

ol U ghy 21 21

ols U gl 21 2 -1

ol Ul 21 Q72+ 1)(2 =272 = 1)
ols U gl 21 (272 4 1)(2F =22 — 1)
ol 1 22 41
olis 1 202 +1
ol 1 22 41

cli7 0 22272 +1)
el 0 212212 4 1)
6l 0 22272 4+ 1)
o 0 212212 4 1)
sl @ -1y @ -1y

A 2 -1 Q-1 +1)
ol 21 20— 1

ol 1 22 41

ols 21 Q72+ 12 - 1)
ol 2 -1 2 -1

2 1 Q72 + 1)
A 1 202 4+ 1

ol 21 20— 1

b 20—1 20—1
NATA @ -1y @ -1y

ply 20—1 Q' =DE"?+1)
ols 1 22 41

pls U pl; 20—1 20—1

ol 1 22 41

rlio 1 212 +1

oy 21 Q —1)22+1)
oh 20 —1 ' -7 +1)
ol3 U olg (2r —1)? (2 —1)?

oly 20 —1 20—1

ols 1 22 41

ols U ol 20 —1 Q7+ -1
ol 1 Q72 +1)
ol 1 (27 +1)?
olio 1 Q72 +1)
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APPENDIX B

Let B be a Borel subgroup of Sp,(2), and P, Q distinct maximal parabolic
subgroups of Sp,(2).

Table B.1 The degrees of characters in
Irr(2.Sp4(2))

Degree 1 5 9 10 16

Number 4 8 4 4 2

Table B.2 The degrees of characters in Irr(2.Sp4(2).2)

Degree 1 2 9 10 16 18 20

Number 4 1 4 8 4 1 1

Table B.3 The degrees
of characters in
Irr(2.B)

Degree 1 2

Number 16 4

Table B.4 The degrees of
characters in Irr(2.B.2)

Degree 1 2 4

Number 8 10 1

Table B.5 The degrees of
characters in Irr(2.P)

Degree 1 2 3

Number 8 4 8

Table B.6 The degrees of
characters in Irr(2.Q)

Degree 1 2 3

Number 8 4 8
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APPENDIX C

Let B be a Borel subgroup of SU,(4), and P, Q distinct maximal parabolic
subgroups of SU,(4). Then 2.SU,(4) = Sp,(3) and 2.SU,(4).2 = CSp,(3).

Table C.1 The degrees of characters in Irr(2.SU,(4))

Degree 1 4 5 6 10 15 20 24

Number 1 2 2 1 2 2 6 1

Degree 30 36 40 45 60 64 80 81

Number 3 2 2 2 4 2 1 1

Table C.2 The degrees of characters in Irr(2.SU,(4).2)

Degree 1 6 8 10 15 20 24 30

Number 2 2 1 1 4 5 2 2

Degree 40 60 64 72 80 81 90 120

Number 2 5 4 1 3 2 1 1

Table C.3 The degrees of characters in Irr(2.B)

Degree 1 3 4 6 12

Number 6 2 9 2 1

Table C.4 The degrees of characters in Irr(2.B.2)

Degree 1 2 3 4 6 8 12

Number 4 2 4 6 4 3 2

Table C.5 The degrees of characters in Irr(2.P)

Degree 1 3 4 5 10 12 15 16 20

Number 1 2 2 4 2 2 1 1 2

Table C.6 The degrees of characters in Irr(2.P.2)

Degree 1 4 5 6 10 15 16 20 24

Number 2 4 4 1 5 2 2 4 1
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AN ET AL.

Table C.7 The degrees of characters in Irr(2.Q)

Degree 1 2 4 6 8 9 12

Number 6 3 15 3 3 2 3

Table C.8 The degrees of characters in Irr(2.0.2)

Degree 1 2 4 6 8 9 12 16 24
Number 4 4 7 2 8 4 3 1 1
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