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Abstract

In “The Yang-Mills equations over Riemann surfaces”, Atiyah and Bott stud-
ied Yang-Mills functional over a Riemann surface from the point of view of Morse
theory. In “Yang-Mills Connections on Nonorientable Surfaces”, we study Yang-
Mills functional on the space of connections on a principal Gg-bundle over a closed,
connected, nonorientable surface, where Gg is any compact connected Lie group.
In this monograph, we generalize the discussion in “The Yang-Mills equations over
Riemann surfaces” and “Yang-Mills Connections on Nonorientable Surfaces’. We
obtain explicit descriptions of equivariant Morse stratification of Yang-Mills func-
tional on orientable and nonorientable surfaces for non-unitary classical groups
SO(n) and Sp(n). When the surface is orientable, we use Laumon and Rapoport’s
method in “The Langlands lemma and the betti numbers of stacks of G-bundle on
a curve” to invert the Atiyah-Bott recursion relation, and write down explicit for-
mulas of rational equivariant Poincaré series of the semistable stratum of the space
of holomorphic structures on a principal SO(n,C)-bundle or a principal Sp(n, C)-
bundle.
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CHAPTER 1

Introduction

Let Ggr be a compact, connected Lie group. The complexification G of G
is a connected reductive algebraic group over C. For example, when Gg = U(n),
then G = GL(n,C). Let P be a C* principal Gg-bundle over a Riemann sur-
face ¥, and let § = P X@g, G be the associated C'* principal G- bundle The
space A(P) of Gg-connections on P is isomorphic to the space C(&p) of (0,1)-
connections (0 operators) on & as infinite dimensional complex affine spaces. In
the seminal paper [AB], Atiyah and Bott obtained results on the topology of the
moduli space M(&y) of (S-equivalence classes of) semi-stable holomorphic struc-
tures on &y by studying the Morse theory of the Yang-Mills functional on A(P).
The absolute minimum of Yang-Mills functional is achieved by central Yang-Mills
connections, and M (&) can be identified with the moduli space of gauge equiva-
lence classes of central Yang-Mills connections on P. When the absolute minimum
of the Yang-Mills functional is zero, which happens exactly when the obstruction
class o(P) € H*(Z,71(GQ)) = m1(G) is torsion, the central Yang-Mills connections
are flat connections, and M(&y) can be identified with the moduli space of gauge
equivalence classes of flat connections on P.

Atiyah and Bott provided an algorithm of computing the equivariant Poincaré
series Pth (Css; Q), where Cyq is the semi-stable stratum in C(&y) and G& = Aut(&p)
is the gauge group. They proved that the stratification of C(£y) is GC-equivariantly
perfect, so

9°(C(60);Q) = PE (Coi @) + 3 2% PF°(C,1; Q)

/\6“50

where d,, is the complex codimension of the stratum C,, which is a complex sub-
manifold of C(§p), and the sum is over all strata except for the top one Css. The
left hand side can be identified with P;(BG;Q), the rational Poincaré series of the
classifying space BG of the gauge group G = Aut(P). On the right hand side,

(Cu; Q) can be related to the equivariant Poincaré series of the top stratum of
the space of connections on a principal G,-bundle, where G, is a subgroup of G.

So once P;(BG;Q) is computed, P (C.s; Q) can be computed recursively. Zagier
solved the recursion relation for G = GL(n,C) in [Za], and Laumon and Rapoport
solved the recursion relation for a general connected reductive algebraic group G
over C in [LR]. The series Pth(CSS;Q) can be identified with PF®(V.,(P); Q),
where Vi (P) is the representation variety of central Yang-Mills connections on P.
When the obstruction class 0o(P) € H?(X; 71 (G)) = 71(G) is torsion, Vi, (P) is the
representation variety of flat Yang-Mills connections on P, which is a connected
component of Hom(m; (%), Gr).

In [HLA4], we study Yang-Mills functional on the space of connections on a prin-
cipal Gg-bundle P over a closed, connected, nonorientable surface ¥. By pulling

1
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back connections to the orientable double cover 7 : ¥ — ¥, one gets an inclusion
A(P) < A(P) from the space of connections on P to the space of connections on
P, where P = 7*P — %. The Yang-Mills functional on A(P) is the restriction of
the Yang-Mills functional on A(P). For nonorientable surfaces, the absolute min-
imum of the Yang-Mills functional is zero for any P, achieved by flat connections.
The moduli space of gauge equivalence classes of flat Gg-connections on P can be
identified with a connected component of Hom(m(X), Gr)/Gr, where Gg acts by
conjugation.

In this paper, we generalize the discussion in [AB] and [HL4] in the following
directions:

(1)

(2)

In Chapter 2] we compute the rational Poincaré series P;(BG;Q) of the
classifying space of the gauge group G of a principal Ggr-bundle over any
closed connected (orientable or nonorientable) surface. The case where X
is orientable is known (see [ABl Theorem 2.15], [LR) Theorem 3.3]).

When ¥ is orientable and G4s = [G,G] is not simply connected (for ex-
ample, when G = G5; = SO(n,C), n > 2), the recursion relation [LRI
Theorem 3.2] that Laumon and Rapoport solved in [LR] is not exactly the
Atiyah-Bott recursion relation [ABl Theorem 10.10]. As a result, their

formula for Pf*(G,v(;) [LR), Theorem 3.4] is not exactly Pth(CSS(fo); Q)
when G is not simply connected. In Appendix [Al we show that the
method in [LR] inverts the Atiyah-Bott recursion relation and yields a

closed formula for PZ (Css(£0); Q) = PE*(Vis(P);Q), where Gg is any
compact connected real Lie group (Theorem 4] Theorem [A.9]).

In [HL4], we established an exact correspondence between the gauge
equivalence classes of Yang-Mills Ggr-connections on ¥ and conjugacy
classes of representations I'r(3) — Gg, where I'g(X) is the super cen-
tral extension of 71(X). This correspondence allows us to obtain explicit
description of G-equivariant Morse stratification by studying the corre-
sponding representation variety of Yang-Mills connections. In Chapter [,
we recover the description in terms of Atiyah-Bott points for orientable
¥, and determine candidates of Atiyah-Bott points for nonorientable X.
In Chapter Bl Chapter [l and Chapter [[] we give explicit descriptions of
G-equivariant Morse strata of Yang-Mills functional on orientable and non-
orientable surfaces for non-unitary classical groups SO(2n + 1), SO(2n),
and Sp(n). When ¥ is nonorientable, some twisted representation vari-
eties (introduced and studied in Section L0l and Section 7)) arise in the
reduction of these non-unitary classical groups. This is new: in the U(n)
case (see [HL4l Section 6, 7]), the reduction involves only representation
varieties of U(m), where m < n, of the nonorientable surface and of its
double cover.

When ¥ is orientable, we use the closed formula in (2) to write down ex-
plicit formulas for PC®(V,4(P); Q) for non-unitary classical groups (The-
orem [5.5] Theorem [6.4] and Theorem [[4]). These formulas are analogues
of Zagier’s formula for U(n).

The topology of Hom(m;(X),Gr)/Gr is largely unknown when ¥ is nonori-
entable. Using algebraic topology methods, T. Baird computed the SU(2)-equivariant
cohomology of Hom(m(X), SU(2)) and the ordinary cohomology of the quotient
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space Hom(m1(X), SU(2))/SU(2) for any closed nonorientable surface ¥ [B]. He
also proposed conjectures for general G.

For the purpose of Morse theory we should consider the Sobolev space of
L3 | connections A(P)F~! and the group of L? gauge transformations G(P)* and
GC(P)*, where k > 2. We will not emphasize the regularity issues through out the
paper, but refer the reader to [ABI Section 14] and [Da)] for details.






CHAPTER 2

Topology of Gauge Group

Let ¥ be a closed connected surface. By classification of surfaces, ¥ is home-
omorphic to a Riemann surface of genus £ > 0 if it is orientable, and ¥ is homeo-
morphic to the connected sum of m > 0 copies of RP? if it is nonorientable.

Let Ggr be a compact connected Lie group. Let P be a principal Gg-bundle over
3, and let Aut(P) = G(P) be the gauge group. When ¥ is orientable, the rational
Poincaré series P;(BG(P); Q) was computed in [ABl Section 2] for Ggr = U(n).
The computation can be generalized to any general compact connected Lie group
(see |[LR), Theorem 3.3]). In this section, we will compute P;(BG(P);Q) when Gg
is any compact connected Lie group and ¥ is any closed connected (orientable or
non-orientable) surface.

Following the strategy in [AB] Section 2], we first find the rational homotopy
type of the classifying space BGr of Gr (see [Se]). Note that BGg is homotopic
to BG, where G is the complexification of Gg. Let Hg be a maximal torus of Gg.
Then Hg = U(1)", and

H*(BHR;Z) = Zluy, . .., up),
where u; € H?(BHg;Z). The Weyl group W acts on H*(BHg; Q) = Q[uy, - . ., uy],
and
H*(BGg; Q) = H*(BHg; Q)" = Q[L,.. ., 1]
where I}, is a homogeneous polynomial of degree dj, in uq, ..., u,. We may take I}, €
Zluy, ..., uy,), so that I, € H?¥*(BGg;Z). We may assume that dy = --- =d, = 1,
and di, > 1 for kK > r. Then r = dimg(Z(Gr)), where Z(Gg) is the center of Gg.
In particular, » = 0 if and only if G is semisimple. The classes I1,..., I, are the
universal characteristic classes of principal Gg-bundles. Each I), € H?% (BGg;7Z)
induces a continuous map I} : BGr — K(Z;2d}) to an Eilenberg-MacLane space,
so we have a continuous map
n
BG]R — H I((Z7 de).
k=1

This is a rational homotopy equivalence.

Fact 2.1. Let g denote rational homotopy equivalence. Then
BGy = ﬁ K(Z,2dy,)
k=1
In addition to Fact 2] we need the following two results:
ProposSITION 2.2 ([ABI, Proposition 2.4]).
BG(P) ~ Mapp(X, BGr),

5



6 2. TOPOLOGY OF GAUGE GROUP

where the subscript P denotes the component of a map of ¥ into BGr which induces
P.

THEOREM 2.3 (Thom).

Map(X, K(A,n)) = HK(Hq(XvA)vn_q)

where K(A,n) is the Eilenberg-MacLane space characterized by

mam={ 12"

Since mg(X xY) = my(X) x my(Y'), we have
K(Al X AQ,TL) = K(Al,n) X K(AQ,TL)

Let ¥ be a Riemann surface of genus £. Then

n

Map (%, [T K (2, 2d)) = [] Map(=, K(Z, 24y))
k=1 k=1

ﬁ( (H2(:Z),2dy — 2) x K(HY(:2),2dy — 1) x K(HO(E,Z),Qdk))
k=1

7 x K(Z,1)* x K(Z, 2))

X H (K(Z, 2y — 2) x K(Z,2dy — 1) x K(Z, Qdk))
k=r+1

where the factor Z" corresponds to different connected components. So

T

Mapp (S, BGg) = (K@ 1% x K(2,2)

< I1 <K(Z,2dk —9) x K(Z,2d), — 1)% x K(Z,2dk)).
k=r+1

It follows that

THEOREM 2.4 (|[LR) Theorem 3.3]). Let BG be the classifying space of the
gauge group G of a principal Ggr-bundle over a Riemann surface of genus £. Then

20\ n 2d,—1\2¢
nwo0 = (U0 ) T e

1—¢2 ettt _ thk_Q)(l _ thk) :

Note that P;(BG; Q) does not depend on the topological type of the underlying
principal Gg-bundle.
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Let X be the connected sum of m > 0 copies of RP?. Then
Map(E, [ &, Qdk)> — [ Map(=, K (2, 2dy))
k=1 k=1
= 11 (K(H2(2;Z), 2y — 2) x K(H (), 2d, — 1) x K(H(S,Z), Qdk))

k=1

= 1] <Z/2Z x K(Z,1)™" x K(Z,2))

=

=
—_

< 11 <K(Z/2Z, 2y — 2) x K(Z,2dy — 1) x K(Z, Qdk)>
k=r+1
where the factor (Z/27Z)" corresponds to different connected components. So

n

Map (S, BGg) ~ H( (Z,2ds —1)™ ! x K(Z,2dk))

It follows that

THEOREM 2.5. Let BG be the classifying space of the gauge group G of a princi-
pal Gr-bundle over a non-orientable surface which is diffeomorphic to the connected
sum of m > 0 copies of RP%. Then

n

P,(BG;Q) = H

k=1

1+t2dk l)m 1
t2dk)

For classical groups we have:
(A) Gg =U(n): W = S(n), the symmetric group, so

H*(BU(n); Q) = Qu, . .., un)°’™ = Qley, . ..., ¢n],

where ¢, is the k-th elementary symmetric function in uq, ..., u,. In fact,
the generator ¢, € H?*(BU(n);Q) is the universal rational k-th Chern
class. Sody =k, k=1,...,n

(B) Ggr = SO(2n+1): W = G(n), the wreath product of Z/2Z by S(n), so

H*(BSO(2n+1);Q) = Qlus, ..., un)™ = Q[py, ..., pal,

where py, is the k-th elementary symmetric function in u?,...,u2. In fact,
pr € H*(BU(n); Q) is the universal rational k-th Pontrjagin class. So
dp =2k k=1,....n.

