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In this article, we verify Uno’s invariant conjecture for the finite symplectic group
Sp4(q), q a power of an odd prime p, in the defining characteristic p. Uno’s invariant
conjecture is a refinement of Dade’s invariant conjecture. Together with the results
in [3], this completes the proof of Dade’s invariant conjecture for the group Spy(q) in
the defining characteristic.
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conjecture.
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1. INTRODUCTION

Let G be a finite group and p a prime dividing the order of G. There
are several conjectures connecting the representation theory of G with the
representation theory of certain p-local subgroups (i.e., the p-subgroups and their
normalizers) of G. For example, it seems to be true, that if P is a Sylow p-subgroup
of G, then the number of complex irreducible characters of G of degree coprime
with p equals the same number for the normalizer N;(P).

This conjecture, called the McKay conjecture [14], and its block-theoretic
version due to Alperin [1] were generalized by various authors. In [12], Isaacs
and Navarro proposed a refinement of the McKay conjecture that deals with
congruences of character degrees mod p. In a series of articles [7-9], Dade developed
several conjectures expressing the number of complex irreducible characters with
a fixed defect in a given p-block of G in terms of an alternating sum of related
values for p-blocks of certain p-local subgroups of G. In [8], Dade proved that
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his (projective) conjecture implies the McKay conjecture. Motivated by the Isaacs—
Navarro conjecture, Uno [18] suggested a further refinement of Dade’s conjecture.

In this article, we show that Uno’s invariant conjecture holds for the finite
symplectic group Sp,(q) with g a power of an odd prime p, in the defining
characteristic p. This implies that Dade’s invariant conjecture is true for Sp,(g), ¢
odd, in the defining characteristic. Together with the results in [3] this completes the
proof of Dade’s invariant conjecture for Sp,(¢g) in the defining characteristic.

The methods are similar to those in [2]. By a corollary of the Borel and Tits
theorem [5], the normalizers of radical p-chains of Sp,(q) are exactly the parabolic
subgroups. So we count characters of these chain normalizers which are fixed by
certain outer automorphisms. Our calculations are based on the character tables
of Sp,(g) and their parabolic subgroups. The character tables of Sp,(¢) and the
conformal symplectic groups CSp,(g) have been computed by Srinivasan [17] and
Shinoda [16], respectively, and that of parabolic subgroups of Sp,(¢) can be found
in [19].

This article is organized as follows. In Section 2, we fix notation and state
Dade’s and Uno’s invariant conjectures in detail. In Section 3, we state and prove
some lemmas from elementary number theory which we use to count fixed points
of certain automorphisms of Sp,(g). In Section 4, we compute the fixed points of
the outer automorphisms of Sp,(g) on the irreducible characters of the parabolic
subgroups. In Section 5, we verify Uno’s invariant conjecture for Sp,(gq), ¢ = p”
odd, in the defining characteristic p. Details on irreducible characters and conjugacy
classes of Sp,(q) are summarized in tabular form in an Appendix A.

2. CONJECTURES OF DADE AND UNO

Let R be a p-subgroup of a finite group G. Then R is radical if O,(N(R)) =
R, where O,(N(R)) is the largest normal p-subgroup of the normalizer N(R) :=
Ng(R). Denote by Irr(G) the set of all irreducible ordinary characters of G, and by
Blk(G)~the set of p-blocks. If H < G, B € BIk(G), and d is an integer, we denote by
Irr(H, B, d) the set of characters y € Irr(H) satisfying d(y) = d and b(x)° = B (in
the sense of Brauer), where d(y) = log,(|H|,) —log,(x(1),) is the p-defect of x and
b(y) is the block of H containing y.

Given a p-subgroup chain C: P, < P, <--- <P, of G, define the length
|C|:=n,C,:Py< P, <--- <P, and

N(C) = Ng(C) := Ng(Py) N Ng(P) N -+ N Ng(P,).

The chain C is said to be radical if it satisfies the following two conditions:

(a) Py=0,(G); and
(b) P, = 0,(N(C,)) for 1 <k <n.

Denote by % = R(G) the set of all radical p-chains of G.

Suppose | - G — E — E — 1 is an exact sequence, so that E is an extension
of G by E. Then E acts on % by conjugation. Given C € % and y € Irr(N,;(C)), let
N(C, ) be the stabilizer of (C, ) in E, and

NE(C, ) = Ng(C, )/ Ng(C).
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For B € BIk(G), an integer d > 0 and U < E, let k(N;(C), B.d, U) be the number
of characters in the set

Irr(Ng (C), B, d, U) := {§ € Irr(N4(C), B, d) | N5(C, ) = U}.
Dade’s invariant conjecture can be stated as follows.

Dade’s Invariant Conjecture ([9]). If O,(G) =1 and B € BIk(G) with defect
group D(B) # 1, then

> (=D“k(NG(C), B, d, U) = 0,

CeR/G

where %/G is a set of representatives for the G-orbits of R.

Let H be a subgroup of G, ¢ € Irr(H), and let r(¢) = r,(¢) be the integer 0 <
r(¢) < (p— 1) such that the p'-part (|H|/¢(1)), of |H|/¢(1) satisfies

(4) =r@ moap

Given 1 <7 < (p+1)/2, let Irr(H, [r]) be the subset of Irr(H) consisting of those
characters ¢ with r(¢) = £r mod p. For B € BIk(G), C € &, an integer d > 0 and
U < E, we define

Irr(N,(C), B, d, U, [r]) := Irt(Ng(C), B, d, U) N Irr(N(C), [r])

and k(N;(C), B, d, U, [r]) := |Irt(N,;(C), B, d, U, [r])|. The following refinement of
Dade’s conjecture is due to Uno.

Uno’s Invariant Conjecture ([18], Conjecture 3.2). If 0,(G) =1 and B € BIk(G)
with defect group D(B) # 1, then for all integers d >0 and 1 <r< (p+1)/2,

> (—=DIk(NG(C), B, d, U, [r]) = 0.

CeR/G

Note that if p=2 or 3, then Uno’s conjecture is equivalent to Dade’s
conjecture.

Let Aut(G) and Out(G) be the automorphism and outer automorphism
groups of G, respectively. We may suppose E = Out(G). Let G = Sp,(g), where
g=p". By [13, Proposition 2.4.4], we have Out(G) = (¢) x (), where ¢ is a
diagonal automorphism of order 2 and « is a field automorphism of order n.

3. NOTATION AND LEMMAS FROM ELEMENTARY
NUMBER THEORY

From now on, we assume that p is an odd prime, n is a positive integer and
g = p". We denote by N = {0, 1, 2, ...} the set of natural numbers including zero.
In the next section, we will use the following lemmas, the first one is [2, Lemma 3.1].
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Lemma 3.1. Suppose m, n, a € Z with m, n > 0. Then gcd(a™ — 1,a" — 1) =|a? — 1]
where d := gcd(m, n).

Lemma 3.2. Let t be a positive integer with t | n. Then the following hold.

