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From each ¢ x ¢ unitary matrix @, we construct a family of quantum codes
%,(®), t> 1, for g-state systems which encode (2¢+ 1)* g-states into one
g-state. We show that such codes are capable of correcting the errors of
weight up to 7 if and only if @ is a complex Hadamard matrix.

Keywords: complex Hadamard matrix; quantum code

1. Introduction

Since Shor’s discovery of the 9-qubit code [13] which is capable of correcting single-
qubit errors in quantum communication, much research has been done on quantum
error correcting codes. Although most of the efforts are concentrated on binary
codes, non-binary codes also attract more interest, both for applications and
for further theoretical developments. Ashikhmin and Knill [1], Matsumoto and
Uyematsu [9] and Parthasarathy [11] constructed quantum codes for p™-state
systems (p a prime), while Bierbrauer and Edel [3] developed constructions using
twisted BCH-codes.

In this article, we construct quantum codes for g-state systems using ¢ x ¢ unitary
matrices. The idea came from the construction of Shor’s 9-qubit code.

In his original construction, Shor used the repetition of the states
|y1)=%|.000)+f§|111> and |v,) =JL§|000>—%|111> in (CH* to correct the
single qubit errors introduced by the environment. Observe that the transition matrix

[
between the set of vectors {|000), [111)} and {|v; ), [v2 )} is the unitary matrix | v2 v2 ],

V2 2
which is usually referred to as a Walsh—Hadamard matrix.

A natural way of generalizing the idea is to use unitary matrices coupled with
repetitions to construct g-state quantum codes. Take a ¢ x ¢ unitary matrix ® = (¢;)
with ¢>2. For t>1, consider the vector space %,(®) generated by the states

. .. . 2+1
|<I>f-’)) ® |<I>§’)) ®~--|<Df-’)), 1 <i<gq, where each ICDSI)) e 7:1 jil ii---i)e(CH,
il 241
Can this code do what we are hoping it will do, namely, correct quantum errors, and
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if so, how good is it? We will see that, in Theorem 2.2, the code %;(®) can correct
quantum errors if and only if @ satisfies

1 .
lloifll* = for all i,je{l,....q}. )
For a quantum code % with an orthonormal basis {|1), ..., |k)}, the distance d of
% is defined to be the minimum weight of the error operators E such that
(IlE1J) # cESjj (2)

for some |i) and |j), where ¢y € C is a constant (cf. [12, Section 7.3.1]). We say that
a quantum code for a g-state system with length 7, k encoded ¢-states and distance
d is an [[n, k,d]], quantum code. Such a code can correct an error of weight
5% (d—1). In our case, ,(®) is an [[m?, 1, m]], quantum error correcting code.

Note that unitary matrices satisfying condition (1) exist in abundance. Recall that
a g x ¢ matrix H is called a (complex) Hadamard matrix if the entries of H are the
roots of unity and H'H = ql,, where 1, is the g x ¢ identity matrix and H' denotes the
Hermitian conjugate of H [15]. Hadamard matrices which appear in combinatorial
design theory have entries of either 1 or —1, and are called real Hadamard matrices.
In the real case, it is known that ¢ is either 2 or is divisible by 4 [14, Theorem 2.2.3].
But in general, i.e. when the roots of unity other than +1 are allowed, ¢ can be any
integer >2. Now, if H is a Hadamard matrix, then ® = L H is a unitary matrix
satisfying condition (1), which can be used to construct a series of quantum error
correcting codes. Shor’s construction comes about naturally within this framework.

Shor’s 9-qubit code can also be described by using stabilizer codes [4]. However,
our construction does not yield stabilizer codes in general (Remark 3.1(2)). The
proof of Theorem 2.2 gives another insight to how these codes work.

In the next section, we set up the notation, describe our code and state our main
theorem. We first prove the case of weight =1, and the general construction then
follows.

We note that for any ¢ >2, ¢ x ¢ unitary matrices satisfying condition (1) are
abundant. In fact, for ¢>2, let w = ¢*™/4, and set ¢, = “’—(; for s,te{l1,2,...,q}.
Then ® = (¢y,) is a unitary matrix satisfying the condition (1). Such matrices are
often referred to as Fourier matrices, and are used in discrete Fourier transform.

Finally, complex Hadamard matrices have been used in quantum information to
construct nice error bases, to study mutually unbiased bases, in solving Mean King
Problems or to construct quantum designs (cf. [2,5-7]). Beside Fourier matrices,
there are many other complex Hadamard matrices. A nice catalogue of them with
a good pointer to various references can be found in [17].