(C) Gr = Sp(n): W = G(n), the wreath product of Z/2Z by S(n), so

H*(BSp(n); Q) = Quy, ... ,un]G(”) = Qlo1,...,0n],

where oy, is the k-th elementary symmetric function in u?,...,u2. So
d, =2k, k=1,...,n

(D) Gg = SO(2n): W = SG(n), the subgroup of G(n) consisting of even
permutations, so

H*(BSO(QTL),Q) = Q[ulv s 7un]SG(n) = Q[pla cee 7pn—1ae}7

where py is the k-th elementary symmetric function in w?,...,u2, and

s Uno

e =uy - Uy In fact, p, € H*(BU(n); Q) is the universal rational k-th
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Pontrjagin class, and e € H?"(BSO(2n); Q) is the universal rational Euler
class. Sody =2k, k=1,...,n—1, and d,, = n.



CHAPTER 3

Holomorphic Principal Bundles over Riemann
Surfaces

Let G be the complexification of a compact, connected real Lie group Gg.
Then G is a reductive algebraic group over C. For example, if Gg = U(n) then
G = GL(n,C). We fix a topological principal Gg-bundle P over a Riemann surface
3, and let g = P X, G be the associated principal G-bundle. Then the space
A(P) of Gr-connections on P is isomorphic to the space C(&p) of (0, 1)-connections
(0-operators) on &, as infinite dimensional complex affine spaces. More explicitly,
A(P) and C(&) are affine spaces whose associated vector spaces are Q(X, gr) and
O%1(x%, g), respectively, where gr and g = gr ®g C are the Lie algebras of Gy and
G, respectively. Choose a local orthonormal frame (81, 6?) of cotangent bundle T3,
of ¥ such that ' = #2. Define an isomorphism j : Q'(2, gr) — Q%1(%, g) by

J(X1 @0+ Xo®60%) = (X1 + V—1Xs) @ (0" — V—16?)

where X1, Xo € Q°(X, gg). It is easily checked that the definition is independent of
choice of (61, 6?).

Harder and Narasimhan [HN] defined a stratification on C(&;) when G =
GL(n,C), and Ramanathan [Ra] extended this to general reductive groups. It
was conjectured by Atiyah and Bott in [AB], and proved by Daskalopoulos in [Dal
(see also [Ra&]), that under the isomorphism A(P) 2 C(&), the stratification on
C(&o) coincides with the Morse stratification of the Yang-Mills functional on A(P).

In this chapter, we first review the description of the stratification in terms of
Atiyah-Bott points, following [AB] Section 10] and [FM]. Then we write down the
Atiyah-Bott points for classical groups explicitly, similar to the description of the
stratification in terms of slopes when Gg = U(n).

3.1. Preliminaries on reductive Lie groups and Lie algebras

We have
9=13c9 0,9

where 3¢ is the center of g and [g, g] is the maximal semisimple subalgebra of g.
Let Hg be a maximal torus of Gg, and let hr be the Lie algebra of Hg. Then
h = hr ®r C is a Cartan subalgebra of g. Recall that any two maximal tori of Gy
are conjugate to each other, and any two Cartan subalgebras of g are conjugate
to each other. We have hh = 3¢ @ b’ where ' = h N [g, g]. Here we fix a choice of
Hpg, or equivalently, we fix a Cartan subalgebra h of g. Let R be the root system
associated to . We have

o= P =3c00 P ga

acR a€R
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We choose a system of simple roots A C R, and let R, be the set of positive
roots. The Borel subalgebra associated to A is given by

b=bo P ga-

a€ERy

The Lie algebra of a Borel subgroup B of G is a Borel subalgebra of g. We have
BN Gg = Hg.

A parabolic subgroup P of G is a subgroup containing a Borel subgroup, and
a parabolic subalgebra p of g is a subalgebra containing a Borel subalgebra. A
parabolic subalgebra containing b is of the form

p=boPoa

acl

where
(3.1) I'=RyU{a€R|acespan(A—1)}.

for some subset I of the set A of simple roots. There is a one-to-one correspondence
between any two of the following:

(i) Subsets I C A.
(ii) Parabolic subalgebras containing a fixed Borel subalgebra b.
(iii) Parabolic subgroups containing a fixed Borel subgroup B.

In particular, I being the empty set corresponds to G (or g), and I being the entire
set A corresponds to B (or b).
Given a parabolic subalgebra

p:b@@gm
acl’

with I' as in (3], define —I" to be the set of negatives of the members of I". In
other words, -I' = —R; U{a € R | a € span(A —I)}. let

(= P 0, v= P o

a€lN-T a€Tl,a¢—T

so that p = [ @ u. Then [, u are subalgebras of p and u is an ideal of p. The
subalgebra u is nilpotent, and is called the nilpotent radical of p. The subalgebra
[ is reductive, and is called the Levi factor of p. Let P be the parabolic subgroup
with Lie algebra p. Let P = LU be the semi-direct product associated to the direct
sum p = [P u, so that the Lie algebras of L and U are [ and u, respectively. The
reductive Lie group L is called the Levi factor of P, and U is called the unipotent
radical of P. We have PN Gr = Ly, the maximal compact subgroup of L; L is the
complexification of Lg.

For simple Lie groups, there is a one-to-one correspondence between simple
roots and nodes of the Dynkin diagram. In particular, a (proper) maximal parabolic
subgroup corresponds to omitting one node of the Dynkin diagram. See for example
[FH, Lecture 23].

(A) Gg =SU(n), G =SL(n,C), n > 2.
The Dynkin diagram of sl(n,C) is A,,_;. Omitting a node of A,,_1, we get
the disjoint union of A,,, 1 and A,,_1, where ny+ns = n, ny,ns > 1 (with
the convention that Ag is empty). The corresponding parabolic subgroup
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P of SL(n,C) is the subgroup which leaves the subspace C™ x {0} of C"
invariant. We have

NSU(n) = {diag(A,B) | A€ U(ny), B € U(nz),det(A) det(B) = 1}.

For a general parabolic subgroup P of SL(n,C), we have
PNSUMm)={Ae€U(ny) x---xU(n,) | det(A) =1}

corresponding to omitting (r — 1) nodes, where ny +---+n, =n, n; > 1.
Gr =50(2n+1),G=S02n+1,C), n > 1.
The Dynkin Diagram of so(2n+1, C) is B,, (with the convention B; = 4).
Omitting a node of B,,, we get the disjoint union of A,,, 1 and B,,,, where
ny+ng =n, n; > 1, ny >0 (with the convention that By is empty). The
corresponding parabolic subgroup of SO(2n+ 1, C) is the subgroup which
leaves the following n;-dimensional subspace of C2"*! invariant:

{(z1,V—=121,..., 20, V—12,,,0,...,0) | 21,...,2,, € C}.

We have
PNSO@2n+1)=U(ny) x SO(2ny + 1).

For a general parabolic subgroup P of SO(2n + 1,C), we have

PNnSO2n+1)=2U(ng) x - xU(ngq—1) x SO2n, + 1)
corresponding to omitting (r—1) nodes, where ny+---+n, = n, n; > 1 for
i # r, and n, > 0 (with the convention that SO(1) is the trivial group).
Gr = Sp(n), G = Sp(n,C), n > 1.
The Dynkin diagram of sp(n,C) is C,, (with the convention C; = A;).
Omitting a node from C,,, we get the disjoint union of A,,_; and C,,,
where ny + ny = n, ny > 1, ng > 0 (with the convention that Cj is
the empty set). The corresponding parabolic subgroup of Sp(n,C) is the
subgroup which leaves the subspace C™* x {0} of C?" invariant. We have

PN Sp(n) = U(ni) x Sp(na).
For a general parabolic subgroup P of Sp(n,C), we have
PN Sp(n) = U(ny) x -+ x U(ny—1) x Sp(n;)

corresponding to omitting (r — 1) nodes, where ny +---+n, =n, n; > 1
for i # r, and n, > 0 (with the convention that Sp(0) is the trivial group).
Gr = S0(2n), G = SO(2n,C), n > 1.

The Dynkin diagram of so(2n,C) is D,, (with the convention Dy = Aj,
Dy = Ay x Ay, D3 = A3). Omitting a node of D,,, we get the disjoint
union of A,, 1 and D,,, where n; + ny = n, ny > 1, ny > 0 (with
the convention that Dy is empty). The corresponding parabolic subgroup
of SO(2n,C) is the subgroup which leaves the following n;-dimensional
subspace of C?" invariant:

{(z1, V=121, 20y, V—120,,0,...,0) | 21,...,2,, €C}.
We have
PNSO(2n) = U(ny) x SO(2ny).
For a general parabolic subgroup P of SO(2n,C), we have
PNSO(2n)=2U(ny) X -+ xU(ny—1) x SO(2n,)
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corresponding to omitting (r—1) nodes, where ny+- - -+n, =n, n; > 1 for
i # r, and n, > 0 (with the convention that SO(0) is the trivial group).
Note that SO(2) = U(1).

3.2. Harder-Narasimhan filtrations of dual vector bundles

Let E be a holomorphic vector bundle over 3, and let
O0=EyCEyC---CE, =FE

be the Harder-Narasimhan filtration, where D; = E;/E;_; is semi-stable, and the
slopes p; = deg(D;)/rank(D;) satisfy pq > --- > p,. The vector p = (p1,..., )
is the type of E. Let I denote the trivial holomorphic line bundle over ¥, and let
EY = Hom(FE,T) be the dual vector bundle, so that

EY = Hom(E,,C).
Define the subbundle EY; of EY by
(EY))e ={a € E} | a(v) =0Vv e (E)).}.
then (EY,), = (E.;/(F;):)", and we have
0=EY.CEY,,,C---CEY,CEj=E"
Let F; = EY,,,/EY, ., ;. Then rankF; = rankD, . j, deg Fj = —deg D, 1,

s0 u(Fj) = —p(Dry1-j) = —pir41-5. The type of EY is given by (—pip, ..., —p1),
where —p, > -+ > —p.

3.3. Atiyah-Bott points

Let £ be a holomorphic principal G-bundle over a Riemann surface, and let
E = adf = £ X g be the associated adjoint bundle.

The Lie algebra g has a nondegenerate invariant quadratic form g — C. There-
fore, there is a nondegenerate invariant quadratic form I on E, which implies F is
self-dual EY = E. So the Harder-Narasimhan filtration of E is of the form

OCEfrCE7T+1C"'CE71CE0CE1C--'CET,1CE.

where
(E_j)e ={veE; | I(u,v) =0Vu € (E;_1)5}

and Dy = Ey/E_; has slope zero. Then Ej is a parabolic subbundle of the Lie
algebra bundle E. The structure group G of ¢ can then be reduced to a parabolic
subgroup @, such that £ = g x G, where {g is a holomorphic principal (-bundle
with adég = Ey. The parabolic group is unique up to conjugation, and there is
a canonical choice for a fixed Borel subgroup B. This choice gives the Harder-
Narasimhan reduction and @ is called the Harder-Narasimhan parabolic of &.

The stratification of the space of holomorphic structures on a fixed topological
principal G-bundle £ is determined by the Harder-Narasimhan parabolic @) together
with the topological type of the underlying principal @-bundle which is an element
in m(Q). To make this more explicit, we describe the stratification in terms of
Atiyah-Bott points, following [FM| Section 2.

Let H be a Cartan subgroup of G. Then 7 (H) can be viewed as a lattice in
v/—1bg such that 1 (H) ®z R = v/—1bg.

i (H) 2 {X € vV/—1bg | exp(21V—1X) = e} C vV—1bhg.
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For example, Gg = U(n), bg = {2mv/—1diag(t1,...,tn) | t1,...,t, € R}, and
m1(H) can be identified with the lattice {diag(ki,...,kn) | k1,...,kn € Z} C
V—T1bg.

The set AV of simple coroots span a sublattice A of m1(H), and m(G) =
m1(H)/A. The lattice A is called the coroot lattice of G. Let A be the saturation of

Ain 71 (H). Then 71 (Gss) = K/A Under the above identification, the short exact
sequence of abelian groups

1= 7m(Gss) = m(G) = m(G/Gss) — 1
can be rewritten as
0— A/A — 7 (H)/A — m (H)/A — 0,

where A/A is a finite abelian group, and 71 (H)/A is a lattice. Let Z, denote the
connected component of the center of G containing identity. Then D = ZyNG,; is a
finite abelian group, and G/Gy, = Zo/D. m(G/Gss) = m (H)/A can be identified
with a lattice in v/—13g,, where 3¢, = 3¢ N bg, such that m(G/Gs,) @z R =
\/j]-ﬁGrR'

Let &y be a principal G-bundle over a Riemann surface ¥. Its topological type
is classified by the second obstruction class ¢ (&) € H(3;m1(G)) 2 m1(G). Let

“(50) S WI(G/GSS) - \/__lﬁG]R

be the image of ¢1(&y) under the projection
m(G) = m(H)/A = m1(G/Gyy) = m(H)/A.

The group G = Hom(G,C*) = Hom(G/Gy,,C*) can be identified with the dual
lattice of wl(H)/JA\

Let P’ be a parabolic subgroup determined by I C A, and let L’ be its
Levi factor. The topological type of a principal L’ bundle 7y is determined by
c1(no) € m1(L). Given & € Pring(X), we want to enumerate

(3.2) {no € Pring1(X) | no xpr G =&}
Consider the commutative diagram
0 0
0 — m(Le) =Ar/Ar —2o  m(Ge)=A/A 27 0,,Q/2
|

m(D)=m(H)/A, —1— m(G) =m(H)/A 2252 6,0Q/Z
pL pG

m(L/Lg) = m(H)/AL, —2— 7(G/Gys) = 7 (H)/A

0 0
where w, are the fundamental weights. In the above diagram, the columns and
the first row are exact.
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Given a principal L-bundle ng, ¢1(no) € m1(L) is determined by

jlei(mo)) = ci(no xr G) € m(G), prlci(no)) = p(no) € m1(L/Lss).