(1) ged(p' =1, g—1)=p' -1

(ii) ged(p' — 1,9+ 1) =2

. P +1 if 2n,
(iii) ged(p —I—I,q—l)_{2 if 2t4n’

. . ]2 if 2t | n,
@) el +1g 40 =0 D

Proof. (i) is clear by Lemma 3.1.

(i) Suppose d =ged(p' — 1,9+ 1). By (i), d|g—1andso d|ged(g—1,9+
1)=2.

(iv) Suppose 2t|n. If d|p'+1,q+1, then d|p* —1 and so d|p"—1 as
2tln. Thus d|g—1,9+ 1 and d|ged(g+1,9g—1) =2.

Suppose 2t{n. There are k,t,,n, € N with odd #,n, such that r=2k.
t, n=2.n,. So we get p'+1=—((—p*)s—1) and g+ 1 =—((=p*)™ —1).
Now, Lemma 3.1 implies ged(p'+ 1, ¢+ 1) = ged((—p? ) — 1, (—=p* ) — 1) =
(=p*)e =1 =p'+1.

(iii)) Suppose 2f|n. There are k,t,,n, € N with 2 fr, and 2|n, such
that 7 =2%.¢,, n=2%.n,. Hence p' + 1 = —((—p*)» —1) and g — 1 = (—p*)™ —
1. So Lemma 3.1 implies ged(p' + 1, g — 1) = ged((—p* ) — 1, (=p¥ ) — 1) =
[(=p?) =1 =p' +1.

Suppose 2tfn. If d|p'+1,9—1, then by (iv), d|¢g+1,g—1 and so
d|ged(g+1,9g—-1)=2. O

The following lemma follows from [2, Lemma 3.3] (by replacing ¢ by 1).

Lemma 3.3. Let t, m be positive integers. Suppose t|n and 2t fn. If 2" | g — 1, then
2m | pt—1.

4. ACTION OF AUTOMORPHISMS ON IRREDUCIBLE CHARACTERS

Let G = Sp,(g) be the four dimensional symplectic group defined over a finite
field with ¢ = p" elements (always assuming that p is odd). Let O = Out(G) and
A =G x 0, so that O = (¢) x {a), where ¢ is a diagonal automorphism of order 2
and o is a field automorphism of order n. We fix a Borel subgroup B and distinct
maximal parabolic subgroups P and Q of G containing B as in [19].

In this section, we determine the action of the field automorphism (o) on the
irreducible characters of B, P, 0 and G. Our notation for the parameter sets of
these groups is similar to that of CHEVIE notation and is given in Table A.1 in the
Appendix. The correspondence between the CHEVIE notation and that of Yamada
is given in Tables A.2-A 4.

The first column of Table A.l defines a name for the parameter set which
parameterizes those characters which are listed in the second column of the table.
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The list of parameters in the third column of Table A.l in the Appendix is of the
form

k=0,...,n —1
k=0,...,n, —1 or [ =0, .m—1°
where the n;’s are polynomials in ¢ with integer coefficients. In the first case, the
parameter k can be substituted by an element of Z, but two parameters which differ
by an element of n,Z yield the same character. In the second case, the parameter
vector (k, [) can be substituted by an element of Z x Z, but two parameter vectors
which differ by an element of n,Z x n,Z yield the same character. In other words,
k can be taken to be an element of Z, and (k,[) can be taken to be an element
of Z, xZ,,. The groups Z, and Z, x Z,, are also called character parameter
groups (see Section 3.7 of the CHEVIE [10] manual). The next lines of Table A.1
list elements which have to be excluded from the character parameter group. The
remaining parameters are called admissible in the following. Different values of
admissible parameters may give the same character. The fourth column of Table A.1
defines an equivalence relation on the set of admissible parameters. If no equivalence
relation is listed we mean the identity relation. The parameter set is defined to be
the set of these equivalence classes. Finally, the last column of Table A.1 gives the
cardinality of the parameter set.

We consider the example ,I; in Table A.1. The character parameter group is
Z,,xZ, . The parameter vectors (k, /) and ([, k) yield the same character and
the equivalence class of (k, 1) is {(k, ), (I, k)}. Hence, the characters py,(k, [) are
parameterized by the set

ply ={(k D, (LK} (k. D) € Zyy x L, yq— 1 fk—1}.

If we want to emphasize the dependence of a parameter set, say pl;, from g we
write ,I;(q). Table A.1 does not give any detailed information about the parameter
sets g1z, glos gligs gliss glios glao» gla1» Since we will not need an explicit knowledge
of these sets (note that these parameter sets parameterize the regular semisimple
irreducible characters of G). The data in Table A.1 is taken from [19].

The action of O = Out(G) on the conjugacy classes of elements of G, B, P,
and Q induces an action of O on the sets Irr(G), Irr(B), Irr(P), and Irr(Q), and then
an action on the parameter sets. Using the values of the irreducible characters of
G, B, P, and Q on the classes listed in the last column of Tables A.2-A.4, we can
describe the action of O on the parameter sets.

For an O-set I and each subgroup H < O, let C,(H) denote the set of fixed
points of I under the action of H. In the following proposition, we determine
|C;(H)|, where I runs through all (disjoint) unions of parameter sets which are listed
in Table A.5 except for ;I, Ug Iy Ug I1s U 113 U 119 U G155 U gI,,. This last union of
parameter sets will be treated separately since it requires different methods.

Proposition 4.1. Let G =Sp,(p"), t|n and I #51,UglyUg LU glgUgleU
6l Y Iy be one of the (disjoint) unions of parameter sets listed in Table A.5. If
H = {(a") is a subgroup of O, then the second column of Table A.5 shows the number of
fixed points |C,(H)| of I under the action of H.
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Proof. We have to consider the following parameter sets /.
First let

Ie {6122’ 6has 6las YU gl U I U g U 6l3g U 6lag Y 6laz Y laas
oYl Ul UglyUglyUglyUglyUgly, gl Vel
Ulas U glags ply U ply, plio U pliy U plia U plis. ply U plyg,
plit U pliy Uplis Uplyy, s Uolis, olig Y oli7 U plig U ol

Uoly U olys U gl U olyys gy Y olays plhy U les}-

The degrees and character values on the conjugacy classes listed in Tables A.2-A.4
show C,(H) =1 and hence |C,(H)| = |I|. We demonstrate this for the parameter
set I = ply U pl},. The degrees in Table A.4 show that ,0,(0), ,0,(1), »0,(0), and
p0,(1) are the only irreducible characters of P of degree %(q —1)(¢* — 1). The class
representatives in Table I1-1 in [19] show that the conjugacy class A;;(d) (6 = £1) is
fixed by o, and we can see from the character Table II-2 of P in [19] that the values
of »0,(0), p0,(1), p0,(0), and 0,(1) on A, (—1) are different. So 0,(k)* = 0, (k)
and ,0,(k)* = p0,(k) for k =0, 1 and |C,(H)| = |I|.

