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Abstract In this paper, some necessary and sufficient optimality conditions for the
weakly efficient solutions of vector optimization problems (VOP) with finite equality
and inequality constraints are shown by using two kinds of constraints qualifications
in terms of the MP subdifferential due to Ye. A partial calmness and a penalized
problem for the (VOP) are introduced and then the equivalence between the weakly
efficient solution of the (VOP) and the local minimum solution of its penalized prob-
lem is proved under the assumption of partial calmness.
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1 Introduction

Let RI and RL be the I -dimensional and L-dimensional Euclidean spaces, respec-
tively, where I and L are given positive integers. In this paper, all vectors are column
vectors and the superscript T denotes the transpose. For any positive integers a > b,
let [a, b] = {a, a + 1, . . . , b}. Denote by RL+ and intRL+ the nonnegative orthant of
RL and the interior of RL+, respectively. Then, the order and weak order in RL can be
defined by respectively

x ≤ y ⇐⇒ y − x ∈ RL+, x �≤ y ⇐⇒ y − x /∈ RL+, ∀x, y ∈ RL,

and

y < x ⇐⇒ y − x ∈ −intRL+, y �< x ⇐⇒ y − x /∈ −intRL+, ∀x, y ∈ RL.

Let X be a Banach space. In this paper, we consider the following vector opti-
mization problem with finite equalities and inequalities constraints:

(VOP) min F(x),

s.t. ui(x) ≤ 0, i ∈ [1,m],
vj (x) = 0, j ∈ [1, n],

where F = (f1, . . . , fL)T : X → RL, ui : X → R (i ∈ [1,m]) and vj : X → R (j ∈
[1, n]) are functions and m,n are given nonnegative integers. In the case where m = 0
or n = 0, there are no explicit constraints of the above type. We can rewrite (VOP) as

(VOP) min F(x),

s.t. u(x) ≤ 0,

v(x) = 0,

where u = (u1, u2, . . . , um)T : X → Rm and v = (v1, v2, . . . , un)
T : X → Rn. We

denote by

K = {x ∈ X : ui(x) ≤ 0, vj (x) = 0, i ∈ [1,m], j ∈ [1, n]}
= {x ∈ X : u(x) ≤ 0, v(x) = 0}

the feasible set of (VOP) and, for any feasible solution x∗ ∈ K , by M(x∗) = {i ∈
[1,m] : ui(x

∗) = 0} the index set of the binding constraints. Recently, many authors
have studied (VOP) under some different conditions. See e.g. [1–8]. It is well known
that set-valued optimization is different from (VOP), even though one can claim that
(VOP) is a special case of set-valued optimization.

A vector x∗ ∈ K is an efficient solution to (VOP) if and only if

F(x∗) ≤ F(y), ∀y ∈ K,
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or equivalently,

∀y ∈ K, ∀l ∈ [1,L] : fl(y) − fl(x
∗) ≥ 0.

A vector x∗ ∈ K is a weakly efficient solution to (VOP) if and only if

F(y) �< F(x∗), ∀y ∈ K,

or equivalently,

∀y ∈ K, ∃ly ∈ [1,L] : fly (y) − fly (x
∗) ≥ 0.

Obviously, an efficient solution implies a weakly efficient solution.
If F ≡ f , then (VOP) reduces to the classical optimization problem (COP).
If X = RI and F(x) = (cT

1 x, . . . , cT
Lx)T for all x ∈ RI , then (VOP) collapses to

the multicriteria linear programming problem (MCLP, [9]) where cl ∈ RI for each
l ∈ [1,L].

We denote by Ew and E the set of all weakly efficient solutions and the set of all
efficient solutions to (VOP), by Sw and S the set of all weakly efficient solutions and
the set of all efficient solutions to (MCLP), respectively. It is clear that E ⊆ Ew and
S ⊆ Sw . In this paper, we always assume that Ew , E, Sw and S are nonempty.

It is well known that both differentiability and Lipschitz continuity play an impor-
tant role in establishing the optimality conditions for (COP). See [10–17]. Recently,
Ye [18] studied (COP) with equality and inequality constraints on a Banach space
where the objective and the binding constraints are either differentiable at the min-
imum solution or Lipschitz near the minimum solution, and derived necessary and
sufficient optimality conditions and constraint qualifications in term of the Michel-
Penot subdifferential. Ye, Zhu and Zhu [19] showed the equivalence between partial
calmness and local exact penalization for (COP) with equality and inequality con-
straints.

The main goal of the present paper is to derive necessary and sufficient optimality
conditions, partial calmness and the penalized problem for (VOP). The paper is or-
ganized as follows. By using the nondifferentiable Abadie constraints qualifications
(ACQ) and generalized Zangwill constraints qualifications (ZCQ) in terms of the
Michel-Penot subdifferential due to Ye [18], we derive necessary and sufficient opti-
mality conditions for the weakly efficient solutions of (VOP) and (MCLP) with finite
qualities and inequalities constraints in Sect. 2. In Sect. 3, we introduce notions of
partial calmness and the penalized problem for (VOP) and then establish the relation-
ship between the weakly efficient solution of (VOP) and the local minimum solution
of the penalized problem of (VOP) under the assumption of the partial calmness.

2 Optimality Conditions for (VOP)

In this section, by using the nondifferentiable Abadie constraints qualifications (CQ)
and the generalized Zangwill constraints qualifications (CQ) in terms of the Michel-
Penot subdifferential [15, 16], we derive necessary and sufficient optimality condi-
tions for the weakly efficient solutions of (VOP) and (MCLP) with finite equality and
inequality constraints.
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Let X,Y be Banach spaces, let X∗ be the dual space of X. We recall first some
definitions which are needed in our main results.

Definition 2.1 Let h : X → R, and x̂ ∈ X.

(i) h : X → R is said to be quasiconvex at x̂ if, for any x ∈ X,

h(x) ≤ h(x̂), 0 < t < 1 =⇒ h((1 − t)x + t x̂) ≤ h(x̂).

(ii) h is said to be Lipschitz near (or around) x̂ if there exist constants δ, θh > 0 such
that

|h(x) − h(y)| ≤ θh‖x − y‖, ∀x, y ∈ B(x̂, δ),

where θh is the Lipschitz constant and B(x̂, δ) is the open ball with center x̂ and
radius δ.