Given & € Pring(X), we have ¢1(&) € m1(G) and u(&o) € m1(G/Gss). The map
pr, restricts to a bijection 571 (c1(&)) — p~1(u(&o)). Note that the set in [B.2) can
be identified with j=1(c1(&)).

LEMMA 3.1 ([FM| Lemma 2.1.2]). Suppose that ng is a reduction of & to a
standard parabolic group PT for some I C A, possibly empty. The Atiyah-Bott
point p(no) and the topological type of & as a G-bundle determine the topological
type of no/U! as an L!-bundle (and hence of ny as a P! bundle). Given a point
i € b, there is a reduction of & to a P!-bundle whose Atiyah-Bott point is u if
and only if the following conditions hold:

(i) p € V/—13p1,, where 31, is the center of the Lie algebra of Lt = L1 NGk.
(ii) For every simple root o € I we have wq(p) = wa(c) (mod Z).
(iii) x(u) = x(c¢) for all characters x of G.

DEFINITION 3.2 (J[EM| Definition 2.1.3]). A pair (p,]) consisting of a point
i € v/—1bg and a subset I C A is said to be of Atiyah-Bott type for ¢ € 71 (G) (or
& where ¢1 (&) = c) if (i)-(iii) hold. A point u € v/—1bg is said to be of Atiyah-Bott
type for c if there is I C A such that (u, I) is a pair of Atiyah-Bott type for c.

One may assume pu € Co, where Cy is the closure of the fundamental Weyl
chamber

Co={X €vV—1bg | a(X) >0 Va € A}.

We may choose the minimal I such that a(u) > 0 for all « € I. Then the stratum
C,, of the space of (0,1)-connections on §, are indexed by points p of Atiyah-Bott
type of ¢1(&y) such that u € Cy. We may incorporate this by adding

(iv) a(p) >0 for all a € 1.

Let C(&o) be the space of all (0, 1)-connections defining holomorphic structures
on a principal G-bundle & with ¢1(§) = ¢ € m(G). As a summary of the above
discussion, we have following description of the Harder-Narasimhan stratification
of C.

DEFINITION 3.3. Given a point u € C of Atiyah-Bott type for ¢, the stratum
C. C C(&o) is the set of all (0,1)-connections defining holomorphic structures on &y
whose Harder-Narasimhan reduction has Atiyah-Bott type equal to . The strata
are preserved by the action of gauge group. The union of these strata over all
u € Co of Atiyah-Bott type for & is C(&o).

3.4. Atiyah-Bott points for classical groups
In this section, we assume

N1yeooyNyp € Lsg, N1+ -+ N =n.
3.4.1. Gg=U(n). G=GL(n,C), and
vV—1br = {diag(tl, . ,tn) | t; € R}
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Let e; € v/—1bgr be defined by t; = 0;;. Then {e1,...,e,} is a basis of v/—1hg. Let
{61,...,0,} be the dual basis of (v/—1hr)¥ = Homg(y/—1hg,R). Then

ﬂl(H):Zel@n-@ZenC\/—le
A:{ai:9i—9i+1|i:1,...,n—1}c(\/—1f)R)v
Av:{a;/:ei—eiﬂ |i:1,...,n—1}C\/—1f)R

m(Un)) 2 71 (GL(n,C)) 2 w1 (H)/A = Z is generated by e; (mod A). Let ¢ = key
(mod A). Then p satisfies (i)-(iv) in Section B3l if and only if

k k,
W= diag(—llnl, s —7[m)
ny s
where
k k k
oM
ny Mo N,

k17"'7kr€Za k1++k7:k7

3.4.2. Gz = SO(2n+1). G =SO(2n +1,C), and
V—1br = {\/ 71diag(t1J, coytnd, 0[1) | t; € R}

0 -1
=1 )
Let e; € v/—1bgr be defined by t; = 0;;. Then {e1,...,e,} is a basis of v/—1hg. Let
{61,...,0,} be the dual basis of (v/—1hg)". Then

where

m(H) =Zey & - @ ZLe, CV—1br
A:{aizei—eiﬂ |i:1,...7n—1}U{an:9n}c(\/—1bR)V
A ={a)=¢e;—eq1|i=1,...,n—1}U{a,) =2e,} CV—1bg

m(SO2n+ 1)) 2 7 (SO(2n+ 1,C) 2 Z/27 is generated by e, (mod A). ¢ = ke,
(mod A) corresponds to wy = k where k =0, 1.
Case 1. a,, € I. Then p satisfies (i)-(iv) in Section B3 if and only if

k .
o= \/fldiag(—lJm, L 011)
ny (29

where

ki,....kr €Z, ki+4---+k, =k (mod 27Z), %>f1_2>”.%>0'
1 2 r

Case 2. a,, ¢ I. Then p satisfies (i)-(iv) in Section B3 if and only if

k Ky _
W= v—ldiag(n—lJnl, e ot
1

Npr—1

Jnr_l ) OIZnTJrl)

where

kl k2 ]{1_1
kla"'akr—leZ7 —_— > — > r
ny o Nyp_1
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3.4.3. Gg =S0(2n). G=50(2n,C), and
vV—1bg = {\/ 71diag(t1(], . ,th) | t; € R}

0 —1
=(1 7))

Let e; € v/—1bhgr be defined by t; = d;;. Then {e1,...,e,} is a basis of v/—1hg. Let
{61,...,0,} be the dual basis of (v/—1hg)V. Then

m(H)=2Ze1 ®---®Ze, CV—1br

A= {ai:9i—9i+1 |i: 1,...,7’L—1}U{Oén=(9n,1 —|—9n} C (\/—”)]R)v

AV ={a)=¢e;—eir1]i=1,...,n—1}U{a) =ep_1+e,} CV—-1bg
m1(S0(2n)) =2 71(SO(2n,C)) = Z/27 is generated by e, (mod A). ¢ = ke, (mod
A) corresponds to wy = k where k =0, 1.

Case 1. ap—1,a, € I, n, = 1. Then u satisfies (i)-(iv) in Section if and
only if

where

k ky_
o= \/—ldiag(—ljnl, o —1Jm71,k,.J)
s 7
where
k k k_
ki ky €7, ki+-+k =k (mod2Z), “L>=Z2>..>Ls k]
ni n2 Nyp—1

Case 2. ap—1 €I, oy ¢ I, n, > 1. Then p satisfies (i)-(iv) in Section B3l if and
only if

. /k by k, ky
= \/—1d1ag(—1jm, O A S ——J)
n1 Np—1 Ny Ny
where
ki k k
ki,....ky €Z, ki4--—+k =k (mod2Z), —>-2>...>-C>0.
ni n2 Ny

Case 3. a1 ¢ I, vy € I, . > 1. Then p satisfies (i)-(iv) in Section B3l if and
only if

= \/—_1diag<:—1Jn1, R ﬁJnr)

Ty
where
k k ky
ki,....ky €Z, ki4--+k =k (mod2Z), —>-2>...>C>0.
ny %) Ny

Case 4. a1 ¢ I, oy ¢ 1. Then p satisfies (i)-(iv) in Section B3] if and only if

k kr_
= \/—ldiag<n—1Jn1, cee —lJnT,OJnT)
1

r—1

where
kl k2 k -1
k'1,---,kr_1€Z7 — > = > ... > T
ny o Nyp_1
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3.4.4. Ggr = Sp(n). G = Sp(n,C), and
V—1bg = {diag(ty, ... tn, —t1,...,—ts) | t; € R}
Let e; € v/—1bg be defined by ¢; = §;;. Then {ey,...,e,} is a basis of v/—1hg. Let
{601,...,0,} be the dual basis of (v/—1bg)¥. Then
T (H) =Zey ® -+ @ Ze, C V—1bg
A={a;=0;—0i1|i=1,....n—1}U{20,} C (V—1hg)"
AV ={a) =e;—ei1]i=1,....n—1}U{e,} C V—1bg

m1(Sp(n)) =2 1 (Sp(n,C)) is trivial.
Case 1. a,, € I. Then p satisfies (i)-(iv) in Section B3] if and only of

k k- k k.
= diag(—llnl, L ——11,”,...,——%)
s Ny ni Ny
where % . ]
ki,... .k, €Z, —L>=2>...>250.
ny ng Ny
Case 2. a,, ¢ I. Then p satisfies (i)-(iv) of Section B3lif and only if
k ko k k.
= ding (g O = g 0, )
ni Nr—1 ni Np_1
where & . &
ki,....kp1€7, L>2s...>2 159







CHAPTER 4

Yang-Mills Connections and Representation
Varieties

Let Gr be a compact connected Lie group, and let P be a C* principal Gg-
bundle over a closed (orientable or nonorientable) surface. In [HL4, Section 3],
we introduced Yang-Mills functional and Yang-Mills connections on closed nonori-
entable surfaces.

In this chapter, we study the connected components of the representation vari-
ety of Yang-Mills connections. We recover the description of the Morse stratification
in terms of Atiyah-Bott points for orientable ¥ (Section [£2), and determine candi-
dates of Atiyah-Bott points for nonorientable ¥ (Section L5]). We also discuss and
give a closed formula for Gr-equivariant rational Poincaré series of the represen-
tation variety of central Yang-Mills connections (Section 3]). In Section and
Section L7, we introduce certain twisted representation varieties that will arise in
Chapter B Chapter [6 and Chapter [7] and study their connectedness.

4.1. Representation varieties for Yang-Mills connections

Let A(P) be the space of Gg-connections on P, and let A(P) be the space
of Yang-Mills connections on P. Let G(P) = Aut(P) be the gauge group, and let
Go(P) be the base gauge group. Let 'g(2) be the super central extension of (%)
defined in [HL4l Section 4.1].

THEOREM 4.1 (JABJ, Theorem 6.7], [HL4, Theorem 4.6]). There is a bijective
correspondence between conjugacy classes of homomorphisms Tr(X) — Ggr and
gauge equivalence classes of Yang-Mills Gr-connections over . In other words,

U N(P)/G(P) = Hom('x(X),Gr)

PePringg (2)

U NP)/G6(P) = Hom(I'x(S),Gr)/Gr

PePringg (2)

To describe Hom(I'g(X), Gg) more explicitly, we introduce some notation. Let
26 be the closed, compact, connected, orientable surface with £ > 0 handles. Let
»¢ be the connected sum of ¥ and RP?, and let ¥4 be the connected sum of ¥4 and
a Klein bottle. Any closed, compact, connected surface is of the form ¢, where
¢ is a nonnegative integer and i = 0,1,2. Xf is orientable if and only if i = 0.
Let (Gr)x denote the stabilizer of X of the adjoint action of Gg on gg. With the
above notation, Hom(I'g(X¢), Gg) can be identified with the representation variety
X4 (Gr), where

19
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Xél(\)/I(GR) == {(alvblv"'aabbfaX) GGR26XQR |
4
ai,bi € (Gr)x, | [lai,bi] = exp(X)}

i=1
X\Z{&{/I(GR) = {(alvblw-'aabeaC’X) EGR2Z+1 X gr ‘
¢
ai,b; € (Gr)x, Ad(c)X = - X, H[ai,bi] = exp(X)c’}
i=1
X@&(GR) = {(al,bl,...,ag,bg,d, C,X) (S G]R2£+2 X R ‘
¢
a;,bi,d € (Gr)x, Ad(e)X = =X, []las bi] = exp(X)ede™"d}
i=1

The Gg-action on Xf(’li,[(GR) is given by
g-(c1, o copi, X) = (gerg ™" gearrig ™ Ad(g) X).

4.2. Connected components of the representation variety for orientable
surfaces

GR is connected, so the natural projection
X(Gr) = Xy (Gr) /G
induces a bijection
mo(Xym(Gr)) = mo(Xypy(Gr)/Gr)-
Any point in X%&(GR) /Gr can be represented by
(a1,b1,...,a0,bp, X)
where X € bhg. Such representative is unique if we require that v/—1X is in the
closure Cy of the fundamental Weyl chamber
Co={Y evV-1bg|a(Y)>0, Vac R,} ={Y € V—-1bhr | a(Y) > 0, Va € A}.

Given X such that /—1X € Cj, we want to find the stabilizer (Gr)x of the
adjoint action of Gg on ggr. Let G be the complexification of Ggr. We use the
notation in Chapter Bl Let

Ix ={aeA|a(v-1X) > 0}.
Then Ix = A if /—1X € Cy, and Ix is empty if and only if X is in the center 3¢,
of gr. Let
'y =R;yU{a € R|acspan(A —Ix)}.

The stabilizer gx of the adjoint action of g on itself is the Levi factor of the parabolic

subalgebra
px = h D @ Ja-

aclx
We have px = gx P ux, where gx and ux are the Levi factor and the nilpotent
radical of px, respectively. The Lie algebra of Gx is gx. We conclude that

(Gr)x = L™ NGg = L§".
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Note that
¢

X €5,0x, exp(X) = H[ai, bi] € (LE)ss-

i=1

Let ux = %X. Then
nx € 7T1(H)/KL1X C \/—13LI§X C v—1bgr

and (ux, Ix) is of Atiyah-Bott type for some ¢ € 71 (G) = 71 (GRr).

We now state the condition for X € bhg such that (ai,b1,...,ae,be, X) €
Xf(’&(GR) for some (ay,by,...,asb)) € G*. Given I C A, let Z! be the con-
nected component of the identity of the center of L]{Q, and let D! be the center of
(LL)ss. Then the Lie algebra for Z! is 311~ Denote

= = {neV-lsy | exp(-2nv~1p) € D'} = m (2" /D") = my(Li/(Lg)ss)
I = {(ue="nColap) >0iff a e I}.