In each of the following cases, we have that the action of « on [ is given
by x* = px for all x € I using the character values on the classes listed in the last
column of Tables A.2-A.4. We demonstrate this for the parameter set I = ,1; U pl,.
The degrees in Table A.4 show that the ,y;(k, [)’s are the only irreducible characters
of P of degree g + 1, so pys(k, ) = pys3(k’', ') for some {(k',1'), ...} € pI;. We see
from the class representatives in Table II-1 in [19] that o acts on the semisimple
conjugacy classes of P like the pth power map which implies that the values of
px3(k', 1) and py;(pk, pl) on the semisimple classes coincide. Then, the character
values of py;(k, ) (see the character Table II-2 in [19]) imply that the values of
pr3(k', ') and pys(pk, pl) coincide on all classes, hence py;(k', ') = py;(pk, pl) and
therefore py;(k, [)* = py;(pk, pl). Similarly, py,(k)* = pyx,(pk). Hence, x* = px for
all x e I.

Let I € {gI, Uglig, 6l Ucliis 613U gl gl Y gliss 6Is Y glas 6ls U 6lis glg U
7, pIs U plg}. So these unions of parameter sets are isomorphic H-sets, so that we
can assume [ = ;I; Ul If x ={k, —k} € I, then x € C,(H) if and only if (p’' —
Dk=0or (p'+ 1)k =0. Let

C. == {{k, —k} € C,(H) | (p + Dk =0},

so that C;(H) = C_UC, and C_NC,_ =@. We claim

. . -1
C_= {{k, —k} € g1, | k is a multiple of qt 1 }
Pl —

The inclusion D is clear. Let x = {k, —k} € C_. If x € ;I,,, then (p' — 1)k = 0 mod
g+ 1 and Lemma 3.2(ii) implies 2 - k = 0, which is impossible. Hence x € ;I; and

(p' = 1Dk=0 mod g—1. By Lemma 3.2(i), £ is a multiple of (¢ —1)/(p' — 1),
proving the claim. Now we consider C,.
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If 2¢|n, we claim C, = {{k, —k} € 4I, | k is a multiple of (¢ — 1)/(p’ + 1)}.
The inclusion D is clear. Let x = {k, —k} € C,. If x € 4], then (p' + 1)k = 0 mod
g+ 1, and Lemma 3.2(iv) implies 2 - k = 0, which is impossible. Hence x € ;I; and
(p' + 1)k =0 mod ¢ — 1. By Lemma 3.2(iii), £ is a multiple of (¢ — 1)/(p' + 1), and
the claim holds.

If 2t¢n, we claim C, = {{k, —k} € 51,y | k is a multiple of (¢ + 1)/(p' + 1)}.
The inclusion D is clear. Let x = {k, —k} € C,. If x € 4I,, then (p' + 1)k =0 mod
q — 1, and Lemma 3.2(iii) implies 2 - k = 0, which is impossible. Hence x € ;I,, and
(p'+ 1)k =0 mod g + 1. By Lemma 3.2(iv), k is a multiple of (¢ + 1)/(p’ + 1), and
the claim holds.

Thus in all cases, |C,(H)| =|C_| +|C,| = Lf + % =p -2

Let I = ,1,. If (k,1) € I, then (k, ) € C,(H) if and only if (p' — 1)k =0 and
(p' — l)l = 0 mod ¢ — 1. By Lemma 3.2(i), this is equivalent with k, [ are multiples
of I=. Thus, |C,(H)| = (p' — 1)2.

TLet e {,h, shs p1is phos oLy ohos olss o, oLy olss olo}. If k€1, then ke
C/(H) if and only if (p'=—1)k=0 mod ¢g-— 1 So we get C,(H)={ke
1|k is a multiple of (¢ — 1)/(p' — 1)} and |C,(H)| = p" — 1.

Let I € {314, 315, I, 17, plg> pI;}. Then these parameter sets are isomorphic
H-sets, so that we can assume [ = gl,. Let zI; (respectively, zI)) be the parameter
set of px4(k,0) (respectively, py,(k, 1)). Then I = jI, U ;I). Since jI; and gI; are
isomorphic H-set, so it is suffices to consider pI. If x € I}, then X € C o (H)
if and only if (p'—1)k=0 mod ¢ —1 and /=0. So we get C ,(H) = {(k 0) €

g, | k is a multiple of (¢ — 1)/(p' — 1)} and |C,;(H)| =2(p" — 1).

Let I = ,I; U ,1,. First, we compute |C , (H)|. Let

Pl

U {k, D, (L} eC,(H)|pk=kpl=1l} ifi=1,
UK D, Y e C () [ ph=1pl=k)  ifi=2.

If x = {(k, 1), (I, k)} € pL;, then x € U, if and only if (p' — 1)k =0and (p' —1)I=0
mod ¢ — 1. By Lemma 3.2(i), this is equivalent with that k, [ are multiples of ;1,;_11
Hence U, = (p' — 1) (p' —2)/2.

Suppose 2t | n. If x = {(k, ), (I, k)} € pl;, then x € U, if and only if p'k = [ and
p'l =k mod g — 1. So we get (p* — 1)k = 0 mod ¢ — 1, and this is equivalent with k
is a multiple (¢ — 1)/(p* — 1). Now exclude those solutions with k = [, which means
(p' — k=0 mod g — 1. This gives us |U,| = p'(p' — 1)/2.

Suppose 2ttn. If {(k,[),(l,k)} € U,, then (p* —1)k=0 mod g—1. By
Lemma 3.2(iii), this is equivalent with 2(p' — 1)k =0 mod ¢ — 1. By Lemma 3.3,
this is equivalent with (p" — 1)k =0 mod ¢ — 1. Then k = p'k = I, a contradiction
to the definition of ,I;. Hence, U, = . So

(p' — 1) if 21| n,

€ (H)] = U] + |U| {(p,_ Do -2 ittt
Next we calculate |C,;, (H)|. If x = {k, gk} € pl;, then x € C,, (H) if and only if
(p'—1Dk=0 or (p—q@k=0 mod (¢g+ 1)(¢—1). Suppose (p' —1)k= 0. By
Lemma 3.2(i) and (ii), it follows that ged(p' — 1, (¢ + 1)(¢ — 1)) = ged(p' — 1, g —
1)=p'—1. Thus (g+1)- " 1) | k. But then (q+ 1) |k, a contradiction to the
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definition of pI;. So we have proved that x € C,; (H) if and only if (p' — g}k =0
mod (g + 1)(g — 1).

Suppose 2t |n. If {k, gk} € C,; (H), then (p' — gk =0 mod (g + 1)(g — 1).
Thus (p' + 1)k = 0 mod q + 1 and (p' — 1)k =0 mod q — 1. By Lemma 3.2(i) and
(iv), we get 2 [k and 4= | k. Since £ | g+ 1 and 4= = L g —1 and since p' — 1 is
even, we have gcd("“, e )_ 1 and so % 4L |k The condition 2¢|n implies
P - +1)|p'—1=qg—1,so that £ zﬂ is even. Thus g + 1 | k, a contradiction
to the definition of ,1,. Hence in this case C,; (H) = ¢.

Suppose 27t n. We claim

. . +1(g—-1
C,,(H) = {{k, gk} € pl, | k is a multiple of %}

Let k= %-m for some m € Z. Because ¢ |n and 2¢tn, we have 2¢|n — 1.
I!l

Since (p' + 1)(p' — 1) = p* — 1| p"~" — 1, we then get (p"~' — 1)k = m(q+
D(g—1)-m=0 mod (g+1)(g—1). So (p'—q@k=0 mod (¢+1)(¢—1) and
{k, gk} € C,;,(H).