It is clear that the convexity of h implies its quasiconvexity and that, if h is Lip-
schitz near x̂, then it is Lipschitz continuous at x̂.

Normal cones, contingent cones and cones of feasible directions are defined as
follows.

Definition 2.2 Let � be a closed subset of X and x̂ ∈ �. The normal cone N�(x̂) of
� at x̂ is given by

N�(x̂) = {x∗ ∈ X∗ : 〈x∗, x − x̂〉 ≤ 0, ∀x ∈ �}.

Definition 2.3 Let � ⊆ X and x̂ ∈cl�. The contingent cone of � at x̂ is the closed
cone defined by

T�(x̂) = {z ∈ X : ∃tn ↓ 0, zn → z, s.t. x̂ + tnzn ∈ �, ∀n}.

Definition 2.4 Let � ⊆ X and x̂ ∈cl�. The cone of feasible directions of � at x̂ is
given by

D�(x̂) = {z ∈ X : ∃δ > 0, s.t. x̂ + tz ∈ �, ∀t ∈ (0, δ)}.

Based on the normal cone, the subdifferential and singular subdifferential of a
proper lower semicontinuous and convex function are defined as follows.

Definition 2.5 Let h : X → R ∪ {+∞} be a proper lower semicontinuous and con-
vex function. Denote dom h = {x ∈ X : h(x) < +∞} and epi h = {(x, t) ∈ X × R :
h(x) ≤ t}. The subdifferential and singular subdifferential of h at x̂ ∈ dom h are re-
spectively the sets

∂h(x̂) = {x∗ ∈ X∗ : (x∗,−1) ∈ Nepih(x̂, h(x̂))}
and

∂∞h(x̂) = {x∗ ∈ X∗ : (x∗,0) ∈ Nepih(x̂, h(x̂))}.



J Optim Theory Appl (2009) 142: 323–342 327

Clearly,

∂h(x̂) = {x∗ ∈ X∗ : 〈x∗, x − x̂〉 ≤ h(x) − h(x̂), ∀x ∈ X}
and

∂∞h(x̂) = Ndomh(x̂), ∂h(x̂) = ∂∞h(x̂) + ∂h(x̂).

It is well known that (Theorem 1 of [20], Theorem 2.1 of [21]), if h is lower semicon-
tinuous, then ∂∞h(x̂) = {0} is necessary and sufficient for h being Lipschitz near x̂.

We now recall some definitions of the usual derivatives.

Definition 2.6 Let h : X → Y , and x̂ ∈ X. The usual directional derivative of h at x̂

in the direction d ∈ X is given by

h′(x̂, d) = lim
t↓0

h(x̂ + td) − h(x̂)

t

when this limit exists. We say that h is Gãteaux differentiable at x̂ if there is Dh(x̂) ∈
L(X,Y ) such that, for every d ∈ X, h′(x̂, d) = 〈Dh(x̂), d〉, where L(X,Y ) denotes
the space of continuous linear operators from X to Y and 〈·, ·〉 denotes the pairing.
h is said to be Fréchet differentiable at x̂ if Dh(x̂) ∈ L(X,Y ) and the convergence in

h′(x̂, d) = lim
t↓0

h(x̂ + td) − h(x̂)

t
= 〈Dh(x̂), d〉

is uniform with respect to d in bounded sets.
It is obvious that the Fréchet differentiability implies the Gãteaux differentiability.

The following MP directional derivative and MP subdifferential were first investi-
gated by Michel and Penot.

Definition 2.7 MP Subdifferential [15]. Let h : X → R, and x̂ ∈ X. The MP direc-
tional derivative of h at x̂ in the direction d ∈ X is defined by

h�(x̂, d) = sup
z∈X

lim sup
t↓0

h(x̂ + t (d + z)) − h(x̂ + tz)

t

and the MP subdifferential of h at x̂ is defined by

∂�h(x̂) = {x∗ ∈ X∗ : 〈x∗, d〉 ≤ h�(x̂, d), ∀d ∈ X}.
Recall that the upper Dini directional derivative of h : X → R at x̂ ∈ X in the

direction d ∈ X is defined by

h′+(x̂, d) = lim sup
t↓0

h(x̂ + td) − h(x̂)

t
.
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Clearly, h′+(x̂, d) ≤ h�(x̂, d).
From above definition, one has that h�(x̂,0)=0. It is clear that the MP subdif-

ferential is a natural generalization of the Gãteaux derivative. When h is Gãteaux
differentiable at x̂, h�(x̂, d) = h′(x̂, d) and ∂�h(x̂) = {Dh(x̂)}; see [15]. If h is con-
vex, then the MP subdifferential coincides with the subdifferential in the sense of
convex analysis. Moreover, if h is linear, then from above definition, one has that
h�(x̂, d) = h(d) for any x̂, d ∈ X.

Based on the MP directional derivative, Ye [18] introduced the following concepts
of MP regularity and the MP pseudoconvexity.

Definition 2.8 (See [18]) Let h : X → R, and x̂ ∈ X.

(i) MP regularity: h is MP regular at x̂ ∈ X if the usual directional derivative h′(x̂, d)

exists and h′(x̂, d) = h�(x̂, d) for all d ∈ X.
(ii) MP pseudoconvexity: h : X → R is said to be MP pseudoconvex at x̂ ∈ X if, for

any x ∈ X,

h�(x̂, x − x̂) ≥ 0 =⇒ h(x) ≥ h(x̂).

Remark 2.1 It is clear that, if h : X → R is linear, then it is MP pseudoconvex at
any x̂ ∈ X. In fact, note that the linearity of h implies that h�(x̂, d) = h(d) for any
x̂, d ∈ X.

The following properties of the MP directional derivative and the MP subdifferen-
tial are useful.

Lemma 2.1 (See [15, 16, 22]) Let x̂ ∈ X and let h,f : X → R be either Gãteaux
differentiable at x̂ at x̂ or Lipschitz near x̂. Then, the following statements are true:

(i) The function d �→ h�(x̂, d) is finite, positively homogeneous, and subadditive
on X.

(ii) For any scalar t , ∂�(th)(x̂) = t∂�h(x̂); for every d ∈ X, h�(x̂,−d) =
(−h)�(x̂, d).