2. The machine

Start with the vector space C? over the complex numbers C of dimension ¢ > 2. For
any integer ¢ > 1 we introduce tensor spaces 7~ = (C?)®?*D (i.e. the tensor product
of €7 with itself 27+ 1 times) and # = 7 ®+D,

Let {|1),]2),...,]¢g)} be an orthonormal basis of C? with respect to the usual
Hermitian inner product. Thus (i|;j) = 6;. The tensor product of the vector [|i) with
itself 2741 times will be denoted by |i (V).
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To a given ¢ x ¢ complex matrix ® = (¢;), we associate the following vectors
in 7" :

q
00) = gli). j=12....q. 3)
i=1

Then we take tensor product to get the vector

[(OFN0 Dy _ (g0 (1) (1)
2P0 00) =0 @ o)) @ @ o)

2i+1 2141
in . Finally, set
T () 0 (0
“(®):=(PCi e - ). )
= —_——
= 2t

This subspace %,(®) of # will be our code.

Definition 2.1 By a g x g generalized Hadamard matrix we mean a unitary matrix
& = (¢;) satisfying condition (1).

Let T denote the set of operators on # of the form Uy @ Ux ® -+ Q Uy, s
where all the ¢ x ¢ matrices U; are the identity matrix except for at most ¢ of them.
Let € be the subspace of the algebra End(#’) of linear operators on # spanned by ¥.
Therefore, € consists of all possible error operators of weight at most 7 in End(#).

We can now state our theorem.

THEOREM 2.2 The g-dimensional subspace €,(®) of A is a quantum code, which can
correct all the errors of weights up to t given in & if and only if ® is a generalized
Hadamard matrix.

3. The proof

Let H be a finite-dimensional Hilbert space over the complex numbers. If C is
a subspace of H, we write P for the projection operator from H to C. Let & be
a subspace of the algebra End(H) of endomorphisms on H. According to
Knill-Laflamme ([§, Theorem III.2], [l10, Theorem 10.1], [4, Section 3,
Theorem 3]), the subspace C of H is a quantum error correcting code capable of
correcting the errors in & if and only if for any E and F in & there exists a complex
number ¢(E, F) such that

PcEFTPe = ¢(E, F)Pe. (5)

Here F' denotes the adjoint of F defined with respect to the inner product of the
Hilbert space H.

Thus, Theorem 2.2 is equivalent to the statement that the condition (5) is satisfied
if and only if the condition (1) holds.

To make our arguments easier, we shall first prove the case of 1=1 before we
tackle the general case.
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3.1. Weight 1 case

In this section 1=1. ¥ is now the vector space (C/)®* and # = (C")®’ @ (C)**®
(C7)®3. These vector spaces are equipped with natural Hermitian inner products.

Let ® = (¢;) be a ¢ x ¢ unitary matrix, that is, ® satisfies ofp = 1,, where 1, is
the identity matrix and &' is the Hermitian conjugate of ® in the complex
algebra End(C?) of endomorphisms on C?. We put |®;) = Z;’:l Wil jif) € (C%)®3 for
i=1,2,...,q. Then (®;|®;) = §; for all iand jand so {|®;), 1 < i < ¢} forms another
orthonormal basis of the subspace &7 Cliii) of ¥". Our code space determined by
® is now the following g-dimensional subspace of # :

C(P) = DL, ClD;) ® D) ® D).

Let P: # — €,(®) be the projection operator. Then P can be expressed as

P=Y" 0P, ) (PP,

Let T denote the set of operators on # of the form
X(ot) — 1®(01—1) RX® 1®(9—a)7 (6)

where a=1,2,...,9 and X € End(C?). The error space € is the vector space spanned
by €. Then

¢ =~ End(CY) @ End(CY) @ - - - ® End(CY).
9

@)

3.1.1. Proof of Theorem 2.2 in the case t =1

Let Ej; stand for the ¢ x ¢ matrix unit having 1 at the (i,/) position and 0 elsewhere.
In order to prove the theorem, it suffices to consider the error operators of the form
(in the notation of Equation (6))
_ @
E=E}",
fora,Be{l,2,...,9} and i,j,k,l€{1,2,...,q}. We shall write Efla) as a triple tensor
product of operators inEnd((C)®?), e.g.

_g®
F= Ekl

EEP:(EU-®1®1)®(1®1®1)®(1®1®1),
ER=(1010)eEelahe(1elal).

We also introduce the ceiling function [-] defined for any non-negative real
number r by setting [ r ] to be the smallest positive integer >r.
We remind ourselves that in the condition (5) the adjoint ¥ means to take the
conjugate linear anti-involution on End((C%)®’) defined by
XX, ® - @Xo—>X @ X ®- - ® X],

where each X;is a ¢ x ¢ matrix.
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There are three cases to be discussed depending on the values of « and B. First,
suppose that [S/3] # [«/3]. We have

PEFTP =" (®,|E; ® 1 ® 1|0, /(DB @ 1 @ 1]®y)

X (195 ){Ds] @ |95 ) (D] @ | D5 ) (Ds]). ®)

Some remarks are given below. Note that the values of (®|E; ® 1 ® 1|, ) and
(O E ® 1 ® 1|y ) are independent of the positions of the matrix units, namely,
for all i, j,

(DE; @ 1 @ 11D, ) = (|1 ® E;; @ 1]D5) = (P51 @ 1 @ Ejj| Dy ).