Conversely, suppose {k, gk} € C,; (H). Then (p' — @)k =0 mod (¢ + 1)(q —
1). Hence (p' + 1)k =0 mod ¢+ 1 and (p' — l)k =0 mod g — 1. By Lemma 3.2(1)

and (iv), this is equivalent with ;’,ill |k and 4 = L | k. Since ;’,H |g+1 and i— = Llg—
1 and since ;ﬂ—l] is odd by Lemma 3.3, we have ged( q,frll, L) =1. Therefore

m% | k, and the claim holds. So by the definition of ./, we get |C,, (H)| =
p'(p'=1)/2.
So in both cases, |C,(H)| = |C,,,(H)| + |C,,,(H)| = (p' — 1)*.

Let I = 415U yl,. First, we compute |C;, (H)|. Let

Uk D, (k. =D} e €, (H) | phk=k, p'l=1) ifi=1,
kD, (k,—DY e C (H) | pk =k, pll=—1}  ifi=2.

If x={(k, 1), (k, 1)} € oI;, then x € U if and only if (p' — 1)k =0 and (p' —
1)/=0 mod ¢ — 1. By Lemma 3.2(i), this is equivalent with k, [ are multiples of }%.
Hence |U|| = (p' — 1)(p' —3)/2.

Suppose 2t |n. If x = {(k, ), (k, =1)} € x15, then x € U, if and only if (p' —
)k =0 and (p' + 1)/ =0 mod g — 1. Hence

{{(k . (=D} € gls| 4

-1 1
1‘kand —1—1‘1}

and |U,| = (p' — 1)%/2.

Suppose 2t{n. If x ={(k, 1), (k, =)} € ,1;, then x € U,, then (p' — 1)k =0
and (p' + 1)l = 0 mod ¢ — 1. By Lemma 3.2(iii), the second congruence is equivalent
with 2/ = 0 mod ¢ — 1, a contradiction to the definition of ,I;. Hence, U, = #. So

(' = D' —-2) if 2t [ n,

|CQ:3(H)|=|U1|+|U2|={(pr_1)(pf_3)/2 if 2t1 n.
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Next we calculate |C , (H)|. Let
04

G D, (k. =D} € C i, (H) | p'k =k, p'l = 1} ifi=1,
KD, (kDY e C (B [Pk =k pll=—1}  ifi=2.

If x = {(k, 1), (k, =1)} € ,1,, then x € U, if and only if (p' — 1)k = 0 mod g — 1 and
(p' =1l =0mod g+ 1. By Lemma 3.2(i) and (ii), this is equivalent with 5,—:11 | k,
and %1 |1, a contradiction to the definition of ,1,. Hence, U, = 0.

Suppose 2t |n. If x = {(k, ), (k, =[)} € xly, then x € U, if and only if (p' —
Dk=0mod g—1 and (p' + 1)/ =0 mod ¢+ 1. By Lemma 3.2(i) and (iv), this is
equivalent with Ij’,;_ll |k, and 2/ = 0 mod ¢ + 1, a contradiction to the definition of
ols- Hence, U, = 0.

Suppose 2ttn. If x = {(k, 1), (k, =)} € ,1,, then x € U, if and only if (p' —
)k=0mod ¢ — 1 and (p' + 1)/ = 0 mod ¢ + 1. Hence

g—1 g—1
UZZ{{(k,l),(k, —l)}EQ]4 pr—_l‘kand pr+1 ‘l}
and |U,] = (p' = 1)*/2.
So
0 if 2¢ | n,

IC,.,(E)| = |U\| + |Us] {(pt_l)Z/z if 24 n.

So in both cases, |C,(H)| = |C,, (H)| + |C ,, (H)| = (p' = D(p' = 2).

Let I € {yloVU ol oly1 Yplis}. Then these unions of parameter sets are
isomorphic H-sets, so that we can assume I = ,l,,U,l,. Let ,Ij, and I
(respectively, I, and ,I;) be the parameter sets of ,yo(k,0) and ,y0(k, 1)
(respectively, x12(0,1) and ,y5(1,1)). Then I = ,Ij,U I, U oI}, Ul Since
olip Y QI{; ~ olip U olis as .H-set, so it suffices to consider /i, U ,lj,. By
construction and the definition of character parameter groups, 5/}, U oI}, =~ I} U
clio as H-sets, so that we can identify ,I{, U ,I{, = I, U ;l),. By the calculation
above, we get

|CQ1{0UQ1{2(H)| = |CGIIUQ[10(H)| =p' -2
and

|C,(H)| = |CQ1;OUQ1;2UQ1;'OUQ1;’2 (H)| =2(p" - 2).

Now we deal with the regular semisimple irreducible characters of G.

Proposition 4.2. Ler G = Sp,(p"), t|n, I(p"):=cL(p") U gly(p") U glis(p") U
clis(P") U gl1o(p") U 6L (p") U 1oy (p") and H = (') a subgroup of O. Then

1C(H)| = (p' = 1),
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Proof. Let IF be the algebraic closure of IF,, G* = SOs(g) the dual group of G, and
let T be the maximal torus of G* = SOs(IF) and W = Nz(T)/T the Weyl group.
Let y = x(x) be an irreducible character of Sp,(p") labelled by the parameter
x given in [19]. Then y(x)* = x(px) (using the character values on the classes listed
in the last column of Table A.4, we known that the action of o on the parameter
sets is given by x* = px). In addition, let T be a maximal torus of G* and s € T
such that y is a constituent of the Deligne-Lusztig generalized character RS (s)
(see [6, Corollary 7.5.8]). It follows by the degree of y that y = £RY (s) for some
sign + and Cg;.(s) = T. Thus Cg=(s) =T and z* =y if and only if ()% = (5)g;
namely, s* = s" for some w € W, where () is the conjugacy class of G* containing
s and « is also viewed as the standard field automorphism of G*. Thus y* =y
if and only if s € Ci(«'w™!); namely, s is a regular element of SOs(p’), since
Cr(¢'w™") is conjugate to a maximal torus of SOs(p'). But a regular element s of
SO,(p") corresponds to the irreducible character = +R> 7 ) (s) of Sp,(p'), and

Cso5(p) (5)
its parameter y (see [19]) lies in I(p"). It follows that )
Cyny(H) = I(p")
as H-sets, and |Cy,(H)| = [I(p")] = (p' — 1) O

5. UNO’S INVARIANT CONJECTURE FOR Sp,(q), g ODD

In this section, we prove Uno’s invariant conjecture for G = Sp,(g) in the
defining characteristic p, where ¢ = p" with an odd prime p. By [11, p. 152], G has
only two p-blocks, the principal block B, = B,(G) and one defect-0-block consisting
of the Steinberg character. Hence we have to verify Uno’s conjecture only for B,,.