(iii) ∂�(h+f )(x̂) ⊆ ∂�h(x̂)+∂�f (x̂) and (h+f )�(x̂, d) ≤ h�(x̂, d)+f �(x̂, d), for
all d ∈ X. If in addition both h and f are MP regular at x̂, then ≤ becomes =.

(iv) ∂�h(x̂) is a nonempty, convex and weak∗-compact subset of X∗ and, for every
d ∈ X, h�(x̂, d) = maxξ∗∈∂�h(x̂)〈ξ∗, d〉.

(v) If x̂ is a local minimum solution of h, then 0 ∈ ∂�h(x̂) and h�(x̂, d) ≥ 0 for all
d ∈ X.

Based on the MP directional derivative and the MP subdifferential, we next define
the MP directional derivative and the MP subdifferential of vector-valued functions
as follows.

Definition 2.9 Let F = (f1, . . . , fL)T : X → RL and x̂ ∈ X. The MP directional
derivative of F at x̂ in the direction d ∈ X is defined by
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F �(x̂, d) = (f �
1 (x̂, d), . . . , f �

L(x̂, d))T

=
(

sup
z∈X

lim sup
t↓0

f1(x̂ + t (d + z)) − f1(x̂ + tz)

t
, . . . ,

sup
z∈X

lim sup
t↓0

fL(x̂ + t (d + z)) − fL(x̂ + tz)

t

)T

and the MP subdifferential of F at x̂ is given by

∂�F(x̂) = {x∗ = (x∗
1 , . . . , x∗

L)T ∈ X∗ × · · · × X∗︸ ︷︷ ︸
L

: (〈x∗
1 , d〉, . . . , 〈x∗

L,d〉)

≤ F �(x̂, d), ∀d ∈ X}
= {x∗ = (x∗

1 , . . . , x∗
L)T ∈ X∗ × · · · × X∗︸ ︷︷ ︸

L

: x∗
l ∈ ∂�fl(x̂), ∀l ∈ [1,L]}

= ∂�f1(x̂) × · · · × ∂�fL(x̂).

Similarly, we can define the MP pseudoconvexity of vector-valued functions.

Definition 2.10 A function F = (f1, . . . , fL)T : X → RL is said to be MP pseudo-
convex at x̂ ∈ X if, for any x ∈ X,

F �(x̂, x − x̂) �< 0 =⇒ F(x) �< F(x̂).

Remark 2.2 If F = (f1, . . . , fL)T : X → RL reduces to h : X → R, then De-
finition 2.9 collapses to Definition 2.7; also the MP pseudoconvexity of F =
(f1, . . . , fL)T in Definition 2.10 becomes that in (ii) of Definition 2.8. Moreover,
if fl (l ∈ [1, l]) is linear, then

F �(x̂, x − x̂) = (f �
1 (x̂, x − x̂), . . . , f �

L(x̂, x − x̂))T

= (f1(x − x̂), . . . , fL(x − x̂))T

= (f1(x) − f1(x̂), . . . , fL(x) − fL(x̂))T ;
thus, F = (f1, . . . , fL)T is MP pseudoconvex at any x̂ ∈ X.

The following properties of the MP directional derivative and the MP subdifferen-
tial of a vector-valued function generalize and extend those of a real-valued function
in Lemma 2.1.

Proposition 2.1 Let x̂ ∈ X and let F = (f1, . . . , fL)T ,H = (h1, . . . , hL)T :
X → RL. Let fl, hl (l ∈ [1,L]) be either Gãteaux differentiable at x̂ or Lipschitz
near x̂. Then, the following statements hold:

(i) The vector-valued function d �→ F �(x̂, d) is finite, positively homogeneous, and
subadditive on X.

(ii) For any scalar t , ∂�(tF )(x̂) = t∂�F(x̂); for every d ∈ X, F �(x̂,−d) =
(−F)�(x̂, d).
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(iii) (F + H)�(x̂, d) ≤ F �(x̂, d) + H �(x̂, d), for all d ∈ X.
(iv) ∂�F(x̂) is a nonempty, convex and weak∗-compact subset of X∗ × · · · × X∗︸ ︷︷ ︸

L

; for

every d ∈ X, F �(x̂, d) = (maxξ∗
1 ∈∂�f1(x̂)〈ξ∗

1 , d〉, . . . ,maxξ∗
L∈∂�fL(x̂)〈ξ∗

L,d〉)T .
(v) If x̂ is a weakly efficient solution of F on X, i.e., if F(x) �< F(x̂) for all x ∈ X,

then F �(x̂, d) �< 0 for all d ∈ X.

Proof (i) Since

‖F �(x̂, d)‖ =
√

(f �
1 (x̂, d))2 + · · · + (f �

L(x̂, d))2,

and d �→ f �
l (x̂, d) (l ∈ [1,L]) is finite (from (i) of Lemma 2.1), so is d �→ F �(x̂, d).

For any t > 0, d, d1, d2 ∈ X, it follows from the positive homogeneity and subaddi-
tivity of f �

l (x̂, ·)([1,L]) (see (i) of Lemma 2.1) that

F �(x̂, td) = (f �
1 (x̂, td), . . . , f �

L(x̂, td))T

= (tf �
1 (x̂, d), . . . , tf �

L(x̂, d))T

= t (f �
1 (x̂, d), . . . , f �

L(x̂, d))T

= tF �(x̂, d)

and

F �(x̂, d1 + d2) = (f �
1 (x̂, d1 + d2), . . . , f

�
L(x̂, d1 + d2))

T

≤ (f �
1 (x̂, d1) + f �

1 (x̂, d2), . . . , f
�
L(x̂, d1) + f �

L(x̂, d2))
T

= (f �
1 (x̂, d1), · · · , f �

L(x̂, d1))
T + (f �

1 (x̂, d2), . . . , f
�
L(x̂, d2))

T

= F �(x̂, d1) + F �(x̂, d2),

which implies that d �→ F �(x̂, d) is positively homogeneous and subadditive on X.
(ii) Conclusion (ii) of Lemma 2.1 implies that, for any scalar t ,

∂�(tF )(x̂) = ∂�(tf1)(x̂) × · · · × ∂�(tfL)(x̂)

= t (∂�f1(x̂) × · · · × ∂�fL(x̂))

= t∂�F(x̂)

and, for every d ∈ X,

F �(x̂,−d) = (f �
1 (x̂,−d), . . . , f �

L(x̂,−d))T

= ((−f1)
�(x̂, d), . . . , (−fL)�(x̂, d))T

= (−F)�(x̂, d).