[1]

Given p € L, let X, = —27v/—1p € bg. Suppose that (a1,by,...,ar,bs, X) €
Xf{l&(GR). Then there is a unique pair (u, I), where I C A and u € Efr, such that
X is conjugate to X,,. Let C,, C gr denote the conjugacy class of X, and define

4
Xou(Gr)p = {(a1,b1, ..., ar,be, X) € Ge* % Cy | i, bi € (Gr)x, [ [lai, bi] = exp(X)}.

i=1
Then X@&(GR) is a disjoint union of
£,0 =
{Xym(Gr)y | p e EL, I C A}

Each X@&(GR)# is a union of finitely many connected components of Xf{’g/[(GR).
Note that (Gr)x, = L for p € Z4. We define reduced representation varieties
(4.1)

YA
Vot (Gr)y = {(a1,b1, .. ag, be) € (LE)* | [ ]lai,bi] = exp(X,)} = Xy (LE) -
=1

They correspond to the reduction from Gg to the subgroup L. More precisely, we
have a homeomorphism

Z? Y Z)
XYI?/I(GR)H/GR = VYI\?I(GR)M/LHI%
and a homotopy equivalence

hG hL{
1

£,0 R £,0
Xym(Gr) ~ Vym(Gr)u
where X" denote the homotopic orbit space EG x¢ X.

We now recall the formulation in [HL3| Section 2.1]. Let pss : (LL)ss — (LL)ss
be the universal cover. Then the universal cover of LL is given by

p: L[{& = 2’L§ X (L]]IQ)SS - L]{%7 (ng) = €Xpgr (X>pss(g)

where expyr : 3 Ll — Z! is the exponential map. We have

—_~—

71-1((L]1I§)ss) = Ker(pss), m (L]IR) = Kerp C (_QW\/TEI)XZ((LDI{)SS) Cart X(L]]IQ)SS'
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The map

/o

- -1
pri : Kerp — = (X, 9)— ?X
coincides with the surjective group homomorphism
prz:m(Lg) = mi(Li/(Lk)ss)

under the isomorphisms Kerp 2 7y (LL) and = = 71 (LL /(LE)ss)-
Define the obstruction map o : V\gi\%(GR)u — pz}(u) as follows. Given a
R

point (a1,by,...,as,bp) € Vfﬁ(GR)H, choose d; € p~Y(a;), b € p~1(b;). Define

o(ay,by,...,ae,bp) = Hle[di, b;]. Note that this definition does not depend on the
choice of a;,b;. We have o(ai,by,...,az,be) € {0} x (LL)ss, and
pss(o(ar, by, ..., ae,bp)) = exp(X,).

More geometrically, given (a1,b1,...,as,b) € Vfﬁ(GR) > let P be the underlying
topological Li-bundle. Then o(ay, by, ...,as,be) = 02(P) under the identification
w1 (LL) = H?(28; 71 (LL)). Tt is shown in [HL3] that for £ > 1, 0~ 1(k) is nonempty
and connected for all k € pzr,j (). We conclude that

PROPOSITION 4.2. For any I C A and pu € Ei, there is a bijection
£,0 ~
o (VYM(GR)M) = PLé(M)-
Consider the short exact sequence of abelian groups:

. PrI
0 —— m((Lh)ss) —— m(Lh) — m(LL/(LL)s) — O

AL /AL T (H) /AL m (H) /AL
There is a bijection
mo(Vart (Gr)u/ L) = v ().

Given any § € pZ{: (1), there is a bijection
m((Lh)w) = pg) (). v if0) + 5.
4.3. Equivariant Poincaré series
Given a C* principal G-bundle &; over 2§, let
e = {u € U Ei ‘ u is of Atiyah-Bott type for fo}.

ICA
The Harder-Narasimhan stratification of the space C(&g) of (0, 1)-connections on &g
is given by
Céo)= | Culéo)-
HEEe,
Recall that C(&p) is an infinite dimensional complex affine space, and each strata
C.(&o) is a complex submanifold of complex codimension

(4.2) do= Y (aw+e-1)

a(p)>0,a€RT
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Let P be a C* principal Gg-bundle over ¥ such that P xg, G = &, and
let A(P) be the space of Ggr-connections on P. Then A(P) = C(&) as infinite
dimensional complex affine spaces. In [AB], Atiyah and Bott conjectured that
the Morse stratification of the Yang-Mills functional on A(P) exists and coincides
with the Harder-Narasimhan stratification on C(&p) under the isomorphism A(P) =
C(&). The conjecture was proved by Daskalopoulos in [Dal. Atiyah and Bott
showed that the Harder-Narasimhan stratification is G(&p)-perfect over Q, where

G(&) = Aut(&) is the gauge group of &. Therefore,
(4.3) FPE(C&)Q) = Y %P (Cu(60): Q).
HEEg,
Let A, (P) C A(P) be the Morse stratum corresponding to C, (&) C C(&). It

is the stable manifold of a connected component N,(P) of N(P). Let (Gr), =
(Gr)x,. Then p and P uniquely determine a topological principal (Gg),-bundle
P,. Let Xf,’l(\)/[ (Gr)}, denote the connected component of Xf,’l(\)/[ (Gr), which corre-
sponds to P € Pring, (25), and let Vé’l&(GR)ﬁ“ denote the connected component
of Vé’l\%(GR)M which corresponds to P, € Prin(GR)u(Zé). Then Vé’l&(GR)ﬁ“ can be
identified with the representation variety Vis(P,) of central Yang-Mills connections
on P,. We have homeomorphisms

Nu(P)/G(P) = Xy3(Gr)E /Gr = Voo (P) [ (Gr),.

and homotopy equivalences of homotopic orbit spaces:
hGr
NPT s (XG0 (GR)E ) ~ Visl(B)MGe)e,

Combined with the homotopy equivalence Cu(go)hg(fo) ~N, H(P)hg(P), we conclude
that

PP (Cu(60): Q) = P (Xym(Gr)}: Q) = PO (Vau(PL): Q).

REMARK 4.3. The connectedness of V/,,(P) implies the connectedness of Vi(P,),
but not vise versa, because Go(P) is not connected in general. We know C, (&) is
connected by results in [AB], and NV, (P) = N(P)NA,(P) is a deformation retract
of A,(P)=C,(&) by results in [Dal, [Ra], so NV, (P) is connected.

Suppose that £ > 2. Then there is a unique py € Z¢, such that d,, = 0. Then
Cuo(€0) = Css(&o), the semi-stable stratum. Let
Ass(P) = AMO(P)7 Niss(P) :NHO(P)7 Elﬁo =Z¢ \ {ro}-
Then
The identity (£3)) can be rewritten as
(4.4) P.(BG(P);Q) = PE* (Vs (P); Q) + > 24 P (V((P,); Q)
HESg,
where P,(BG(P);Q) is given by Theorem [2Z4l This allows one to compute
P (Vss(P): Q)
recursively.

When G = GL(n,C), equivalent inductive procedure was derived by Harder
and Narasimhan by number theoretic method in [HN]. Zagier provided an explicit
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closed formula which solves the recursion relation for GL(n,C) |[Za]. Laumon and
Rapoport found an explicit closed formula which solves the recursion relation for
general compact G. When G, is not simply connected, the recursion relation
[LR) Theorem 3.2] that they solved is not exactly the recursion relation [@4)). The
closed formula which solves (@4 is the following slightly modified version of [LR]
Theorem 3.4] (see Appendix [Al for details):

THEOREM 4.4. Suppose that &g = P X, G and
c1(o) = p € m(G) = m(H)/A.
Then
P (Vis(P)) =

S (—1ydimessr—dinese by (BGH; )

42 dimc Ul-1) v
A aer{pret ) (@wa(p))

ICA [Loe (1 —tlere)
where 1
pI = 5 Z /87
B € R,

(B, av>>0forsomea61

wa(p) € Q/Z, and (z) € Q is the unique representative of the class x € Q/Z such
that 0 < (x) < 1.

Theorem [.4] coincides with [LR) Theorem 3.2] when Gy, is simply connected,
for example, when Gg = U(n), G = GL(n,C). When Gg = U(n), Theorem [4.4]
specializes to the closed formula derived by Zagier in [Za] (see [LR) Section 4] for
details):

THEOREM 4.5 (|Zal, [LR) Section 4]).
P (XU ) e . x)
(1_|_t2] 1)25

Z Z ( r H 1—752"1 ;Ll_ll(l_tQJ)Z

t2(€_1) iy Min
-1 I,
H::l (1 — 2(ni+ @+1))
REMARK 4.6. For n > 2, we have

PO (XY U ()o....0) = PV (XE8(U(n))

42 S (nitnign) ((nat4ng) (- £))

PYO (8 ) P2 (g8 (5 (m)) = EEDT RS (0 (s7(a)

So Theorem (5] also gives a formula for PSU(" (Xﬁft(SU( ))-
EXAMPLE 4.7.
PP (Xyn(U(2))5,8)
272
(e ey ((1 +t>2‘>2 R
(1—tH(1—12)? 1—1¢2 1—¢4
(141)%

o A (b )

NE
-~

4=
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where
1 k even
(=k/2) _{ 1/2 kodd
So
20
PUC) (L0 (10 S (L4832 = £292(1 £ £)2) k even
t ( YM( ( ))g,g) - (1+t)%* 3\ o0 o0
m((lﬁ-t) —t*(1+1) ) k odd
and

(1+t3)2£ t2£+2(1 +t)2£

PP (X (SU) = Q-2 1-t) Q-2)1-tY)

ﬂat

EXAMPLE 4.8.
PO (XE0(SUG))
(1 +t3)25(1 _‘_t5)25 2 (1 _|_t)25(1 +t3)22t42+2 (1 _|_t)4ft6£+2
(1 —#2)(1 —t*)2(1 —¢9) B (1—2)2(1 —tH(1 —¢6) (1 —1t2)2(1 —t4)?

PPYW(XE0 (SU@4)))

B (1+t3)2Z(1+t5)2Z(1+t7)2Z (1+t)2£(1+t3)2£(1+t5)2ét6£+2
=)= 21— P15 (1= P11 =) (1= 5)
(1+t)2é(1+t3)4ét86 (1+t)4€(1+t3)2€t10€
I— 2P0 —th2(1—5)  “(1—2)3(1 — t4)2(1 — t9)
(1+t)4£(1_|_t3)2€t10€+2 (1+t>6€t12€

(1—23(1 —t)(1—16)2 (1 —1¢2)3(1 —t4)3

We will use Theorem 4] to write down explicit closed formula for SO(2n + 1),
SO(2n), and Sp(n) in Section (2] Section [6.2] and Section [[.2] respectively.

4.4. Involution on the Weyl Chamber

Let m: 2 — ¥ be the orientable double cover of a closed, compact, connected,
nonorientable surface ¥, and let 7 : ¥ — 3 be the deck transformation. Let P
be a principal Gg-bundle over ¥, and let P = 7*P. Then P and & = P Xae G
are topologically trivial. There is an involution 75 : P — P which covers the anti-
holomorphic involution 7 : ¥ — . Under the trivialization P = ¥ x G, 7, is given
by (x,h) — ((z), s(x)h), where s : 3 — Gy satisfies s(7(x)) = s(z) ! (see [HL4,
Section 3.2] for details).

Let A(P) and A(P) denote the space of Gg-connections on P and on P respec-
tively, and let C(&p) be the space of (0, 1)-connections on the principal G-bundle &.
Then 7, induces an involution 7% : A(P) — A(P). Since P and & are topologically
trivial, we may identify A(P) with Q'(3, gr) and identify C(&) with Q%1(%, g).
Let 7 : QY(2, gr) — Q%1(%, g) be defined as in the first paragraph of Chapter Bl
Given X = X + \/_X2 € g, where X1, Xy € gg, define X = X1 V—1X5; given
X : % — g, define X : ¥ = g by 2 — X(z). Then jo 7o ' :C(&) — C(&) is
given by

X ®60— Ad(s)T" X @ 770
where X € Q°(%, g) and 8 € Q%'(%). From now on, we denote j o7 oj~t by 7
We have isomorphisms of real affine spaces A(P) = A(P)™ = C(&) :.
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We will define an involution 7/ on the positive Weyl chamber C such that
T:Cp = Crr(p), where 1 € C is of Atiyah-Bott type for & and C, is the associated
stratum in C(&).

The set

—Cy = {—Y | Y € Co} C \/—_].[)]R

is another Weyl chamber. There is a unique element w in the Weyl group W
such that w - Cy = —Cy. We have w? - Cy = Cp, so w? = id /=7y, - Define
7' \/=1br = v/—1bg by X — w - (—X). Recall that 7 induces an involution on
the symmetric representation variety which maps X € gr to —Ad(¢)X € gr (see
[HL4, Section 4.5]). Given Y € Cy, 7/(Y) is the unique vector in Cp which is in
the orbit G- (=Y) = G- (—Ad(¢)(Y)) of the adjoint action of G on g. Thus 7’ is
induced by the involution 7 on the symmetric representation variety. To simplify
notation, from now on we will write 7 instead of 7/. Obviously 7(Cy) = Cy. Given
Y € Cy, 7(Y) =Y if and only if Y € Oy is conjugate to —Y. In this case, we have
Ad(e)Y = -Y, where € € N(Hg) C Gg represents w € W = N(Hg)/Hg.

To demonstrate the above discussion, we list some examples of classical Lie
groups.