As in the previous section, let O = Out(G) = (¢) x {z) and A = G x O, where
¢ is a diagonal automorphism of order 2 and « is a field automorphism of G with
order n. Fix a Borel subgroup B and maximal parabolic subgroups P and Q of G
containing B as in [19]. In particular, we may assume that O stabilizes B, P, and Q.

By a corollary of the Borel-Tits theorem [5], the normalizers of radical p-
subgroups are parabolic subgroups. The radical p-chains of G (up to G-conjugacy)
are given in Table 1.

Since C; and C; have the same normalizers Ng;(Cs) = N;(Cs) = B and
N,(Cs) = N, (Cg) = B x 0, it follows that

k(NG(Cs), By, d, U, [r]) = k(Ng(Ce), By, d, U, [1])

Table 1 Radical p-chains of G

c Ng(C) N4(C)
C, {1} G A

C, {l}<0p(P) P PxO
C; {1} < OI,(P) < Op(B) B Bx O
Cy {1} <0,(0) 0 0x0
Cs {1} < O!,(Q) < OP(B) B Bx O
Cs {1} < 0,(B) B Bx O
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forall de N, U <O and 1 <r< (p+1)/2. Thus the contribution of Cs and C;
in the alternating sum of Uno’s invariant conjecture is zero. So Uno’s invariant
conjecture for G is equivalent to

k(G, By, d., U, [r]) + k(B, By, d., U, [r]) = k(P, By, d, U, [r]) + k(Q, By. d, U, [r])
)

foralde N,U<Oand 1 <r<(p+1)/2.

Theorem 5.1. Let p > 2 be a prime and Ba p-block of G = Sp,(p") of positive
defect. Then B satisfies Uno’s invariant conjecture.

Proof. By the proceeding remarks, we can suppose B= B,. Let S € {G, B, P, Q}.
By the character tables in [19], we have k(S, B, d, U, [r]) = 0 when d & {2n, 3n, 4n}
or [r] € {[1], [2], [3], [4]}. Let U be a subgroup of O = Out(G).

(A) Suppose U < (a) with |U| = u.

Suppose, moreover that u |n and set ¢ := % and H := (o).

(i) If d=2n and [r]=][2], then by Tables A2 and A.5, we have
k(B, By, d, U, [2]) = k(P, By, d, U, [2]) = 0 and

k(G’ BO’ d’ U? [2]) = Z |C(;1](H)| = k(Q7 BO’ d’ U? [2]) = Z |CQI/(H)| = 4

Jjelg i€l

with the index sets J;; := {31, 32, 35, 36}, J,, := {22, 23}. Thus (1) holds in this case.
(i) If p=5 d=3n and r=1, then Table A.3 implies that (1) is
equivalent to

S IC,, () + Y 1€, (B = X |C,, ()] + X |C,, (1), )

jelg jelp jelp Jj€lg
where the index sets J; := {2, 8, 11, 17,24}, J, := {2, 5, 8},

o Bz e =s,
T3 if p>7,

and

;. 1{2.16,17,18,19,24,25,26,27}  if p =5,
7 2) if p>17.

By Table A.5, we have

3 1C,, () + Y 1€, ()] =

Jjelg Jjelp

3ph+12  if p=35,
3p—4 if p>17,
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and

3pP+12  ifp=5,

C C ,(H)| =
S B+ Tic, el= 1T 0 LT

jelp J€lg

Thus (1) holds in this case.

If p>5, d=23n, and r =2, then (1) is also equivalent to (2), where by
Table A.3, the index sets J; := {25, 26,27, 28, 39,40, 43,44}, J,:=1{6,7}, Jp :=
{11,12,13, 14}, and J, := {10, 11, 12, 13, 20, 21}. By Table A.5, the sums on both
sides of the Eq. (2) are equal to 4p’ 4+ 4. Thus (1) also holds in this case.

Suppose d =3n, p="7 or p> 11, and r =3 or 4 according as p=7 or p >
11. Then (1) is equivalent to (2) with J; = J, =0, Jp := {10, 11,12, 13}, and J,, :=
{16, 17, 18, 19, 24, 25,26, 27}. By Table A.5, the sums on both sides of Eq. (2) are
equal to 16. Thus (1) holds in this case.

If p =3 and d = 3n, then [1] = [2] = [4], k(K, By, 3n, U, [1]) = k(K, B,, 3n, U)
for K € {G, B, P, Q} and Eq. (1) (with [r] =[1]) is equivalent to (2), where by
Table A.3, the index sets J; := {2, 8, 11, 17, 24, 25, 26, 27, 28, 39, 40, 43, 44}, J; :=
{3,6,7,10, 11,12, 13}, J, := {2, 5, 8, 11, 12, 13, 14}, and

Jo :=1{2,10,11,12,13,16, 17, 18, 19, 20, 21, 24, 25, 26, 27}.

The same proof as above (with r = 1, 2, and 4) implies that (1) holds in this case.

(iii) If p>5, d =4n, and r = 1, then by Table A4, (1) is equivalent to (2)
with J; :={1,7,9, 10, 16, 18, 19, 20, 21, 22}, J, := {1, 2}, J, := {1, 3,4}, and J, :=
{1, 3, 4,9}. By Table A.5, the sums on both sides of Eq. (2) are equal to 2p’(p' — 1).

If p>35, d=4n, and r =2, then by Table A4, (1) is equivalent to (2) with
Jo:=1{3,4,5,6,12,13,14, 15, 29, 30, 33, 34, 37, 38, 41,42}, J; :={4,5,8,9}, Jp :=
{6,7,9,10}, and J, := {5, 6,7, 8, 14, 15}. By Table A.5, the sums on both sides of
Eq. (2) are equal to 8p'. Thus (1) also holds in this case.

If p=3 and d =4n, then [1]=][2], k(K, By, 4n, U, [1]) = k(K, B,, 4n, U)
for K € {G, B, P, 9} and Eq. (1) (with [r] =[1]) is equivalent to (2), where by
Table A.4, the index sets J; :={1,3,4,5,6,7,9,10, 12,13, 14, 15, 16, 18, 19, 20,
21,22,29, 30, 33, 34, 37,38,41,42}, J, :={1,2,4,5,8,9}, J, :={1,3,4,6,7,9, 10},
and J, :={1,3,4,5,6,7,8,9, 14, 15}. The same proof as above (with r = 1 and 2)
implies that (1) holds in this case.

(B) Suppose U = {¢).

(i) In addition, suppose d=2n. By Table A.2, we have that
k(B, By, d) = k(P, By, d) =0, Irr(G, By, d) = Irr(G, By, d, [2]), and Irr(B, B,, d) =
Irr(B, By, d, [2]), where

Irr(K, By, d) = Irr(K, By, d, 1) UIrr(K, By, d, U)
and Irr(K, By, d, [r]) = Irr(K, By, d) N Irr(K, By, [r]) for K € {G,B,P,Q} and

k(K, By, d) = |Irr(K, By, d)|. Thus it suffices to consider the action of ¢ on
Irr(G, By, d) and Irr(Q, By, d).
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Since ¢ swaps the G-classes A,;(1) and A,(1), it follows from the values of
characters of Irr(G, By, d) on A,;(1) and A,,(1) that ¢ acts on Irr(G, B, d) as the
permutation

(09’ 010)(013’ 014)'

Thus, ¢ does not fix any character in Irr(G, By, d) = {0y, 0,9, 0,3, 0,4}, and so

CIrr(G,Bo,zn)((f’) =0.