(iii) For any d ∈ X,

(F + H)�(x̂, d) = ((f1 + h1)
�(x̂, d), . . . , (fL + hL)�(x̂, d))T
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≤ (f �
1 (x̂, d) + h�

1(x̂, d), . . . , f �
L(x̂, d) + h�

L(x̂, d))T

= (f �
1 (x̂, d), . . . , f �

L(x̂, d))T + (h�
1(x̂, d), . . . , h�

L(x̂, d))T

= F �(x̂, d) + H �(x̂, d);
this follows from (iii) of Lemma 2.1.

(iv) Since for each l ∈ [1,L], ∂�fl(x̂) is a nonempty, convex and weak∗-compact
subset of X∗ and since for every d ∈ X, f �

l (x̂, d) = maxξ∗∈∂�fl(x̂)〈ξ∗, d〉, it is easy
to see that property (iv) holds.

(v) Let x̂ be a weakly efficient solution of F on X, i.e., F(x) �< F(x̂) for all x ∈ X.
Then,

F(x) − F(x̂) ∈ RL\(−intRL+), ∀x ∈ X,

which implies that, for any d ∈ X and t ∈ (0,1),

(
f1(x̂ + td) − f1(x̂)

t
, . . . ,

fL(x̂ + td) − fL(x̂)

t

)T

= F(x̂ + td) − F(x̂)

t

∈ RL\(−intRL+).

We declare that(
lim sup

t↓0

f1(x̂ + td) − f1(x̂)

t
, . . . , lim sup

t↓0

fL(x̂ + td) − fL(x̂)

t

)T

∈ RL\(−intRL+).

In fact, if
(

lim sup
t↓0

f1(x̂ + td) − f1(x̂)

t
, . . . , lim sup

t↓0

fL(x̂ + td) − fL(x̂)

t

)T

∈ −intRL+

for some d ∈ X, then

lim sup
t↓0

fl(x̂ + td) − fl(x̂)

t
< 0, ∀l ∈ [1,L];

hence, for each l ∈ [1,L],
fl(x̂ + td) − fl(x̂) < 0,

for t > 0 small enough. Therefore,

F(x̂ + td) − F(x̂) = (f1(x̂ + td) − f1(x̂), . . . , fL(x̂ + td) − fL(x̂))T < 0,

for t > 0 small enough, which contradicts the assumption that x̂ is a weakly efficient
solution of F on X. Since 0 ∈ X, by the MP directional derivative of F at x̂, one has

F �(x̂, d) =
(

sup
z∈X

lim sup
t↓0

f1(x̂ + t (d + z)) − f1(x̂ + tz)

t
, . . . ,
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sup
z∈X

lim sup
t↓0

fL(x̂ + t (d + z)) − fL(x̂ + tz)

t

)T

≥
(

lim sup
t↓0

f1(x̂ + td) − f1(x̂)

t
, . . . , lim sup

t↓0

fL(x̂ + td) − fL(x̂)

t

)T

and thus

F �(x̂, d) ∈ RL\(−intRL+),

i.e., F �(x̂, d) �< 0, which yields the desired conclusion. �

We now establish some relationships between the MP pseudoconvexity of a vector-
valued function and the MP pseudoconvexity of each of its components.

Proposition 2.2 Let x̂ ∈ X and F = (f1, . . . , fL)T : X → RL. Consider the follow-
ing statements:

(i) fl is MP pseudoconvex at x̂ for each l ∈ [1,L].
(ii) F = (f1, . . . , fL)T is MP pseudoconvex at x̂.

(iii) For any given x ∈ X, there exists lx ∈ [1,L] such that

f �
lx
(x̂, x − x̂) ≥ 0 =⇒ flx (x) ≥ flx (x̂).

Then, (i)⇒(ii)⇒(iii).

Proof (i) ⇒(ii) Suppose that fl is MP pseudoconvex at x̂ for each l ∈ [1,L]. Let
x ∈ X such that F �(x̂, x − x̂) �< 0. Then,

(f �
1 (x̂, x − x̂), . . . , f �

L(x̂, x − x̂))T = F �(x̂, x − x̂) �< 0;
so, there exists lx ∈ [1,L] such that f �

lx
(x̂, x − x̂) ≥ 0. Since flx is MP pseudoconvex

at x̂, it follows that flx (x) ≥ flx (x̂). Thus,

F(x) = (f1(x), . . . , flx (x), . . . , fL(x))T �< (f1(x̂), . . . , flx (x̂), . . . , fL(x̂))T = F(x̂),

which implies that F = (f1, . . . , fL)T is MP pseudoconvex at x̂.
(ii)⇒(iii) Let F = (f1, . . . , fL)T be MP pseudoconvex at x̂. Suppose to the con-

trary that there is x0 ∈ X and that, for each l ∈ [1,L] with f �
l (x̂, x0 − x̂) ≥ 0, one has

fl(x0) < fl(x̂). Then it follows that

F �(x̂, x0 − x̂)T = (f �
1 (x̂, x0 − x̂), . . . , f �

L(x̂, x0 − x̂))T �< 0

and

F(x0) = (f1(x0), . . . , fL(x0))
T

< (f1(x̂), . . . , fL(x̂))T

= F(x̂),
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which contradicts the fact that F = (f1, . . . , fL)T is MP pseudoconvex at x̂. The
proof is complete. �

Similar to the scalar case (see Theorem 2.1 in [18]), we obtain the following
sufficient and necessary conditions for a weakly efficient solution of (VOP) under the
MP pseudoconvexity.

Proposition 2.3 Let � be a convex subset of X, x̂ ∈ �, and let F = (f1, . . . , fL)T :
X → RL be MP pseudoconvex at x̂. Then, x̂ is a weakly efficient solution of F on �,
i.e., F(x) �< F(x̂), for all x ∈ �, if and only if F �(x̂, x − x̂) �< 0 for all x ∈ �.

Proof Suppose that F �(x̂, x − x̂) �< 0 for all x ∈ �. By the MP pseudoconvexity of
F at x̂, we have F(x) �< F(x̂), i.e., x̂ is a weakly efficient solution of F on �.