EXAMPLE 4.9. Let Gg = U(n). then
Co = {diag(ty,...,tn) | t1,.. s tn ERty > - > t,}
—Co = {diag(vi,...,vn) |v1,...,0p ER vy <o <, }

There exists a unique w in W = S(n) , the symmetric group, such that w(Co) =
—Cy. In fact, w - diag(ty,...,t,) = diag(tn,...,t1) is the action of such w on
v/ —1bg. Thus, the involution 7(Y") defined as w-(—Y") gives us 7(diag(ty, ..., t,)) =

diag(—t,,...,—t1), and Y is conjugate to =Y (i.e. 7(Y) = Y) if and only if
(t1,...ytn) = (—tn,...,—t1), or equivalently, if and only if YV is of the form
diag(vy, ..., vk, 0,...,0,—vg,...,—v1).

EXAMPLE 4.10. Let Gg = SO(2n + 1). then

60 = {Vﬁldlag(tlja7tn<];0[1)‘t12Ztnzo}a
—-Cy = {V-1diag(viJ,...,v,J,01) | vy <+ <, <0},

J:(f —01).

The unique w in W = G(n), the wreath product of Zy by S(n), that maps Cy to
—Cl, acts as w-+/—1diag(t1J, ..., t,J,0I1) = v—ldi_atg(—tl,], ooy, —tndJ,0I1). Thus
T :v/—1br = /—1bp is the identity map. Any Y € C| is conjugate to the negative

of itself. Let
1 0
i=(o 1)

and let H,, = diag(H, ..., H). The element
———

n

where

e = diag(H,, (-1)") € SO(2n+ 1)
satisfies Ad(e)Y = =Y for all Y € /—1bg and €2 = e.
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EXAMPLE 4.11. Let Gg = SO(2n). Then
Co = {V-1diag(t1J,...,tyJ) |ty > - >|t, |> 0},
—Cy = {V—1diag(viJ,...,vo0J) |v1 < < — v, <0}

The unique w in W 2 SG(n), the subgroup of G(n) consisting of even permutations,
that maps Cy to —C, belongs to the Zy part of SG(n), and

w-v/—1diag(tyJ, ..., t,J) = V—1diag(—t1J, ..., ~t,_1J, (—=1)" " t,,J).
Thus
7 (V=1diag(t1J, ..., t,J)) = V—1diag(t1J, ..., tn—1J, (—=1)"t,J)

If n is even, then any Y € Cj in conjugate to the negative of itself. If n is odd,
then Y € Cj is conjugate to —Y iff Y is of the form /—1diag(t,J,...,t,_1J,0).
Define

H, even

€= { diag(Hn_l,Ig) odd
Then e satisfies Ad(e)Y = =Y for all Y € v/—1hg and € = e.

EXAMPLE 4.12. Let Gg = Sp(n). Then

€ S0(2n) ifnis

Co = {diag(tr,....tn, ~t1,...,—ty) [ t1 = -+ >t > 0},
—Cy = {diag(vi,...,Vn, —01,...,—vp) | v1 <+ < v, <0}
the unique w in W = G(n), the wreath product of Zs by S(n), that maps Cy
to —Cl, acts as w - diag(t1, ..., tn, —t1,..., —tn) = diag(—tl,.;,—tn,tl,...,tn).

Thus 7 : vV—1hr — v/—1bg is the identity map, and any Y € C| is conjugate to
the negative of itself just as in the SO(2n + 1) case. The element

e<£l o > € Sp(n)

satisfies Ad(€)Y = —Y for all Y € /=1bg but € # e. Indeed, let € be any element
that satisfies Ad(€)Y = —Y for all Y € v/—1hr. Then we must have € = eu for
some u in the maximal torus, and it is straightforward to check that €2 = —e.

4.5. Connected components of the representation variety for

nonorientable surfaces

GR is connected, so the natural projection

Xau(Gr) = Xy (Gr) /G
induces a bijection
To(Xyar(Gr)) = mo(Xyar(Gr))/Gr)-

Any point in Xf,’ﬁ,[(GR) /Gr can be represented uniquely by

(a1,b1,...,a0,bs,¢,X)

where X € Cy. Moreover, we must have X € Cp,. Similarly, any point in
Xf(’f/[(GR) /GRr can be represented uniquely by

(al,bla oo ,a[,b[,d,C,X)
where X € Cj.
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Recall that 7 is an R-linear map from +/—1hg to v/—1hg. Its dual 7* is an
R-linear map from (v/—1hg)" to (v/—1hg)V. This 7* preserves A, the set of simple
roots, and restricts to an involution on it. To simplify notation, we will also denote
this involution by 7. Given I C A such that 7(I) = I, let

E7 = {ue = |70 = u}
Suppose that (a1,b1,...,as,be,c, X) € Xf(’;/l(GR). Then there is a unique pair
(p, I), where I C A, 7(I) = I, and p € (E4)7, such that X is conjugate to
X, = —2my/=1p. Given p € (E1)7, where I C A and 7(I) = I, define

Xon(Gr) = {(a1,b1,... a0,be,¢, X) € Gr¥F1 X C s |

a1,b1,...,a0,bp € (Gr)x,Ad(c)X = =X, Haz, ;] = exp(X)c?}

Where C), /5 is the conjugacy class of X, /2. We define Xf(’M(GR)  similarly. For
i=1,2, X5}, (Gg) is a disjoint union of
i =I\r
{Xyn(Gr)y | e BL)7, I CAT(I) =1}

When Ggr = U(n), £ > 1, each Xf(’f;/l(GR)u is nonempty and has one or two con-
nected components (see [HL4, Section 7]). We will see later that X% (Gg), can
be empty for other classical groups (Section (3] Section [6.3] Section [6.4] and Sec-
tion [[3). When Xf{fv[(GR) » is nonempty, it is a union of finitely many connected
components of XYM(GR)

The reduction of XYM(G]R) u is more complicated because c is not in Gx. To

do the reduction, we fix some ¢ € Gg such that the involution on Cy is given by
X — —Ad(e)X. Thus Ad(e)X = —X if X is fixed by the involution. For any
p € (L), where 7(I) = I, we define e-reduced representation varieties

X
(45) Win(Gr)y = {(as, by, ar,be, ) € (L ”“\Hau i) = exp( 5 Jec'ec')

(4.6)

X
Vfﬁ(GR)u ={(a1,by,...,ap,be,d, ) e (LL)?F2 | H a;, b;] = exp( 5 “EVed d(ed) Y}

For i = 1,2, L} acts on V\é’l\z}[(GR)# by

g-(c1e o) = (gerg™ o gearriag ™t € tgecaryig ).
Recall that Ad(e)(X,) = =X, and L{, = (Gr)x,. So we have a homeomorphism

i ~ b
XYM(GR)#/GR = VYM(GR)M/L]}IQ
and a homotopy equivalence between homotopic orbit spaces:
i hGr i hLi
XYM(GR)M f VYM(GR)M :
When Gr = U(n), Vf’l\i/[(GR)u can be viewed as a product of representation
varieties for U(m) (m < n) of X¢ and of its double cover L2T~1 (see [HL4,

Section 7]. This is not the case for other classical groups. We will see in Section
B3 Section [63] Section [64] and Section [73] that when Gg = SO(n) or Sp(n),



4.6. TWISTED REPRESENTATION VARIETIES: U(n) 29

Véf/l(GR)# is a product of twisted representation varieties defined in Section
and Section .7 below.

4.6. Twisted representation varieties: U(n)

Given n,k € Z, n > 0, define twisted representation varieties

n)

¢
(4.7) f/e’; = {(al,bl, coyap,bpyc) € U(n)2z+1 | H[ai,bi] = e 2V *1’“/”Inéc}
i=1

14
Ve = {(al, bi,... a0 by dyc) € Un)* 2| [ las, bi] = e 2™~/ I, ede*d}
=1

where ¢ is the complex conjugate of c¢. In particular,
0,1 0,2
Vin = U@, Vi =U(1)**2
For i = 1,2, U(n) acts on Vf; by

(4.9 g-(a1,b1,... a0 be,¢) = (garg~ ', gbig™ ", ..., garg " gbeg~ ' Geg™t)

(4.10)
g-(a,bi,...,apbe,d,c) = (garg~ ' gbig ..., gacg™ " gbeg ™", gdg™ ", Geg ™)
We will show that

PRrROPOSITION 4.13. f/f,i is nonempty and connected for £ > 2i.

PROOF FOR i = 1. For any (a1,b1,...,asbe,c) € f/?f,’,i, we have
det(a;) = eV~1%,  det(b;) = V"%, det(c) = eV,
Define 3 : [0,1] — U(n)**! by
ﬁ(t) _ (ef\/f_ltel/nal, ef\/f_hf(;ﬁ/nbl7 o 67\/7_1t9[,/na€, ef\/f_lmbg/nbe’ e*\/f_lte/nc).

Then the image of 8 lies in f/rf”,i, B(0) = (a1,b1,...,as,be,c), and

B ewrh = {(anb,.. anbo) € SUMM|

¢
H[ai, bz] = 67277\/771’6/”[”66} C Vf’;
i=1
So it suffices to show that Wﬁi is nonempty and connected.
Define 7 : Wfi — SU(n) by (ay,b1,...,asbe,c) — c. Then m~1(c) is nonempty

and connected for any ¢ € SU(n). It remains to show that for any ¢ € SU(n), there

is a path v: [0,1] — Wﬁi such that v(0) € 7~1(e) and (1) € 7~ 1(c).

Let T be the maximal torus which consists of diagonal matrices in SU(n). For
any ¢ € SU(n), there exist g € SU(n) such that g~'cg € T. We have

c=gexplyg™!, c=gexp(—&)g !
for some & € t. Let

& = —ZW\/—lgdiag(In,l, (1-n)h) et
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Then exp(&y) = e2mV=Ik/n[  Let w be the coxeter element and a be the corre-
sponding element in SU(n). There are 79,7 € t such that
w-no—1n0 =&, w-n—n=¢
Let a € N(T') represent w € W = N(T')/T. Then
aexp(no — tn)a™" exp(—no +1n) = exp(w - (no — tn) — (no — tn))
= exp(§o — t§)
— eIV (i)
aexp(tn)a™" exp(—tn) = exp(w - (tn) — tn) = exp(ts).
Now since SU(n) is connected, there are paths g : [0,1] — SU(n) such that
G(0) = e and §(1) = g. Now define 7 : [0,1] — SU(n)?**! by

’Y(t) = (al(t)’ bl (t)v a2(t)a bz(t), €y...,6 C(t))

where
a(®) =300 (70) . bi(t) = T expl — tn) (370
as(t) = g(t)ag(t) ™", ba(t) = g(t) exp(tn)g(t)
c(t) = g(t) exp(t€)g(t)~"

Then

[ar (#),ba(8)] = =™V He(D),  faz(t), ba(t)] = (1),

so the image of  lies in Wﬁi We have

~v(0) = (a,exp(no),a,e,e,... e ee)E 7T_1(6>
(1) = (gag ", gexp(no—n)g ' gag~',gexp(n)g " e, e,c) €T (c).
O
PROOF FOR i = 2. For any (ay,by,...,as,bs,d,c) € Vf:i, we have

det(a;) = eV~1%  det(b;) = V"%, det(c) = eV, det(d) = eV 1.
Define 3 : [0,1] — U(n)**2 by
B(t) = (e*\/*_ltel/”al, e*\/*_lt‘ﬁl/”bl, .
e*\/f_lwz/nae’ e*\/f_lttbz/nbé’ e*\/f_lttﬁ/nd7 e*\/*_lw/nc)_

Then the image of 3 lies in Vf;i, (0) = (a1,b1,...,ap,bed, c), and

Bl ewh; & {(al,bl,...,ag,bg,d,c)GSU(n)2”2|

4
[Tlai b = == L eded}y < V7.
i=1

So it suffices to show that Wf;i is nonempty and connected.

Define 7 : Wﬁi — SU(n)? by (a1, b1,...,asbe,d,c) = (d,c). Then 771(d, c)
is nonempty and connected for any (d,c) € SU(n)?. It remains to show that for
any (d,c) € SU(n)?, there is a path v : [0,1] — Wﬁi such that v(0) € 7~ 1(e,e)
and (1) € 7~1(d, ¢).
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Let T be the maximal torus which consists of diagonal matrices in SU(n). For

any ¢,d € SU(n), there exist g1,g92 € SU(n) such that gflcgl,ggldgg eT. We
have

c=giexp&igy’, e=giexp(—£1)gy", d=goexp&agy’, d=goexp(—£)75
for some &1,&; € t. Let

& = —277\/—1Ediag(ln,1, (I1—-n);) et
n

Then exp(&y) = e 2mV=Ik/nT  Let w be the coxeter element and a be the corre-
sponding element in SU(n). There are 19, 11,12 € t such that

wen;=nj =&, Jj=0,1,2
Let a € N(T) represent w € W = N(T')/T. Then

aexp(no — ty)a” " exp(—no +tm) = exp(w - (no —tn) — (no — tn1))

= exp(§o — t&1)
= e_Q”J__lk/”exp(—t&)

aexp(—tm)a " exp(tm) = exp(w- (—tm) + tn1) = exp(—t&y)
aexp(—tm)ail exp(tne) = exp(w- (—tna) + tne) = exp(—t&>).