Since ¢ swaps the Q-classes A;;(1) and A,(1), it follows from the values of
characters of Irr(Q, By, d) on A;;(1) and A,,(1) that ¢ acts on Irr(Q, B, d) as

(Q99(0)’ Qelo(o))(Qge(l)’ Qelo(l))‘

Thus, ¢ does not fix any character in Irr(Q, By, d) ={,0,(0), ,0,,(0), ,0,(1), 50,,(1)},
and so

CIrr(Q,BO,Zn) (ﬂb) = 0.

Thus (1) holds in this case.

(i) Suppose d = 3n. Using the degrees and values of characters on the G-
classes A;(1), A;,(1), B-classes A,(1), A,(1), P-classes B;;, By,, and Q-classes
A (1), Aj5(1), we get the action of ¢ on Irr(G, B, d) by

(k) 22(K)) (s (D)5 25 (1)) Oaa (m)s 711 (") Gag (1), 247(1))
(0,)(05)(04)(05)(0) (0,7, 0,5) (05, 0),
on Irr(B, By, d) by
(523(K), p23(K) (g6(m, n), gz (m', 1))
(505(a, b), y0g(a’, b)) (504(c, d), p0s(c’, d")),
on Irr(P, By, d) by
(p22(K)s p12(K)) (p2s(D), p2s (1)) (p s (m), ps(m'))(505(0))(p05(1))
(p04(0), p0,(1))(505(0)) (p05(1))(505(0), p04(1)),
and on Irr(Q, B, d) by
(QXZ(k)’ QXz(k/))(Qxlo(m’ n)’ QXll(m,’ n,))(QXIQ(a7 b)’ QXB(a/’ b,))(Q03(0)’ Q94(0))

(00,(1), 00,(1))(05(0), 50,(0))(05(1), o0,(1))(0,(0), 40,(0))(0,(1), x0,(1))
(QQII(O)’ lez(o))(Qen (1)’ lez(l))(les(O)’ Q014(0))(Q013(1)’ Q914(1))'
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(ili) Suppose d = 4n. Using the degrees and values of characters on the G-
classes A;;(1), A;,(1), B-classes A3 (1), A3, (1), P-classes A;;(1), A5(1), and Q-classes
Ay (1), Ay (1), we get the action of ¢ on Irr(G, By, d) by

(0 (k) 1 (KD) (e (D)s 24 (1)) (s (m) s 16(m")) (x7(n) 17(n))

(xo(a, b), xo(d’s ) (210(€)s 210(¢")) (212(d), 113(d")) (114 (e), 115(€")
(16D 216N Crs(8s 1) 215(8s 1)) Gao (s )5 119 7)) (20 (7, 220(7))
(221(5)s %21 (5"))(69) (07, 05) (0,1, 015) (0,5, 016) (019, O).

on Irr(B, B, d) by

(g1 (ks 1), gy (K5 1)) (goa(m), pra(m'))
(sx4(a, b), pxs(a’, b))(50,(0), 0,(0))(50,(1), z0,(1)),

on Irr(P, By, d) by

(pr1(K)s pr (K)) (o3 (my n), prs(m', 0))(pr4(a), pra(a’))
(px6(c, ), pr7(c's d'))(p0,(0), p0,(0))(p0,(1), p0,(1)),

and on Irr(Q, B, d) by

(2, (K)s 02, (K)) (o5 (m m), g5 (m', ')
(o24(a D), o1, (a', D)) (015(6)s 026 ()) 027 (d)s 025 (d)
(0%5(€) 025(€9)(0,(0), 40,(0)) (o8, (1), x0,(1)).

(iv) By proofs (i)-(iii) above, we have that Irr(G, B, 2n) contains two orbits
of length 2 (called 2-cycles) under the action of ¢, Irr(G, By, 3n) contains at least
two 2-cycles, and Irr(G, B, 4n) contains at least 4 + (¢ — 3) + (¢ — 1) 2-cycles. Thus
Irr(G) contains at least 8 + (¢ — 3) + (¢ — 1) 2-cycles under the action of ¢. Let
€L(G) be the set of conjugacy classes of G. By [19, Table IV-1], €¢(G) contains
exactly 8 + (¢ — 3) + (¢ — 1) 2-cycles under the action of ¢. It follows from Brauer’s
permutation lemma [15, Lemma 3.2.19] that Irr(G) has exactly 8 + (¢ — 3) + (¢ — 1)
2-cycles under the action of ¢. It follows that

Clrr(c,30,3n)(¢) = {12(k), x5(k), 111 (k), y17(k), 05, 05, 04, Os, Oc}

and CIrr(G,BO,4n)(¢) = {11(k), 17(k), 29 (ks 1), 710(K)s 216 (K), 215K, D)5 110 (K, 1), Oy,
%20(K), 121 (K) .

Similarly, Irr(B) contains at least 10 +4(g — 1) 2-cycles, and by [19, Table
I-1], ‘6£(B) has exactly 18 +4(g — 3) 2-cycles under the action of ¢. So Brauer’s
permutation lemma implies that Irr(B) has exactly 10 + 4(g — 1) 2-cycle orbits. Thus

{p23(k)} if d = 3n,

C =
]rr(B'BO’d)(d)) {s11(k, D), pxa(K)} if d = 4n.
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By proofs (i), (ii), and (iii) and [19, Table II-1], Irr(P) contains at least 4 4
2(g — 1) 2-cycles, €£(P) has exactly 8 + 2(¢ — 3) 2-cycles under the action of ¢, and
by Brauer’s permutation lemma, Irr(P) contains exactly 4 + 2(g — 1) 2-cycles. Thus

{p12(k), prs(k), prs(k), pOs(k), pOs(k)} if d = 3n,

Crre(p.5y.a) () = {{le(k), ok, 1), pra (K if d =4n.

Similarly, Irr(Q) contains at least 14+ (¢ —3) + (¢ — 1) +2(¢g — 1) 2-cycles,
©£(Q) has exactly 18 +3(g — 3) + (¢ — 1) 2-cycles under the action of ¢, and by
the Brauer permutation lemma, Irr(Q) contains exactly 14+ 3(¢ — 1) + (¢ — 3) 2-
cycles. Thus

_ o, ()} if d = 3n,
CIrr(Q,BO,d)(d)) - . A . .
{QXl(k)’ Q)C3(k’ l)? QX4(k’ l)’ Q)Cg(k)} if d = 4n.
By Table A.3,
3g—4 ifr=1and p >3,
k(K’ B()9 3”9 <¢>a [r]) + k(H, B()9 3n’ <¢>9 [I"]) == 4 lf r = 2 and P > 5,

3q ifr=1and p=3,
where (K, H) = (G, B) or (P, Q). Thus (1) holds in this case.
Note that by Table A4, C i p, an(¢) = Irr(K, By, 4n, 1, [1]) for each K €
{G, B, P, Q}. By the proof (A) above,
k(G, By, 4n, 1, [1]) + k(B, By, 4n, 1, [1]) = k(P, By, 4n, 1, [1]) + k(Q, By, 4n, 1, [1])
and so
K(G. By, 4n, (¢), [1]) + k(B. By, 4n, (), [1])
=k(P, By, 4n, (¢). [r]) + k(Q. By, 4n. (¢). [r])

for all [r]. Thus (1) holds in this case.