Conversely, if x̂ is a weakly efficient solution of F on �, i.e., F(x) �< F(x̂) for all
x ∈ �, then

F(x) − F(x̂) ∈ RL\(−intRL+).

The following proof is similar to that in (v) of Proposition 2.1 with replacing d by
x − x̂. We conclude that

F �(x̂, x − x̂) ∈ RL\(−intRL+),

i.e., F �(x̂, x − x̂) �< 0, which completes the proof. �

Similar to (COP) (see Lemma 3.1 in [18]), we have the following necessary con-
ditions for a weakly efficient solution of (VOP) by considering the contingent cone
and the cone of feasible directions.

Lemma 2.2 Let � be a closed subset of X and F = (f1, . . . , fL)T : X → RL. Let
x̂ ∈ � be a weakly efficient solution of F on �, i.e., F(x) �< F(x̂) for all x ∈ �. Then,
the following statements are true:

(i) If fl (l ∈ [1,L]) is either Gãteaux differentiable at x̂ or Lipschitz near x̂, then

F �(x̂, d) �< 0, ∀d ∈ clD�(x̂).

(ii) If fl (l ∈ [1,L]) is either Fréchet differentiable at x̂ or Lipschitz near x̂, then

F �(x̂, d) �< 0, ∀d ∈ T�(x̂).

Proof (i) Suppose to the contrary that there exists d ∈ D�(x̂) such that F �(x̂, d) < 0.
By the MP directional derivative of F at x̂, one has

(
lim sup

t↓0

f1(x̂ + td) − f1(x̂)

t
, . . . , lim sup

t↓0

fL(x̂ + td) − fL(x̂)

t

)T

≤
(

sup
z∈X

lim sup
t↓0

f1(x̂ + t (d + z)) − f1(x̂ + tz)

t
, . . . ,
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sup
z∈X

lim sup
t↓0

fL(x̂ + t (d + z)) − fL(x̂ + tz)

t

)T

= F �(x̂, d)

< 0.

It follows that

F(x̂ + td) − Fl(x̂) = (f1(x̂ + td) − f1(x̂), . . . , fL(x̂ + td) − fL(x̂))T < 0,

for t > 0 small enough; however, this is a contradiction with the assumption that x̂ is
a weakly efficient solution of F on �. Thus,

F �(x̂, d) �< 0, ∀d ∈ D�(x̂),

or equivalently,

F �(x̂, d) ∈ RL\(−intRL+), ∀d ∈ D�(x̂).

If fl (l ∈ [1,L]) is either Gãteaux differentiable at x̂ or Lipschitz near x̂, then from
(i) of Proposition 2.1, d �→ F �(x̂, d) is continuous. Again, since RL\(−intRL+) is
closed, one has

F �(x̂, d) �< 0, ∀d ∈ clD�(x̂).

(ii) Assume that fl (l ∈ [1,L]) is either Fréchet differentiable at x̂ or Lipschitz
near x̂. Let d ∈ T�(x̂). Then, there exist tn ↓ 0 and dn → d such that x̂ + tndn ∈ �

for each n. Since x̂ is a weakly efficient solution of F on � and L is finite, there are
l0 ∈ [1,L] and infinitely many n such that fl0(x̂ + tndn) − fl0(x̂) ≥ 0. It follows that

(fl0)
′+(x̂, d) ≥ lim inf

n→∞
fl0(x̂ + tndn) − fl0(x̂)

tn
≥ 0,

where the first inequality holds by the assumption that fl0 is either Fréchet differen-
tiable at x̂ or Lipschitz near x̂. Then, f �

l0
(x̂, d) ≥ 0 and so

F �(x̂, d) = (f �
1 (x̂, d), . . . , f �

l0
(x̂, d), . . . , f �

L(x̂, d))T �< 0.

This completes the proof. �

The following lemma is well known in convex analysis (see e.g. [23]).

Lemma 2.3 Let h(x) = max1≤l≤L hl(x) for all x ∈ X, where hl : X → R (l ∈
[1,L]). Let x̂ ∈ X, hl (x̂) ≡ ẑ for each l ∈ [1,L]. If hl(l ∈ [1,L]) is continuous and
convex, then ∂h(x̂) = co{⋃L

l=1 ∂hl(x̂)}.

The following nondifferentiable Abadie CQ and generalized Zangwill CQ were
introduced and studied by Ye [18].
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Nondifferentiable Abadie CQ (See [18]) Let x̂ ∈ K = {x ∈ X : ui(x) ≤ 0,

vj (x) = 0, i ∈ [1,m], j ∈ [1, n]}. We say that the nondifferentiable Abadie CQ holds
at x̂, if ui (i ∈ [1,m]) and vj (j ∈ [1, n]) are either Gãteaux differentiable at x̂ or
Lipschitz near x̂, the convex cone generated by

A =
{ ⋃

i∈M(x̂)

∂�ui(x̂)

}
∪

{ ⋃
j∈[1,n]

∂�vj (x̂)

}
∪

{ ⋃
j∈[1,n]

[−∂�vj (x̂)]
}

(1)

is closed and

u�
i (x̂, d) ≤ 0, ∀i ∈ M(x̂)

v�
j (x̂, d) = 0, ∀j ∈ [1, n]

}
=⇒ d ∈ TK(x̂).

Generalized Zangwill CQ (See [18]): Let x̂ ∈ K = {x ∈ X : ui(x) ≤ 0,

vj (x) = 0, i ∈ [1,m], j ∈ [1, n]}. We say that the generalized Zangwill CQ holds
at x̂, if ui (i ∈ [1,m]) and vj (j ∈ [1, n]) are either Gãteaux differentiable at x̂ or
Lipschitz near x̂, the convex cone generated by the set A defined by (1) is closed and

u�
i (x̂, d) ≤ 0, ∀i ∈ M(x̂)

v�
j (x̂, d) = 0, ∀j ∈ [1, n]

}
=⇒ d ∈ clDK(x̂).

Lemma 2.4 Let vj : X → R(j ∈ [1, n]) be either Gãteaux differentiable at x̂ or
Lipschitz near x̂ ∈ X. Then, for any d ∈ X,

v�
j (x̂, d) ≤ 0

(−vj )
�(x̂, d) ≤ 0

}
=⇒ v�

j (x̂, d) = 0, ∀j ∈ [1, n].