Now since SU(n) is connected, there are paths g1, g2 : [0,1] — SU(n) such that
G;(0) = e and §;(1) = g; for j = 1,2. Now define v : [0,1] — SU(n)?**2 by

V() = (a1 (), 01(1), az(t), ba(t), as(t), b3 (t), as(t), ba(t), e, .. ., e, d(t), c(t))

where

) ) =amepin - m) (3 <t>)”
-1
20) . blt) =Bl esp(-tm) (B0)
)

_1, bs(t) = exp (tm) ( t)_
g2

t)a (32(t)) 7", ba(t) = Ga(t) exp(tnn) (G2(t) ™
c(t) = ga(t) exp(t&1)ga(t) ", d(t) = ga(t) exp(t&2)ga(t)

Then
[a1(£), by ()] = e~ 2™V 7IE/me(®),  [aa(t), ba(t)] = d(2),
— 1
laz(t),b3(t)] = c(t) , [aa(t),ba(t)] = d(?).
so the image of ~ lies in Wﬁi We have
v(0) = (a,exp(no),a,e,a,e,a,e,e, ... eee)e 7r*1(e, e)
(1) = (gragi ' grexp(no —m)gr ', 9200z Gz exp(—12)da
maﬁ_laﬁexp(nl).ﬁ_la 92a951792 eXp(WQ)ggla €,...,6, d7 C) S ﬂ-—l(da C)'
O
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4.7. Twisted representation varieties: SO(n)

Let
O(n)x = {A € 0(n) | det(A) = £1}.
Then O(n) and O(n)_ are the two connected components of O(n), where O(n)4 =
SO(n). For n > 2, define
¢
(4.11) Vé’(ln)il = {(a1,b1,...,as,bp,c) € SO(n)* x O(n)y | H[ai,bi] =%

=1
(4.12)
L
Vot a1 = {(an,br, . ap, by, ¢) € SO(n)* T 5 O(n)+ | [ [lai, bi] = cde™"d}
=1

Note that Vé’(in) 1= Xﬁ’:t(SO(n)). Recall that Xﬁ;ft(SO(n)) has two connected
components X} (SO(n)) ™ and X2 (SO(n))~L.

For : = 1,2, SO(n) acts on Vé’(ln) 4 by

(413) g (a1, br,...,ar,be,c) = (garg™ ", gbig™ ", ... gaeg™ ", gbeg™ ", gcg™t)

(4.14)
g+ (a1,b1,-. a0, be d ) = (garg™" gbig ™. gaeg™ !, gbeg ™, gdg ™" geg ™)
When n = 2, we have diffeomorphisms O(2); =2 O(2)_ 2 U(1), and diffeomor-
phisms
0 ~ yhi ~ i
VO(Q),+1 = X (U(1)) = U(l)QH Px {£1}
where i =1,2. For any d € SO(2) and ¢ € O(2)_, we have

A =1, cdctd=1I,

SO
Vo1 = {lanbi,... ae by, c) € SO2)* x O(2) | I = ¢}
= S0(2)*x0(2)_,
Vom—1 = {la1,b1,-. a0, be,d ) € SOQ2)* T x 0(2)- | Ir = ede™'d}

= SO(2)**' x0(2)_.
For i =1,2, Vi,
From now on, we assume that n > 3 so that SO(n) is semisimple. Let p :
Pin(n) — O(n) be the double cover defined in [BD| Chapter I, Section 6], and
let Pin(n)+ = p~1(O(n)+). Then Pin(n); and Pin(n)_ are the two connected
components of Pin(n), where Pin(n); = Spin(n). Note that Pin(n)_ is not a
group because if z,y € Pin(n)_ then zy € Pin(n).
Recall that there is an obstruction map

09 Vg’(ln))ﬂ = Xé’alt(SO(n)) — Ker(p) = {1, -1} C Spin(n)

is diffeomorphic to U(1)%**%, thus nonempty and connected.

given by
£
(alv bl, <o, Ay, b[a C) = H[&’L? b’i]572
i=1
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where (dl,l;l,...,dg,l;g,é) is the preimage of (ay,bi,...,as bg,c) under p>+1 :
Spin(n)**1 — SO(n)?*1. It is easy to check that oy does not depend on the
choice of the liftings (a1, b1,. .., de, be, €) because 2Ker(p) = {1}. Similarly, there is

an obstruction map oo : VOIZ2 = Xﬁ;(SO(n)) — {1, —1} given by

(n),+1
£ ~ ~ ~
(a1,b1, ..., ae, by, d, c) = [ [las, bi)(ede—'d) !
i=1
where (aq, by,...,ag, by, d,¢) is the preimage of (a1,b1, ... a4 be,d,c) under p?**2 :

Spin(n)?¢*2 — SO(n)?**2. Again, 0 does not depend on the choice of @;, b;, d, ¢.

For i = 1,2, define V55 | = Xg (SO(n))*! = 05" (+1). Then V571 =

Xﬁ’;t(SO(TL))Jrl corresponds to flat connections on the trivial SO(n)-bundle (wq =
0 € H2(X47/27) = 7,/27), while Vé’&;il = Xﬁ;ft(SO(n))’l corresponds to flat
connections on the nontrivial SO(n)-bundle (wy = 1 € H?(X;7Z/27) =2 7./27). Tt
was proved in [HL2] that Xﬁ’ait(SO(n))Jr1 and Xﬁ’ait(SO(n))*1 are nonempty and
connected if £ > i, ie., (¢,i) # (0,1),(0,2),(1,2). The result is extended to the
case (1,2) in [HL4].

We now extend the definition of 0s to Vé’(in)’fl. Define o5 : Vé’(ln)ﬁl —
{1,-1} C Spin(n) by

¢
(al, b1,...,a4,by, C) — H[&“ Bi]572
i=1
where (&1,51,...,65,55,6) is the preimage of (ay,by,...,as bg,c) under p>*1 :
Spin(n)? x Pin(n)_ — SO(n)% x O(n)_. It is easy to check that oy does not
depend on the choice of (a1,b1,...,as b, ¢). Similarly, define og : Véfn),—l —
{1, -1} C Spin(n) by
e ~ ~ ~
(a1,b1, ..., ae, b, d, ¢) = [ [ (@, bi)(eded) !
i=1
where (a1, bi,...,ac b, d, ¢) is the preimage of (ay,b1,...,az, be,d,c) under p?**2 :

Spin(n)**1 x Pin(n)_ — SO(n)?*! x O(n)—. Again, oy does not depend on the
choice of (ay,b1,...,as, be,d, ¢). Define Vé’(f)d_l = 0, '(£1). We will show that

PROPOSITION 4.14. Suppose that ¢ > 2i, where i = 1,2, and n > 3. Then
ylitl

O(n),~1 and Vé’(i;gl_l are nonempty and connected.

PROOF. Define

14
Ve = {(@y,br,.., @0, b, @) € Spin(n)* x Pin(n)_ | | [[a:, bile™* = 1}
=1
Vemoh = {(@, by, e, be,d, @) € Spin(n)* T x Pin(n)_ |
4

[, bi]ede"d)~" = +1}
i=1
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Then p**¢ : Spin(n)*+=1 x Pin(n)_ — SO(n)**+i=1 x O(n)_ restricts to a
covering map Vﬁ;ﬁj&)i — VOK’(i;Lj)fl_l. It suffices to prove that Vﬁ’fr’;{iﬁ and Vzﬁgi(_nl),
are nonempty and connected for ¢ > 2i.

¢ = 1. Define 74 : f/lf,zz(j;l)i — Pin(n)_ by (61,51, ..., ap, by, ) — ¢ Note that
Spin(n) is simply connected and &, —& € Spin(n), so 71" (¢) is nonempty and
connected for any ¢ € Pin(n)_. Let e, = ejeses, and let e = e;. Then e;,e_ €
Pin(n)_, and (e4+)? = £1. It suffices to show that for any ¢ € Pin(n)_, there is a
path vy : [0,1] — Vf;’;{(j;l)_ such that v+ (0) € 71" (ex) and v4(1) € 71 (E).

Let T be the maximal torus of Spin(n), and let t be the Lie algebra of T. For
any & € Pin(n)_, we have (ex)~1¢ € Spin(n), so there exists g+ € Spin(n) such
that (g+) '(ex) 'égs+ € T. We have

¢ = exgx exp(éx)(g+) "
for some £4,&_ € t. Let w be the coxeter element. There are n4,n_ € t such that
Wt — Nt =&

Let a € N(T') C Spin(n) be the corresponding element which represents w € W =
N(T)/T. Then

aexp(tm[)cf1 exp(—tny) = exp(w - tnt — tn+) = exp(té+).

Now since Spin(n) is connected, there are paths gy : [0,1] — Spin(n) such
that §+(0) = 1 and g+ (1) = g+. Now define ~ : [0, 1] — Spin(n)?* x Pin(n)_ by

'V:I:(t) = (ait(t)v bit(t), ag:(t% bg:(t)’ L., 1’Ci(t))

where

ay (t) = exge(t)alexge(t) ™, b7 (1) = exga(t) exp(tne) (e (t)

a5 (t) = §=(t)a(G=(t) " by (t) = G (t) exp(tns) (G (1)

(1) = exge(t) exp(t€e) (g (1) !
Then
[ai (1),67 ()] = exga(t)[a, exp(tns)] (exg= (1)) "

= exge(t) exp(tés) (exge () 7' = c(t)(ex") = e(t) (£ex),

[ay (£),b5 (1)) = g (8)[a, exp(tne)] (G (1) 71 = G (8) exp(t62) (G (£)) " = exe(?),
so the image of 4 lies in Vﬁi{(j;),' We have
7:(0) = (exaer',1,a,1,1,... 1, ex) € mit(ex)
(1) = (exgralexgs) ' erge exp(ne)(exgs) ' gralge) ' g exp(ne)(g)

1,...,1,¢) € 73 ().

1 = 2. Define 74 : ‘N/;;(inl)i — Spin(n) x Pin(n)_ by (&1,51, e\ e, by, d, ¢)

(d,¢). Note that Spin(n) is simply connected and édé'd,—édé—'d € Spin(n),
so 731 (d,¢) is nonempty and connected for any (d, &) € Spin(n) x Pin(n)_. Let
€+ =1, and let e_ = eges. Then eleieflei = efleielei = +1. It suffices to show
that for any (d, ) € Spin(n) x Pin(n)_, there is a path v : [0,1] — Vlf,;(inl)_ such
that v+ (0) € 71 (ex, e1) and v(1) € 7' (d, &).
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Let T' be the maximal torus of Spin(n), and let t be the Lie algebra of T
Given d € Spin(n) and ¢ € Pin(n)_, there exist g1, g, g € Spin(n) such that and
&,&4,&_ € tsuch that

¢=ergexp(€)g ', d = exgrexp(éx)(gs) "

Let w be the coxeter element. There are n,n4,n_ € t such that
wn—n=¢§ w-nr—nt==E.
Let a € N(T') C Spin(n) be the corresponding element which represents w € W =
N(T)/T. Then
aexp(tn)a~lexp(—tn) = exp(w-tn —tn) = exp(tf),
aexp(tne)alexp(—tne) = exp(w-tne —tne) = exp(tés).
Now since Spin(n) is connected, there are paths g, gy,g— : [0,1] — Spin(n)
such that
3(0)=3g+(0)=g-(0)=1, g(1)=g, g«(1)=gx.
Now define ~ : [0,1] — Spm( )26+ % Pin(n)_ by
v (t) = (ax (), bi(t), a5 (t), b5 (), a3 (£), by (1), ax (1), b3 (), 1,..., 1, d* (1), c(t))
where
ar(t) = erg(t)a(erg(t)) =", b

1 19(t) exp(tn)(e1g(t)) ",
t) = ere+g+(t)a (616i§¢(t))_1,

aj (t) by (t) = exe+ g () exp(tne)(erex g () 7,
az (t) = erexg(t)alerexg(t) ™", b3 (t) = erexg(t) exp(—tn)(erexg(t)) ",
ay (t) = ge(t)age ()", by (t) = g (t) exp(tne)g(t) ",
c(t) = ex§(t) exp(t&)g(t) ™",  d*(t) = exgu(t) exp(t&s)ga (1)~
Then

a1 (t), b1 ()] = erg(t)[a, exp(tn)](e1g(t))~" = c(t )6117
]

[
[a3 (1), b3 (1)) = erexgs (t)[a, exp(tne))(er€4gs (1)) ~F = exd(t) (erex) "
[az (£), b5 (1)] = exexg(t)[a, exp(—tn)]g(H) " (ex )_1 = erexc(t)H(Fes),
(a3 (), b3 ()] = G+ (t)[a, exp(tne)] (G (1))~ = ez d(t),

so the image of 4 lies in Vp’fn’(j;) We have

v+ (0) = (elael_l, 1, ereraleres)” 11, eleia(elei)*l, 1,a,1,1,...;1,€ex,€1)

€ it (ex,e1)

7+(1) = (erga(erg) " ergexp(n)(erg) ' erexgraleresgs) ",
erexgr exp(ne)(erexge) ", erexgalercsg) ™, erexgexp(—n)(erexg) ",
gagy’, grexp(ne)gy’, 1,...,1,d,8) € 71 '(d, @)






CHAPTER 5

Yang-Mills SO(2n + 1)-Connections

The maximal torus of SO(2n + 1) consists of block diagonal matrices of the
form

diag(Aq, ..., An, 1),

where Ay,..., A, € SO(2), and I is the 1 x 1 identity matrix. The Lie algebra of
the maximal torus consists of matrices of the form

0 -t 0 0
t1 0 0
2ndiag(tiJ, ..., tnJ,001) = 27 . ,
0 —t,
0 tn 0 0
0 0 0 0

where
0 -1
o1 (00
The fundamental Weyl chamber is
Co = {V-1diag(t1J, ..., t,J,0I;) | t; > ta > --- > t, > 0}.
In this chapter, we assume

NiyeueyNp € Loy, N1+ -+ np=n.