(C) Suppose U < O = (o) x {¢). By proofs (A) and (B), there exists a
bijection y from

Irr(G, By, d, [r]) U Irr(B, By, d, [r]) onto Irr(P, By, d, [r]) U Irr(Q, By, d, [r]),
such that

Yo =¥, x€l(G, By, d, [r]) Ulrr(B, By, d, [r])

for any x € (x) or x € (¢).

Let ye U, so that y=y,y, with y, € (a) and y, € (¢). Thus Y(y)* =
V()2 =y ()2 = y(x’) and hence (1) holds. This completes the proof of
Theorem 5.1.
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APPENDIX
Table A.1 Parameter sets for the irreducible characters of the parabolic subgroups G = Sp4(g), B, P, Q
Parameter Equivalence Number of
set Characters Parameters relation characters
cli=... 1K) 76(k) k:O,...,Iq—2 (k= —k} 3
=l k#0, %
ol 77 (k) see the remarks in Section 4 %z
cls 73 (k) k=0,...,q-2 {k = —k} =
k#0, &
olo Yok, 1) see the remarks in Section 4 %@:’5)
clio=-.. 110(K), - .5 115(k) k=0:-~s+? {k = —k} q%
=¢hs k#0, 4
olis 116(k) see the remarks in Section 4 %1
ol 117(k) k=0,....q {k = —k} q%
k#0, <!
olis 118k, 1) see the remarks in Section 4 M;"_ﬂ
clio Yok, 1) see the remarks in Section 4 %("2_3)
ol 120(k) see the remarks in Section 4 (q;%
ol 121 (k) see the remarks in Section 4 "T’l
ln=... (N 1
=clu
8l sr1 (k. D) k,1=0,..., (¢-17
q—2
sl =33 8%2(k), g3 (k) k=0,....,9-2 g—1
sy =.. sra(k, D), ..., k=0,...,g-2 2(g—1)
=3l g7k, 1) 1=0,1
sls =l 50, (k), 0, (k) k=0,1 2
slho=-. g0k, 1), ..., k,1=0,1 4
=3l 80(k, 1)

i =»ph p11(k), p2a(K) k=0,....,9-2 ‘11* 12
A pr3(ks 1) k1=0,...,q—2 {(k, 1) = (1, k)} e=Ng=3)
qg—1}fk—1
A pa(k) k=0,....4~2 {k = gk} )

q+1 fk
ol 215 (k) k:O,.‘.,?—Z (k= —k} 2
k#0, %
pls = ply pre(k, D), prp(k, 1) k=0,....,q-2 2(g—1)
1=0,1
plg PXg(k) k=0,.. ’+1q {k = _k} ‘IT*l
k#0, 4
plo= ... =pl, p01(k), ..., p0g(k) k=01 2
QII :QIZ Qll(klglz(k) k=0,...,9-2 ‘11— 13
ols AN k1=0,...,q— {(k, 1) = (k, =)} 2-1)g-3)
2
-1
1#0, 5= ,
-1
ol Xy (k. D) k=0,...,9-2 {(k, 1) = (k, =)} ool
1=0,...,q
+1
[#0, 9=

(continued)
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Table A.1 Continued

Parameter Equivalence Number of
set Characters Parameters relation characters
ols ==l oXs(k)s « oy oy (k) k=0,....,9-2 qg—1
olio = ol 0Z10k, D)5 oy, (K, 1) k=0,....,9-2 {(k, 1) = (=k, D} q-3

[=0,1

k#0, 4t
Q112 = Qll3 Qllg(k’ l)’ QX13(k7 l) k=0,1 {(k’ l) = (k’ _l)} q— 1

1=0,...,q

1
10,4

~
Il

=
— S
&}

olu=-=oly  o0,(K),.... 00,k

Table A.2 The irreducible characters of the chain normalizers in
Sps(q) of defect 2n

Param. Param.

Character Degree set Yamada Number Class

G 0y (g +1)/2 6l 1 A (1)
n (> +1)/2 ¢l 1 Ap(1)

013 ‘12((12 -1/2 clss 1 A (1)

n qz(qz -1)/2 clis 1 Ap (1)

Q  0,(k) ?(g—1)/2 ol» 2 Ay (=1)
leo(k) qz(fl -1/2 Q[23 2 Ap(=1)

Table A.3 The irreducible characters of the chain normalizers in Sp,(q) of defect 3n

Param. Param.
Character Degree set Yamada  Number Class
G 12 (k) q(g+ 1) (g + 1) b ’R, L;} Cu(l,9)
u®k)  alg+ D@ +1) ols Ry 2 Cu (L)
1 (k) a(g— 1) (g +1) ol 28 q%l Dy (1, 4)
117(k) q(g— D) (q* + 1) cli7 25 q%l Dy (1,4)
0, g9 +1) cha 1
05 q(g+1)?/2 ahs 1
0, q(g—1)?/2 6l 1
05 a(@*+1)/2 6l 1 Ap (1)
Os (@ +1)/2 ¢l 1 Ap(1)
G 0,7 a(g+D)(g*+1)/2 IeZE) 1 Ap()
O1s q(g+1D(g>+1)/2 clao 1 Ap(1)
0 alg— (> +1)/2 ols 1 Ap(1)
0, q(g—D(¢*+1)/2 claa 1 Ap(1)
B 513(k) q(g—1) sl3 Ry g—1 G3 (i)
sk, 1) q(g—1)/2 8ls Ry X Z, 2(¢—1) Cu(=1L0),Cr(=11)
pA7(k, 1) q(g—1)/2 sl7 Ry xZ, 20q—1) Cu(=10), Ch(=1,19)
s05(k. 1) q(q — 1)2/4 slo Zy x1Z, 4 Ay (—1), By3(—1)

(continued)
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Param. Param.
Character Degree set Yamada Number Class
p04(k, 1) q(q — 1)2/4 sl 2y x 1, 4 Ay (=1), Bi3(=1)
pOs(k, 1) q(g—1)*/4 sl Zy x Z, 4 Ay (=1), By3(=1)
pOs(k, 1) q(q — 1)2/4 sl 2y x 1, 4 Ay (=1), By3(=1)
pr2(k) q rh Ry qg—1 Ci(1,9)

»1s(K) alq* = 1) »ls Ry 42 1 (i)

prs(k) q(q — 1)2 ply 2S1 L;l Dy, (i)