Proof The conclusion follows immediately from (iii) of Lemma 2.1. �

We now derive the KKT condition for a weakly efficient solution of (VOP).

Theorem 2.1 KKT Condition for (VOP) in the Sense of Weakly Efficient Solution.
Let x̂ ∈ Ew . Suppose that one of the following conditions holds:

(i) the nondifferentiable Abadie CQ holds at x̂ and fl (l ∈ [1,L]) is either Fréchet
differentiable at x̂ or Lipschitz near x̂;

(ii) the generalized Zangwill CQ holds at x̂ and fl (l ∈ [1,L]) is either Gãteaux
differentiable at x̂ or Lipschitz near x̂.

Then, the KKT condition holds at x̂; i.e., there exist αi ≥ 0 (i ∈ M(x̂)), βj ≥ 0 (j ∈
[1, n]), and γj ≥ 0(j ∈ [1, n]) such that

0 ∈ co

{ ⋃
l∈[1,L]

∂�fl(x̂)

}
+

∑
i∈M(x̂)

αi∂
�ui(x̂) +

∑
j∈[1,n]

βj∂
�vj (x̂) −

∑
j∈[1,n]

γj ∂
�vj (x̂).
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Proof Following a similar idea to the proof of Theorem 3.1 in [18], we can prove
Theorem 2.1. From assumptions, Lemma 2.2 implies that, in the case of condition (i),

F �(x̂, d) �< 0, ∀d ∈ TK(x̂),

and in the case of condition (ii),

F �(x̂, d) �< 0, ∀d ∈ clDK(x̂).

Since the nondifferentiable Abadie CQ (or the generalized Zangwill CQ) holds at x̂,
from Lemma 2.4 we obtain that F �(x̂, d) �< 0 for all d solving the following system:

(S) u�
i (x̂, d)≤ 0, ∀i ∈ M(x̂),

v�
j (x̂, d)≤ 0, ∀j ∈ [1, n],

(−vj )
�(x̂, d)≤ 0, ∀j ∈ [1, n].

Since ui (i ∈ M(x̂)) and vj (j ∈ [1, n]) are either Gãteaux differentiable at x̂ or
Lipschitz near x̂, (ii) and (iv) of Lemma 2.1 imply that d solves the system (S) if and
only if maxa∈A〈a, d〉 ≤ 0, where A is the set defined by (1). Denote by A= cone coA,
A0 = {ξ∗ ∈ X∗ : 〈ξ∗, a〉 ≤ 0, ∀a ∈ A}, and

δA0(ξ
∗) =

{
0, ξ∗ ∈ A0,

+∞, else,

the convex cone generated by A, the polar cone of A, and the indicator function of
A0, respectively. It follows that

F �(x̂, d) = (f �
1 (x̂, d), . . . , f �

L(x̂, d))T �< 0, whenever max
a∈A

〈a, d〉 ≤ 0. (2)

Set h(·) = max1≤l≤L hl(·) and hl(·) = f �
l (x̂, ·)(l ∈ [1,L]). Then, the inequality (2)

implies that

h(d) ≥ 0 whenever max
a∈A

〈a, d〉 ≤ 0. (3)

Since 0 ∈ A0 and hl(0) = f �
l (x̂,0) = 0 for each l ∈ [1,L], one has h(0) =

max1≤l≤L f �
l (x̂,0) = 0. Now Inequality (3) implies that the function h(·) + δA0(·)

has its minimum at 0. From (i) of Lemma 2.1, f �
l (x̂, ·) (l ∈ [1,L]) is continuous and

convex and, as a consequence, h(·) is continuous and convex. According to the sum
rule (see e.g. [10]), one has

0 ∈ ∂h(0) + ∂δA0(0). (4)

It is easy to prove that ∂hl(0) = ∂�fl(x̂) (l ∈ [1,L]). Since all the conditions in
Lemma 2.3 hold, we obtain

∂h(0) = co

{
L⋃

l=1

∂hl(0)

}
= co

{
L⋃

l=1

∂�fl(x̂)

}
. (5)
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Since ∂δA0(0) = A00 = A, both (4) and (5) imply that

0 ∈ co

{
L⋃

l=1

∂�fl(x̂)

}
+ A.

From (ii) of Lemma 2.1, we have ∂�(−vj )(x̂) = −∂�vj (x̂). Therefore, there exist
tμ ≥ 0 (μ ∈ [1, k]), with

∑k
μ=1 tμ = 1, ξ∗

μ ∈ ⋃L
l=1 ∂�fl(x̂) (μ ∈ [1, k]), λ∗

i ∈ ∂�ui(x̂)

(i ∈ M(x̂)), μ∗
j , η

∗
j ∈ ∂�vj (x̂) (j ∈ [1, n]), αi ≥ 0 (i ∈ M(x̂)), βj ≥ 0 (j ∈ [1, n])

and γj ≥ 0 (j ∈ [1, n]) such that

0 =
∑

μ∈[1,k]
tμξ∗

μ +
∑

i∈M(x̂)

αiλ
∗
i +

∑
j∈[1,n]

βjμ
∗
j −

∑
j∈[1,n]

γjη
∗
j ;

thus, the proof is complete. �

If (VOP) reduces to (MCLP), then we obtain the following conclusion.

Theorem 2.2 KKT Condition for (MCLP) in the Sense of Weakly Efficient Solution.
Let K ⊆ RI , x̂ ∈ Sw and F = (cT

1 , cT
2 , . . . , cT

L)T : RI → RL. Suppose that one of the
following conditions holds:

(i) the nondifferentiable Abadie CQ holds at x̂;
(ii) the generalized Zangwill CQ holds at x̂.

Then, the KKT condition holds at x̂, i.e., there exist αi ≥ 0 (i ∈ M(x̂)), βj ≥ 0 (j ∈
[1, n]) and γj ≥ 0 (j ∈ [1, n]) such that

0 ∈ co{cT
1 , cT

2 , . . . , cT
L} +

∑
i∈M(x̂)

αi∂
�ui(x̂) +

∑
j∈[1,n]

βj∂
�vj (x̂) −

∑
j∈[1,n]

γj ∂
�vj (x̂).