5.1. SO(2n + 1)-connections on orientable surfaces

Let J,, denote the 2m x 2m matrix diag(J,...,J). Any u € Cj is of the form
——

m

=V 71diag(>‘l<]n1a AR )\rJnMOIl)v

where \;y > --- > \. > 0.
Let X,, = —2my/—1pu. Then

B(U(ny)) x -+ x B(U(ny)), A > 0,

SO(@2n+1)x, = { B(U(ny)) X -+ x D(U(ny,—_1)) x SO(2n, +1), A, =0,

37
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where @ : U(m) — SO(2m) is the standard embedding defined as follows. Consider
the R-linear map L : R?™ — C™ given by

1

Y1 x1+ v -1y
: = :

Tm Tm + V 71ym

Ym

We have L™1 o (v/=11,,) o L(v) = Jv for v € R?™. If A is a m x m matrix, let
®(A) be the 2m x 2m matrix defined by
(5.2) L 'oAoL(v)=®(A)(v), veR™
Note that A(v/—11,,) = (V—=11,)A = Jn,®(A) = O(A) J,.
Suppose that (a1, by, ..., az,be, X,) € X450 (SO(2n 4 1)). Then
¢

exp(X,,) = [ [la:. bi]

i=1
where a;, b; € SO(2n +1)x,. This implies that exp(X,) € (SO(2n +1)x,)ss, the
semisimple part of SO(2n +1)x,:
[ ®(SU(n)) x --- x ®(SU(n,)), Ar >0,
(SOGn+1)x,)ss = { B(SU(n1)) x -+ x B(SU(ny1)) x SO2nr+1), A» = 0.
Thus

k k,
X, = 27rdiag<—1,]n1,...,—Jm,Oll),
ni Ny
— . k1 k.
noo= —1d1ag<—Jm,...,—Jn,,,,Oll),
ny s
where
k k
ki,....ky€Z, —L>...>Z>0.

ny Ny

This agrees with Section [3.4.2)
Recall that for each u, the representation variety is

‘
Vit (SO(2n+1)), = {(a1, b1, ..., ae,b) € (SO2n+1)x,)* | [[la:, bi] = exp(X,.)}-
i=1
Fori=1,--- ¢, write
a; = diag(Ai, ..., AL L), b; = diag(Bt,..., B, I;), when k, >0,
a; = diag(A%, ..., AY), b; = diag(Bi,. .., Bl), when k. = 0,
where A%, Bi € ®(U(ny)) for j=1,...,r — 1, and
i i o(U(n,)), when k, > 0,
A By € { SO(2n, + 1), when k. = 0.
Let

J; = exp(2nt]) = ( cos(2mt)  —sin(2mt) ) ’

sin(27t)  cos(27t)
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and let
(5.3) T = ®(2™VTI L) = diag(Jyjmy - - -, Jijn) € SO(20).
N————

For j=1,...,r—1, define

V= {(4}.BL. AL BY) € 2(U(n,) ”\H Bl = Toy, }

5.4 2 i 7 —1k;/n;
6o 2 {4}, B}, AL, B)) € UMmy)* | H | = etk )
= Xom(Ung)_es by

If k. > 0, define V,. by (&4). If k. = 0, define

0
V. = {(A17 Brlv B Af" Bf) € SO(QTLT + 1)2[ ‘ H[A?m Bi] = I2TL¢~+1}

1%

X0 (S0(2n, +1)).
Then Vi (SO(2n + 1)), =[I;=, Vj. We have a homeomorphism

[Tv/umy)), kr >0,
Ve (SO(2n+1)),/S0(2n+1)x, = { 2=
[1(Vi/U () x Vi/5O@n, +1), ke =0,
j=1
and a homotopy equivalence

hSO(2n+1)x,, {H;—l VU (), k>0,

VES(SO@2n + 1

NOTATION 5.1. Suppose that m > 3. Let ¥ be a closed, orientable or nonori-
entable surface. Let Pgré( ) and PSO( ) denote the principal SO(m)-bundle on ¥

with wg(PH( )) = 0 and wg(PSO(m)) = 1 respectively in H?(X;Z/27) = 7./27.
Let N (T ) S0 (m) denote the space of Yang-Mills connections on Pso(m), and let
NO(E)fo(m) denote the space of flat connections on PSO(m)

For ¢ =0,1,2, we have

X¢11(SO(m)) = X434 (SO(m)) 1 U Xy, (SO(m)) ™!

where _
X (SO(m))E 22 N(S)F 10y /G0(Piom):
and
X (SO(m)) = X2, (SO(m)) ™ U X (SO(m)) ™!
where

X (SO(m)* = No(ED) om)/90 (P30 (m))
is nonempty and connected for £ > 1. Let

X¢i(SO(m)E! = X34 (SO(m)), N Xya (SO (m))*!
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be the representation varieties for Yang-Mills connections of type p on Psé(m) Let
M, P35 my) = Xy (SO(m))*!/S0(m)

be the moduli space of gauge equivalence classes of flat connections on P O(m) over
3. Let

M(EG, P = Xy (Um) s 2 /U (n)
be the moduli space of gauge equivalence classes of central Yang-Mills connections

on a degree k principal U(n)-bundle over %§. Recall that there is no flat connection
on a degree k # 0 principal U(n)-bundle over .

We have seen that Vf’l\%(SO(Zn +1), = HJ 1 V; is connected for k. > 0
and disconnected with two connected components for k., = 0. To determine the
underlying topological type of the SO(2n + 1)-bundle, let us consider the group
homomorphism

¢u T (SO(2n +1)x,) = m(SO(2n+1)) = Z/27
induced by the inclusion SO(2n + 1)x, < SO(2n + 1). We have

Hm(U(nj)) ~ 77, A >0,

H 1 (U(n;)) x 71 (SO2n, + 1)) 2 2"~ x )27, \, =0,

7T1(SO(27H—1)X“) =

and

Gukr, ... ky) =ki+---+k. (mod2).
Thus, for k, > 0, Vé’l&(SO(Qn + 1)), is from the trivial SO(2n + 1)-bundle if and
only if &y +---+ k- =0 (mod 2); and for k. = 0, Vél\%(SO(Qn + 1)), has two
connected components Vé&(SO@n +1)),f and Vél&(SO(Qn +1)),,, where

Viia(S0(@n + 1) H V; x X50(50(2n, 4 1))0"TT

r—1
Ve (80@2n+1)), = []vix X§5(50(2n, +1))

j=1

(_1)k1+---+k7»71+1

To simplify the notation, we write

M:(Mh._.,un):(ﬁ,“.’ﬁ’_“’&...ﬁ)

ny ny s Ny
ni Ny
instead of
k
A d1ag< nl,...,—TJnr,Oll).
Uz
Let
I = { _<E b ke ﬁ)‘”ﬁ€Z>Ov”1+“'+”r:”}
SO(2n+1) — H = nla"'anla"'anr7""nr ijGZa %> >k—:20 5
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Igt(l)(2n+1) = {u€Iso@nt) | n >0, (—1)katthe — 413,
Ig0(2n+1) = {p € Iso@nt1) | tn = 0}.

From the discussion above, we conclude:

PROPOSITION 5.2. Suppose that £ > 1. Let

k1 kq k., k,
5.5 :(f,...,f,...,f,...,f) Tsooma)-
(5.5) iz " " n " € Iso(2n+1)

ni Ny

W) If p € I3 0nsny then Xgu(SO(2n + 1)), = Xyy(SO(2n + 1)) is
nonempty and connected. We have a homeomorphism

Xou(S0(2n+1)),/S02n +1) = T M(56, Pro—h)
j=1

and a homotopy equivalence
hSO(2n+1 - hU (n;)
Xy (s0@n+ 1), T (W) w )

PEERERY Ry
n,; n,;
J J

j=1
(i) If p e Ig0(2n+1)’ then X%&(SO(QTL + 1)), has two connected components
(from both bundles over )
Xyy(SO@2n+1))f1 and  X¢y(SO(2n +1)); 1.
We have a homeomorphism
r—1

~ i —ks +(—1)krt o FRea
X (S0@n+1))E/50@n+1) = [T M6, P8 )x M (36, Pl by )

j=1
and a homotopy equivalence

(Xf(’l‘\)/[(SO(Qn—i— 1))

hSO(2n+1
)

™

) r—1
~ T (X)) w
j=1

otk 1\ RSO(2n,.+1)
<X§§(50(2nr + 1))i(71)k1+ +hor 1) '

PROPOSITION 5.3. Suppose that £ > 1. The connected components of the rep-
resentation variety X%&(SO(QTL + 1))t are

l, L,
(XL (SO@n+ 1), | € TED 511y} U XSS (SO0 + 1)E | € o -
The following is an immediate consequence of Proposition

THEOREM 5.4. Suppose that £ > 1, and let p be as in (B.0).
(i) Ifue Ig(l)(znﬂ), then

pomt) (Xé&(go(gwr 1))#> ~ 1P’ (Xf;&(U(m))_k. 5 )

j=1
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(i) If p e Ig0(2n+1)’ then
pEo@n+y (X“ (SO(2n + 1)) ﬂ) HPU("J)< O (U(n) kj) X
B

PSO(2m+1) (XE 0 (SO(2n, + 1))1(71)’“”“‘*’%—1) .

flat

5.2. Equivariant Poincaré series

Recall from Chapter B.4.2}
A:{aizei—ﬁiﬂ \z:l,,n—l}u{anzﬁn}
AV ={a) =e -fei+1|i:1 n—1}U{e) = 2e,}

@Ze“ A= @Z —ei11) D Z(2e,),

1(SO(2n+ 1)) = (ep) = Z/ZZ
We now apply Theorem ] to the case Gg = SO(2n + 1).

1
wai:91+"'+97;, 1=1,....,n—1, wan:§(91+"'+9n)
0 1< n
e

Case 1. a,, € I:

I= {an17an1+n27 ceey an1+-~+n,«_17an}
L' =GL(n1,C) x --- x GL(n,,C), ni+---+n.=n

. . . n +1
dime 37,1 — dimg 350(2n+1,C) = T dim¢ Ul = Z nin; + ),

2
1<i<j<r
1 L n
pI Z(’I’L —2 Z?’L] + nl) <Z 9n1+"'+ni—1+j> 5(91 +- 9“)
i=1 j=1
I v ng + Nyl . I v
<p ,an1+_,,+n7’>:TfOf’L:]_,...,T'*]_, <P aan>:n7’
Case 2. ay, ¢ I
I'={an,, 0nytnss s Qngtootn, s f

=GL(n1,C) x --+ x GL(n,—1,C) x SO(2n, + 1,C), ni+---+n,=n
dimc 37,1 — dimc jso@nt1,c) =7 — 1,

. nn+1)—nq(n,+1
dlm(jUIZ Z nin; + ) 5 ( ),
1<i<j<r

ng
pI . Z(TLQZTLJ +nl> <Zlen1+-“+ni—1+j>
j=

1=1

n—n,
+§(91 4+ 4 9n1+-~+n,.,1) + T(9n1+”'+n"*1+1 4+ gn)

I v Ny Ny . I v Mg
(P in,) = — fori=1,....,7=2, (p',0ap 1. tpn _,)= 5
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We have the following closed formula for the SO(2n + 1)-equivariant poincaré
series of the representation of flat SO(2n + 1)-connections:

THEOREM 5.5.

PO (X0 (50(2n + 1)) DY)

- [T, (1 + 277 1)%
Z 2 <(1)E<1t2m>ny;f<1t%>2

HE=DE T, nin4n(n+1))

| [H;:fa - t2<ni+m+l>>} (1 tinr)

. t2 Z::_f (ni+niy1)+4n,(k/2)

- 1H o (L2020 T (1402
(1- t2’“ T (- 120 - e2)

t(Z—l)(2 Picy ningtn(ntl)—ny(nr+1))

’ 2 Sz (it nign)+2e(r)n,
{H:l?(l _ t2(m+m+1))} (1 _ E(T)thT_1+4nr)

where

REMARK 5.6. We have
PO (XL (50(2n + 1))t) = PEPCEMED (XL (Spin(2n + 1)),

so Theorem also gives a formula for Xﬁft(Spin(Qn +1)).

EXAMPLE 5.7.

PO (x{8(50(3))Y) = PO (X LS (Spin(3)))
(1 +t)2£t2£+2 (1 _|_t3)2£

1 =2)1—tY) T 1—2)(1—tY)

PO (x{0(S0(3)7Y)
(1 —I—t)%t% (1 _|_t3)2€

A=) —tY) T (1 —2)(1—tY)

Note that Spin(3) = SU(2), so
PP (XL (Spin(3))) = PPV (XES(SU(2)))

as expected, where Pts @) (Xéaot(S U(2)) is calculated in Example 7]
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EXAMPLE 5.8.
P OO (XE0(80(5)Th) = POV (XS (Spin(5)))

flat flat
B (1+ )2@(1+t3)2€t66+2 (1+t3)2€(1+t7)2€
T =220 =1 —8) T (1 —2)(1— A (1 —16)(1 — 18)
(1_|_t)4€t8€ (1+t)2l(1+t3)2lt6€

(1-t2)21—-tH)2 (1-t)2(1—-tH(1—19)
PO (x40 (50(5)7h)

flat
B (l—l—t)%(l—‘y—t?’)%tw 2 (1+t3)2€(1+t7)2€
TU—PPO—-p) -2t 1))
(1+t)4€t8l—2 (1+t)2l(1+t3)2lt6€

(1—2)2(1—t4)2 (1 —2)2(1 — t4)(1 — 15)

5.3. SO(2n + 1)-connections on nonorientable surfaces
We have 65 = Cy (any u € Oy is conjugate to —u). Any u € 55 is of the form
= v/—1diag(A1Jp,,s - - s Apy,, O1)
where A\ > --- > A\, > 0. We have

®(U(ng)) x - x ®(U(n,)), Ar >0,
D(U(ny)) x -+ x ®(U(n,—1)) x SO2n, +1), . =0,

where X,, = —27v/—1p, and ® : U(m) — SO(2m) is the standard embedding.
Given p € Cy, define

| ding(H,. (-1)"L), A >0,
L dlag (Hn—nra (71)”77”.[1, IQnT) R A = 0.