We have already used this fact in deriving the formula (8) for PEF'P, and shall use
it later without further explanation. Now

(D1E;; @ 1 ® 1Dy ) = 8;0iseis,
and using this in (8) we arrive at

PEF'P = ;61 Y wyi (104 ){®4] @ |0, ) (D] @ |0, ) (P4]).
N

where Wy = @is@is@rs@rks- NOW PEF'P is proportional to P if and only if wy; is
s-independent. This is equivalent to the condition that there exists some positive real
number &; such that

Oipis = & for all s.
As @ is a unitary matrix, we see that & = 1/¢ for all i, that is,

DisQis = i, for all s. )
q

Next, suppose that « = . Then

PEF'P = 8;8u Y @istpis (195 ) (D4 @ | D ) (D] @ Dy ) (D).

Finally, suppose that [8/3] = [«/3] and B#«. We have
PEF'P =Y (0| E; ® Ej ® 1|0y ) (| ) (D] ® [ ) (D] ® | ) (D)
=80k ) Pisis (1D (D] © | ) (D] @ | Dy ) (D).
s
We easily see that in both cases, the condition (9) is necessary and sufficient to render

PEF'P proportional to P. This completes the proof. [ |

Remark 3.1 For any ¢ x ¢ matrices X and Y, we denote by FE either X® Y ® I,
XRI®Yor I X® Y. Then

(il ELjjj) = 8y (i1 X1/} Y1 j), Vi)

We consider the vectors |iii) instead of |ii), precisely because of this property. For it
may happen that (ii[|X ® Y]jj) # 0 even when i#.
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3.2. Weight t>1 case

Now we take 7 to be an arbitrary (but fixed) positive integer, and return to the set-up
of Section 2.

Proof  The projection P from €,;(®) to # can be expressed as
P:P1+P2+"'+an
where

Pi= 19" )@ @]9 ) (@@ ® |0 ) (@]

2t+1

(10)

satisfies the relations P; P;=§;P;.
First, assume that %,(®) can correct the errors in €. Then for every pair E, F € &
there exists a constant ¢(E, F') € C such that

PEFTP = ¢(E, F)P. (11)

Consider E = F = E,(f]) =E;®1®---®1e%. Then EFf = Ezlk), and so
—_—
21+1

PEF'P=) PEF'P, =) PEP,
s s

For every s=1,2,...,¢q, we have

PEYP = (0B ®1® - ® 1|0) Py = T, Py
Therefore, @iy = c(E, F) for all k,se{l1,2,...,q}. This means that lgrs|® is a
constant for all k,s€ {1,2,...,¢}. As ® is a unitary matrix, |@|* = iq for all k and s.
Conversely, we assume that @ is a generalized Hadamard matrix. Take arbitrary
E,F e %, and write

E=U0U0® - ®@Uyy, F=V®@V2Q: - ® Vi,
where Uy, V; € End((C?)®?*D). We can express EF' as
WidW®--- @ Wy, (12)

where W, = UkV,t. It is crucial to note that at most ¢ of the U; (resp. V) are not the
identity operators on (C?)®?*V. Therefore, at least one of the W, is the identity
operator on (C/)®?*D. By using (10) for each P;, we easily see that

PEF'P = 21: P,EF'P; =" P.EF'P,

q
ij=1 i1

and

P.EFTP; = (0 |W, )0 (0| @ -+ @ (D) [Waypy [0 )0 ) (0]

21+1
= (]‘[ <<1>5”|W1|<1>§”>)P,-.

=1
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Now we observe that W, can be written as W ,® Wy ® - ® W,,, with at least one of
the operator W (acting on C?) being the identity operator. As @ satisfies (1),
(@5’)|W1|<I>§t)) is independent of i, and so is also the coefficient Hf;{l (CI>§’)|W1|<I>§’) ).
Hence

2t+1
PEF'P=P]] (@ W o).
=1

This completes the proof. |

Remark Note that the function ¢: € x & — C defines a sesquilinear form, namely,
¢ is linear in the first variable and conjugate linear in the second.

4. Conclusions

We have shown that given any ¢ x ¢ generalized Hadamard matrix, one can
construct a family of quantum codes % from a ¢-state system, which are capable of
correcting arbitrary errors of weights up to ¢. In this construction, ¢" = dim # =
¢**V" and ¢* = dim% = ¢. Suppose that E, F € € are the errors of weight ¢+ 1.
Then, when expressed as in the form (12), it is possible that none of the W’s is the
identity operator on (C?)®?™*V. In this case, the arguments used in the proof of
Theorem 2.2 break down. Hence the minimal distance d of the code €,(®) is less
than 2(¢+ 1). On the other hand, dis at least 27+ 1. Therefore, d=2¢+ 1 and so % is
a [[Qr+1)% 1; 2 + 1], quantum code. It is clear that we recover from the above
construction the 9-qubit code of Shor [13] as a special case by using the Hadamard
1

matrix (L)
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