Proof Since cT
l is linear, differentiable and Lipschitz continuous, and since ∂cT

l (x̂) =
{cT

l } for each l ∈ [1,L], Theorem 2.1 implies that the conclusion holds. �

The KKT sufficient condition for a weakly efficient solution of (VOP) can be
constructed as follows.

Theorem 2.3 KKT Sufficient Condition for (VOP) in the Sense of Weakly Efficient
Solution. Let x̂ ∈ K . Suppose that fl (l ∈ [1,L]), ui (i ∈ [1,m]), and vj (j ∈ [1, n])
are either Gãteaux differentiable at x̂ or Lipschitz near x̂, and that there exist αi ≥ 0
(i ∈ M(x̂)) and βj (j ∈ [1, n]) such that

0 ∈ co

{ ⋃
l∈[1,L]

∂�fl(x̂)

}
+

∑
i∈M(x̂)

αi∂
�ui(x̂) +

∑
j∈[1,n]

βj∂
�vj (x̂). (6)

Let [1, n]+ = {j ∈ [1, n] : βj > 0} and [1, n]− = {j ∈ [1, n] : βj < 0}. Suppose that
F = (f1, . . . , fL)T is MP pseudoconvex at x̂, ui (i ∈ M(x̂)), vj (j ∈ [1, n]+) and
−vj (j ∈ [1, n]−) are MP regular and quasiconvex at x̂. Then, x̂ ∈ Ew .
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Proof By (ii) of Lemma 2.1, one has ∂�(−vj )(x̂) = −∂�vj (x̂) (j ∈ [1, n]). We re-
mark that the inclusion (6) holds if and only if

tμ ≥ 0 with
k∑

μ=1

tμ = 1, ∀μ ∈ [1, k],

ξ∗
μ ∈

L⋃
l=1

∂�fl(x̂), ∀μ ∈ [1, k],

λ∗
i ∈ ui(x̂), ∀i ∈ M(x̂),

μ∗
j ∈ ∂�vj (x̂), ∀j ∈ [1, n]+,

η∗
j ∈ ∂�(−vj )(x̂), ∀j ∈ [1, n]−,

such that

0 =
∑

μ∈[1,k]
tμξ∗

μ +
∑

i∈M(x̂)

αiλ
∗
i +

∑
j∈[1,n]+

βjμ
∗
j −

∑
j∈[1,n]−

βjη
∗
j . (7)

As the proof of Theorem 3.2 in [18], one has that, for any x ∈ K ,

〈 ∑
i∈M(x̂)

αiλ
∗
i +

∑
j∈[1,n]+

βjμ
∗
j −

∑
j∈[1,n]−

βjη
∗
j , x − x̂

〉
≤ 0. (8)

It follows from (7) and (8) that

∑
μ∈[1,k]

tμ〈ξ∗
μ,x − x̂〉 =

〈 ∑
μ∈[1,k]

tμξ∗
μ,x − x̂

〉
≥ 0,

which implies that there are μx ∈ [1, k] and lx ∈ [1,L] with ξ∗
μx

∈ ∂�flx (x̂) such that

〈ξ∗
μx

, x − x̂〉 ≥ 0.

By (iv) of Lemma 2.1, it follows that

f �
lx
(x̂, x − x̂) ≥ 〈ξ∗

μx
, x − x̂〉 ≥ 0

and so

F �(x̂, x − x̂) = (f �
1 (x̂, x − x̂), . . . , f �

lx
(x̂, x − x̂), . . . , f �

L(x̂, x − x̂))T �< 0. (9)

Since F is MP pseudoconvex at x̂, it follows from (9) that F(x) �< F(x̂), i.e., x̂ ∈ Ew .
This completes the proof. �

If F ≡ f : X → R, then Theorem 2.3 reduces to Theorem 3.2 in [18].
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Corollary 2.1 KKT Sufficient Condition for (COP) [18]. Let x̂ ∈ K . Suppose that
F ≡ f : X → R, ui(i ∈ [1,m]) and vj (j ∈ [1, n]) are either Gãteaux differentiable
at x̂ or Lipschitz near x̂ and there exist αi ≥ 0(i ∈ M(x̂)) and βj (j ∈ [1, n]) such
that

0 ∈ ∂�f (x̂) +
∑

i∈M(x̂)

αi∂
�ui(x̂) +

∑
j∈[1,n]

βj∂
�vj (x̂).

Let [1, n]+ = {j ∈ [1, n] : βj > 0} and [1, n]− = {j ∈ [1, n] : βj < 0}. Suppose that
f is MP pseudoconvex at x̂, ui (i ∈ M(x̂)), vj (j ∈ [1, n]+) and −vj (j ∈ [1, n]−)

are MP regular and quasiconvex at x̂. Then, x̂ be a global minimum of f on K .

If (VOP) reduces to (MCLP), then we obtain the following conclusion.

Theorem 2.4 KKT Sufficient Condition for (MCLP) in the Sense of Weakly Efficient
Solution. Let K ⊆ RI , x̂ ∈ K and F = (cT

1 , cT
2 , . . . , cT

L)T : RI → RL. Suppose that
ui (i ∈ [1,m]) and vj (j ∈ [1, n]) are either Gãteaux differentiable at x̂ or Lipschitz
near x̂, and there exist αi ≥ 0 (i ∈ M(x̂)) and βj (j ∈ [1, n]) such that

0 ∈ co{cT
1 , cT

2 , . . . , cT
L} +

∑
i∈M(x̂)

αi∂
�ui(x̂) +

∑
j∈[1,n]

βj∂
�vj (x̂).

Let [1, n]+ = {j ∈ [1, n] : βj > 0} and [1, n]− = {j ∈ [1, n] : βj < 0}. Suppose that
ui (i ∈ M(x̂)), vj (j ∈ [1, n]+) and −vj (j ∈ [1, n]−) are MP regular and quasicon-
vex at x̂. Then, x̂ ∈ Sw .