P05 (k) Q(flz -1/2 rli z, 2 By,

pO4(k) ‘1(‘12 -1/2 rln z, 2 By,

p0s(k) q(q — 1)2/2 pli3 Z, 2 By,

pOs(k) q(q — 1)2/2 2 Z, 2 By,

QXZ(k) q le Ry g—1 Cy(1,4)
QXlo(k» )] 4(42— 1)/2 QII() ZRI X Z, q-73 Ci(=1,0), Cir(=1,1)
QX“(k» 0 Q(qz— 1)/2 Qlll ZRI X Z, q—3 Cii(=1,9), Cir(=1,10)
QXlz(k» 0 4(4—1)2/2 QIIZ Z, XZS] qg—1 Dy (=1,1), Dyp(=1,1)
QXB(k’ l) 4(4—1)2/2 QII3 z, XZS] g—1 Dyy(=1,i), D15(—1,0)

Q63(k) Q(flz -1)/4 le z, 2 Ay (=1), Ay (=1)

Q94(k) Q(flz -1)/4 QII7 z, 2 Ay (=1), Ay (=1)

Qes(k) Q(flz -1)/4 QII8 z, 2 Ay (=1), Ay (=1)

Qeé(k) Q(flz -1)/4 QII9 z, 2 Ay (=1), Ay (=1)

Q97(k) q(g—1)/2 leo z, 2 A (=1

Qeg(k) q(g—1)/2 Q121 Z, 2 Ay (=1)

lel(k) q(q — 1)2/4 QI24 z, 2 Ay (1), Ay (=1

lez(k) q(q — 1)2/4 QIZS z, 2 Az (=1), Ay (=1

Q913(k) q(q — 1)2/4 les z, 2 Az (=1), Ay (=1

Q914(k) q(q — 1)2/4 Q127 Z, 2 Ay (=1), Ay (=1)

[ Nati onal Cheng Kung University] At:

Table A.4 The irreducible characters of the chain normalizers in Sp,(q) of defect 4n

Downl oaded By:

Param. Param.

Character Degree set Yamada Number Class
1) (a+ (¢ +1) ah Ry o2 Cn(l.i)
13(k) (¢+ D¢ +1)/2 ol Ry o Cia(1,0)
14 (k) (g+D*g*+1)/2 cls R, q%} Cip(1, 1)
15 (k) (‘14 -1/2 6ls 2Rl q773 Cip(1,9)
16(k) (¢* =12 ale ’R, e Cin(1,0)
17(k) (g+D(@+1) ol ’R, qT% Cu(1,9)

1o (k, ) (g+ DX (> +1) clo ¥R, % (1, 4)
710(k) (g—D(@+1) clo 25 q%l Dy (1,1)
112(k) (g—D*g*+1)/2 clin 25 ‘%l Dy, (1,1)
113 (k) (g—D*g*+1)/2 o3 28, q%l Dy,(1, 1)
114(k) (114 -1)/2 clis 2Sl %1 Dy,(1,4)
115 (k) (‘14 -1)/2 clis 2Sl q%l Dyy(1, )
116(K) (4= D@ +1) ahe 8, o Dy (1,0)
1s(k, 1) (a= DX+ 1) ahs 58, U= Dy (L)

(continued)
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Table A.4 Continued

Param. Param.
Character Degree set Yamada Number Class
119k, 1) gt —1 ¢l 2R1 X 251 % E(, j)
Y20(k) gt —1 6l 4T3 (q;;]) E\(i)
121 (k) (¢ =1 ch v, ot Es (i)
0o 1 6ln 1
6, (¢*+1)/2 6l 1 Ap(1)
Og (@ +1)/2 FeZEN) 1 Ap(1)
01 (‘]2 -1)/2 ¢l 1 Ap(1)
01, (‘12 -1/2 6l 1 Ap(1)
015 (g+D(g*+1))2 clyr 1 Ap(1)
016 (g+ (@ +1)/2 ol 1 Ap()
O (g—D(g*+1))2 cla 1 Ap(1)
O30 (=D +1)/2 6l 1 Ap(1)
B s (k, D) 1 s Ry x Ry (g—1)? C@, j)
522 (k) g—1 sl Ry -1 Cy (i)
s14(k, D) (g—1)/2 sl4 Ry x Z, 2(q—1) Cp(=1,0)
prs(k, D) (g—1/2 815 Ry xZ, 2(g-1) Cn(=L119)
0, (k) (g-1?%)2 1y 2 Ay (=1
50, (k) (¢ - 1)2/2 sl 2 Ay (=1)
P p1 (k) 1 pli Ry qg—1 Cn(l, )
prak, D) qg+1 rls 'R, O CG. j)
pa(k) g1 pls T, A0l 120
pro(k, D) ((12 -1)/2 rls Ry xZ, 2(g-1) Cp(=119)
pi(k, D) (@ -D)/2 20 Ry x Z, 2(q—1) Cp(=1,9)
p0, (k) (g - 1)(‘12 =1)/2 rl z, 2 Ap(=1)
p0, (k) (- 1)(42 -1)/2 rlio z, 2 Ap(=1)
0 o, (k) 1 ol Ry qg—1 Cy(1,1)
o3k, ) qg+1 ols Ry xR, lled G, j)
o7k, D) g1 ols Ry x 28, i E(i. j)
02s(k) (g+1)/2 ofs Ry q—1 Cp(=1,1)
07¢(k) (g+1)/2 ol Ry q—1 Cp(=1,1)
077(k) (g—1)/2 olr Ry q—1 Cp(=1,1)
07g(k) (g—1)/2 ol Ry q—1 Cp(=1,1)
07y (k) g -1 oly Ry q—1 Gy (9)
00, (k) (g—D(@—=1)/2 ol 2 Az (=1)
00, (k) (a—D(@-1/2 olis 2 Az (=1)

Table A.5 Number of fixed points of H = (') on
parameter sets of the irreducible characters of the
parabolic subgroups of Sp,(g). The unions of
parameter sets in this table are disjoint unions

Number of fixed points

Parameter set / |C,(H)| if t|n
¢l Yl p=2
¢hVYsly p—2
¢l YUl p=2

(continued)
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Table A.5 Continued

Number of fixed points
Parameter set / |C;/(H)| if t|n

¢laVYsls p=2
ls Ul p=2
6lsYelis p=2
clyYUcly p=2
¢l YglyUgligU (p'—1)7?
clig U gli9V
6l Y sl
¢l 1
6l 1
chs U ls Ul U 8
6ls Ul U glylY
clizYgly
6l Ul U lsU 8
¢l U gl37Y
el YelyYely

¢l VUl Ugls Ul 4
sh (r' =17
gl p-1
513 pr-1
Bla 20" = 1)
ls 2(pp'=1)
Bls 20" = 1)
sl 2(pp'=1)
NATINA 4
gl Y sl Uplip Uplys 16
24 p -1
rh p-1
pl3Uply (p' = 1)?
pls U ply p-2
ol 2(p' = 1)
rl 2(pp' = 1)
ply U plyy 4
plnUpla U plisUply 8
oli p—1
oh p—1
ol3Uoly @ -DHp'-2)
ols p—1
ol p—1
ol p—1
ols p—1
oly p—1
ol Yol 2(p' =2)
ol Vol 2(p' =2)
olia Y olis 4
Q[16UQ117UQ118U 16

olio VU oha U phsU

o6 U ol
ooV ol 4

oln U ol 4
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