Proof Since cT
l is linear, differentiable and Lipschitz continuous, ∂cT

l (x̂) = {cT
l } for

each l = 1,2, . . . ,L; from Remark 2.2, F = (cT
1 , cT

2 , . . . , cT
L)T is MP pseudoconvex

at x̂. Thus Theorem 2.3 implies that the conclusion holds. �

3 Partial Calmness and Exact Penalization for (VOP)

Throughout this section, let X = RI . The corresponding perturbed problem of (VOP)
is given by

(VOP)ε min F(x),

s.t. u(x) ≤ 0,

v(x) = ε,

where ε = (ε1, ε2, . . . , εn)
T ∈ Rn. We denote by Kε

w = {x ∈ RI : u(x) ≤ 0, v(x) = ε}
the feasible set of (VOP)ε . If ui (i ∈ [1,m]) is lower semicontinuous and vj (j ∈
[1, n]) is continuous, then Kε

w is closed. But Kε
w is not convex in general.

In this section, we introduce the notions of partial calmness and the penalized
problem for (VOP) with finite quality and inequality constraints; then, we establish
the relation between the weakly efficient solution of (VOP) and the local minimum
solution of the penalized problem of (VOP) under the assumption of partial calmness.

We now introduce the following notion of partial calmness for (VOP).
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Partial Calmness for (VOP) Let x̂ ∈ Ew . (VOP) is said to be partially calm at x̂ if
there exist μ > 0, δ > 0 such that, for all ε ∈ BRn(0, δ) and all x ∈ BRI (x̂, δ) ∩ Kε

w ,
one has

h(x) − h(x̂) + μ‖v(x)‖ ≥ 0,

where BZ(z, t) is the open ball in Z with center z and radius t , h(x) = ∑
l∈[1,L] fl(x),

∀x ∈ RI . The constants μ and δ are called the modulus and radius, respectively.
Remark 3.1 If F ≡ f : RI → R, then the partial calmness of (VOP) defined above
reduces to the partial calmness of (COP) introduced by Ye and Zhu [24].

Define the penalized problem of (VOP) as follows:

(VOP)(μ) min h(x) + μ‖v(x)‖,
s.t. u(x) ≤ 0,

where μ > 0 is a constant, h(x) = ∑
l∈[1,L] fl(x), ∀x ∈ RI .

It is well known that the notion of partial calmness is similar to, but different from,
that of calmness introduced by Clarke [10] and Rockafellar [23]. In the definition of
partial calmness, the restriction on the size of ε ∈ BRn(0, δ) can be removed when
function v is continuous.

Theorem 3.1 Let the function v be continuous. If (VOP) is partially calm at x̂ with
modulus μ and radius δ, then there exists a δ̂ < δ such that x̂ is a δ̂-local minimum
solution to (VOP)(μ), i.e.,

h(x) − h(x̂) + μ‖v(x)‖ ≥ 0, ∀x ∈ RI s.t. u(x) ≤ 0, x ∈ BRI (x̂, δ̂).

Proof We remark that v(x̂) = 0, since x̂ ∈ Ew . From the continuity of v and the
definition of partial calmness of (VOP), the conclusion is derived. This completes the
proof. �

In [19], Ye, Zhu and Zhu proved that the calmness is equivalent to local exact
penalization for (COP). Similarly, we establish now the relation between the weakly
efficient solution of (VOP) and the local minimum solution of (VOP)(μ) under the
assumption of the partial calmness of (VOP).

Theorem 3.2 Let x̂ ∈ K and let fl (l ∈ [1,L]) be continuous at x̂. Then, the follow-
ing conclusions hold:

(i) If x̂ ∈ Ew and (VOP) is partially calm at x̂, then there exists μ̂ > 0 such that x̂ is
a local minimum solution of (VOP)(μ) for all μ ≥ μ̂.

(ii) If x̂ ∈ Ew and x̂ is a global minimum solution of h on K , then any local minimum
solution xμ of (VOP)(μ) with μ > μ̂ with respect to the neighborhood of x̂ in
which x̂ is a local minimum solution belong to Ew .

Proof (i) Since fl (l ∈ [1,L]) is continuous at x̂, so is h. Suppose x̂ is not a local
minimum solution of (VOP)(μ) for any μ > 0. Then, for each positive integer t , there
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exists a point xt ∈ BRI (x̂, 1
t
) and u(xt ) ≤ 0 such that

h(xt ) + t‖v(xt )‖ < h(x̂) + t‖v(x̂)‖.

Since x̂ ∈ Ew , v(x̂) = 0, it follows that

h(xt ) + t‖v(xt )‖ < h(x̂); (10)

hence,

0 ≤ ‖v(xt )‖ <
h(x̂) − h(xt )

t
≤ 1

t
,

for large enough t , since h is continuous at x̂. Let ε(t) = v(xt ) for large enough t .
Then, xt ∈ BRI (x̂, 1

t
) ∩ K

ε(t)
w . However, (10) contradicts the assumption that (VOP)

is partially calm at x̂. Thus, there exists μ̂ > 0 such that x̂ is a local minimum solution
of (VOP)(μ̂). It is clear that x̂ is a local minimum solution of (VOP)(μ) whenever
μ ≥ μ̂.

(ii) Let x̂ is a global minimum solution of h on K . Let μ > μ̂ and let xμ be a
local minimum solution of (VOP)(μ) in the neighborhood of x̂ in which x̂ is a local
minimum solution. Then, u(xμ) ≤ 0. Since x̂ ∈ Ew , v(x̂) = 0 and

h(xμ) + μ‖v(xμ)‖ = h(x̂) + μ‖v(x̂)‖
= h(x̂)

≤ h(xμ) + 1

2
(μ + μ̂)‖v(xμ)‖. (11)

It follows that

(μ − μ̂)‖v(xμ)‖ ≤ 0,

which implies that v(xμ) = 0. Thus, xμ ∈ K . By (11), we have h(xμ) = h(x̂). We
conclude that xμ ∈ Ew; i.e., for any x ∈ K , there is lx ∈ [1,L] such that F(x) �<
F(xμ). Suppose to the contrary that there exists x0 ∈ K and for any l ∈ [1,L], we
have F(x0) < F(xμ), i.e.,

(f1(x0), f2(x0), . . . , fL(x0))
T < (f1(xμ), f2(xμ), . . . , fL(xμ))T .

It follows that

h(x0) =
∑

l∈[1,L]
fl(x0) <

∑
l∈[1,L]

fl(xμ) = h(xμ) = h(x̂),

which contradicts the assumption that x̂ is a global minimum solution of h on K .
This completes the proof. �
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