Then Ad(e,)X,, = —X,. Suppose that
(a1,b1, ... a0, bp, e, X, /2) € X, (SO(2n + 1)),

SO(QTL + 1)Xu = {

Then
¢
exp(X,/2)e e, d = H[ai, by
i=1
where
b e S (U(ng)) x - x ®(U(n,)), A >0,
%y i € O(U(ny)) % - x ®(U(n,_1)) x SO(2n, +1), A, =0.

We first assume that A, > 0. Let L : R?™ — C™ defined as in Section [G.11
Define

X, = Lo2rdiag(\Jn,,...,ArJn, )0 L7
= 2nv—1ldiag(Ailn,,. .- Ardp,.) € u(ng) X -+ X u(n,).

We have L o H, o L=!(v) = v for v € C", where ¥ is the complex conjugate of
v. So

LoH,®()H,oL Y(v) = (LoH,oL ) (Lo®()oL ) (LoH,oL ') (v)
= (LoHpoL~ )c = v = cv.
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So the condition on X L is

¢
exp(X,,/2)c/¢ = H[ai,bi] € SU(ny) x --- x SU(n,),
i=1
where a;, b;, ¢ € U(ny) x --- x U(n,), and ¢ is the complex conjugate of c’.

order that this is nonempty, we need 1 = det(e’r‘/’_v‘j I,;), or equivalently

In

(5.6) N="2 Ky, ny € sy

forj=1,...,r.
When A, = 0, the above argument gives the condition (6] for j =1,...,r—1.
Similarly, suppose that

(a1,by, ... a0, by, dy e, X, /2) € X591, (SO(2n +1)).

Then ,
exp(XM/2)(euc/)d(eucl)_ld = H[aiv bi],
i=1
where
w. b d c,e{ D(U(ny)) x -+ x ®(U(n,)), A >0,
v ®(U(ny)) x -+ x ®(U(np—1)) x SO2n,.+1), A\ =0.

When A, > 0, the condition on X, is

¢
exp(X},/2)cde ™ d = [ [lai. bi] € SU(ny) x -+ x SU(n,).
i=1
Again, we need 1 = det(e”\/’_v‘j I,;), or equivalently (5.6). When )\, = 0 we get
condition (B.6) for j =1,...,r — 1.
We conclude that for nonorientable surfaces,

2k 2k, k k.
= \/—1diag(—1Jn1, ey —JnT,OIl), where kq,..., k. € Z, s > 0.
ni Ny ni s
Recall that for orientable surfaces we have
k k., k k..
0= \/—1diag(—1Jn1,...7—Jn7,7011), where kq,..., k. € Z, M > 0.
nq N, ni zs
For each p1, define €,-reduced representation varieties
Ven(S0@2n+1)), = {(a1,b1,...,ae,be,c) € (SO(2n +1)x,)* " |

14

H[ai’ bi] = exp(Xu/2)euc’enc’},
i=1

Vea(S0@2n+1)), = {(a1,bi,...,as,be,d,c) € (SO2n+1)x, )%+ |
Y4
[[la:. bi] = exp(X,./2)e, ' d(e,c) " d}.

i=1
Fori=1,...,¢, write
a; = diag(A}, ..., A 1), b; =diag(Bi,...,B. 1)),
C/ = diag(C’l, .. .,CT711), d= diag(Dl, AN 7DT7I].))
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when k. > 0, and write
a; = diag(A%,... AL, b; = diag(Bi,...,B’),
d =diag(Cy,...,C,), d=diag(Dy,...,D,),
when k, = 0, where A%, B!, D;, C;j € ®(U(ny)) for j=1,...,r =1, and
o(U(n,)) when k, > 0,
when k, = 0.

A’r‘? B'r‘? DT’ C‘tr‘ G{ SO(Q”T+1>

it = 1. Let T, be defined as in (53)), and let ¢; = diag(H,,). For j =
1,...,7 =1, define
(5.7)
vy = {(A} B},.... A5, Bl,C) € 2(U(n, 24+1|H Bi) = Ty, 1,6,Cs6;C; |
6271—\/7_1]6]/”]6‘]0]}

U(ny)* | H[A;,B;i] =
i=1

[12 &

4 4
{(A;,B;,...,Aj,Bj,cj) €

~ 161

= an,—kj
where Vg 1_ k; is the twisted representation variety deﬁned in 1) of Section A6l
K is connected if ¢ > 2

f/f 3_ k; is nonempty if £ > 1. We have shown that V
(Proposition I3]).
When k. > 0, define V,. by (57). When &, = 0, define
(5.8) V, {(A1 Bl,... AL BLC,) € SO(2n, + 1)2+! | H = (eC,)? }
i=1

(=1)""r. Let C/ = eC,. We see that

_1)n—nrll’ I2n7,>7 det(e) =

where e = diag((
2 0@2n, +1) |

Vv, o {(A1 BL,..., AL B! .C") € SO(2n, +1)
4
[114;. Bi) = (C}2 det(Cy) = (1) }
=1
~ 2,1
= Volan+1). (-1

is the twisted representation variety defined in (£I1]) of Section 7]
4, is disconnected with

where Vo( ) £1
VO’( ),£1 is nonempty if £ > 2. We have shown that V
il if¢>2andn> 2 (Proposmon ET14).

two components Ve’(l’;H 11 and V ( )

We have
Vi (S0(@n + 1)), = [ v;.
j=1
We define a U(n;)-action on V; = an,fk by (9) of Section @6} when k&, = 0, we
yr—nr by (EI3) of Section 7]

define an SO(2n,. + 1)-action on V. = VO(2n 1) (=
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Then we have a homeomorphism

[Tvi/umy)), k. >0,
Vi (SO(2n+1)),/SO@2n+1)x, = {77
[TVi/U(n)) x V;/SO@2n, +1), k. =0,

2

j=1
and a homotopy equivalence
01 hSO(2n+1)x,, T, V]_hU(nj)’ k. >0,
Ve (SO(2n + 1)), ~ {Hf_} thU(nj) « VLhS0@n+1) . _
j= r . T )

i = 2. Let ¢; = diag(H,,,). Define

J

V; = {(AL Bl,.... A}, B, D;,C)) € D(U(n,)*+? |

4
H[A;"Bﬂ = T"pkjejCJ'Dj(ejCj)ile}
=1

= {(AL, Bl AL B D, C) € 9(U () |

(5.9) e L

H[Aj,Bj]:Tnj7kjejCjej e;Dje " e;C € Dj}
=1

[

= {(A},B},..., A}, B}, D;,C;) € U(n;)*** |
4
[1145 Bi] = eVt Ep,65 Dy b = 702,
=1

where f/jf_ k; is the twisted representation variety defined in E3R) of Section
f/éf_ K, is nonempty if £ > 1. We have shown that ijﬁz_ K is connected if ¢ > 4

n

(Proposition I3)).
When k. > 0, define V,. by (59). When &, = 0, define

V. ={(AL BL,..., AL B, Dy, C,) € SO(2n, + 1) |

(5.10) e
[T14%, Bl = <D, (eC,) ' D,
=1

where € = diag((—1)"""" I3, I2,,.),det(e) = (=1)"~". Let C|. = eC,. We see that

Vi = {(A}“’Ba}77A£7B£7DT7C’;) 650(2”7“"1)2£+1 XO(QnT_|_]_) ‘
0
H[AzraB:‘] = C;DTC;_IDT,det(C;) _ (_1>n—m~}
=1

02
Volan, +1),(~1yn—nr

Il

where Vé’fn), 4, is the twisted representation variety defined in (£I2) of Section E.7

Véfn),:ﬁ:l is nonempty if £ > 4. We have shown that Vé’fn)’ 4, is disconnected with

two components Vé’(zn’;ril and Vé’(i;;il if £ >4 and n > 2 (Proposition [£14)).
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We have
Ve (S0@2n+1), = [[ ;-
j=1

We define a U(n;)-action on V; = 17572467 by (EIQ) of Section L6} when k, = 0,
we define an SO(2n,. + 1)-action on V, = V£7(22nr+1),(71)"*""' by [@I4) of Section
4’1 Then we have a homeomorphism

[TWvi/um;)), k. >0,
VLA (SO0 +1)),/S0(2n +1)x, = 17}

[1(V;/U®))) x V/SO(@n, +1), k=0,

j=1

and a homotopy equivalence

02 hSO(2n+1)x, T, thU(n_,»), k. >0,
VYM(SO(QTL + 1))M ~ {Hi‘;i ‘/}_hU(’nj) % Vr‘hSO(QnT+1), kr _ 0,

We have seen that for i = 1,2, Vé’l\i/[(SO@n + 1)), is connected when &, > 0.
In this case, to determine the topological type of the underlying SO(2n + 1)-bundle
P over ¢, we can just look at a special point in Véﬁ(80(2n+ 1)), where ¢, d are
the identity element Is, ;. Then
¢

[ Tlai, b:] = exp(X,/2),

i=1
S0 a1, b1, ...,as, by can be viewed as the holonomies of a Yang-Mills connection on
an SO(2n + 1)-bundle Qy — X§. Also, ¢ = ¢ = diag(H,,, (—1)"I;) can be viewed
as the holonomy of a flat connection on an SO(2n + 1)-bundle Q; over ¥J = RP?,
and ¢ = ¢, d = Is,41 can be viewed as the holonomies of a flat connection on an
SO(2n + 1)-bundle Q5 over ©9 (a Klein bottle). Let ¥ be obtained by gluing %§
and XY at a point, and let P’ — ¥ be the (topological) principal SO(2n + 1)-
bundle over ¥’ such that P'[y; = Qo and P'[s0 = @;. Then P = p*P’ where
p: X = ¥ = 3§ ux? is the collapsing map. Then wy(P’) = (w2(Qo), wa(Q:))
under the isomorphism

H*(X';7,)27) = H*(S§; 7.)27) © H*(X2: 7./27),

and wo(P) = p*wa(P’) = wa(Qo)+w2(Q;), if we identify H2(X¢; Z/27), H*(2§; 2./27),
and H?(X0;7Z/2Z) with Z/2Z. So it remains to compute wz(Qo), wa2(Q1), and
w2 (Q2). We have Qo = P (kitFh) 5y ) SO(2n+1), s0 wa(Qo) = k1 ++ -+ k,
(mod 2). To compute we(Q1) and ws(Q2), we lift ¢ = € to ¢ € Spin(2n + 1) and
lift d = Ipny1 to d € Spin(2n + 1). Since 271 (SO(2n + 1)) is the trivial group, we
may choose any lifting for ¢ and d. We choose d =1 € Spin(2n + 1) and

~ €9€4 ** " €E2n, n even,
C =
€2€4 " - €22, 41, N 0dd.

Then & = (—1)"("*t1/2 and é&dé—'d = 1. We conclude that

n(n+1)

wa(@Q1) = (mod 2), wz(Q2) =0 (mod 2),
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S0
n(n+1
wo(P)=ki + - +k, +z% (mod 2).
When k, = 0, we have seen that Vf’f/{(SO(Qn + 1)), is disconnected with
two components. To determine the corresponding underlying topological types, we

consider two special cases.
Case 1. We consider special points

(a1,b1, .. a0, bs,¢) € Vo (SO2n+1)),, (a1,by, .., a0, be,d,¢) € VER(SO(2n+1)),,
where

a; = diag(Aj, ..., Ay, Ion,41), b = diag(Bi, ..., B}_y, Ian, 1),

c=¢, =diag(Hp—p,, (1) " 11, I2,,), d=Isq1.
Let €5 = diag((—1)"""r Iy, I2,,). Then

(AL BL,.. AL BY € Xog(U(ny)) wy  w, j=1,...,m =1,

n;tt g

J J
4,1, (=1
(I2nr+17 ooy don, 41, €1) € VO(2n7v+1)’(71)n—n7~)
£,2,1
(IQnr+17 R 7I2nr+17 IQnT+17 61) S Vo(QnT+1)7(_1)7L—1LT .

We have P = Py x P5, where P; is an SO(2(n — n,) + 1)-bundle, and P, is an
SO(2n,)-bundle with trivial holonomies I, . We have

(nfnr)(nfnrJrl).

’(UQ(P):’IUQ(Pl):k1+"'+kr_1+i 5

Case 2. We consider special points
(a1,b1, .. a0, bs,¢) € Vo (SO2n+1)),, (a1, by, .., a, b, d,¢) € VEZ(SO(2n+1)),,
where
a; = diag(Ay, ..., ALy, Ion, 41), by = diag(Bi, ..., Bi_y, Lo, 1),
c=diag(Hpy—n,, (—1) """, 1o, Lo, —o), d = diag(Ton_n, )11, — 12, Ton,—2).
Let €5 = diag((—1)"""r Iy, —1I2, Ios,—2), €2 = diag(I1, — I, I3, —2). Then
(AL BL,. AL BY € Xog(U(ng)) wy  w, j=1,...,m—1,

n; on

J

£1,— (=17
(I2nr+17 ooy don, 41, €1) € VO(2n7v+1)’(71)n—n7~)

(IQnr+17 R 7I2nr+17 €2, 61) € Véfé;‘l_‘_l)’(_l)”,nr .
We have P = Py x P,, where P; is an SO(2(n — n,) + 1)-bundle, and P, is an
SO(2n,)-bundle with holonomies a; = b; = Iz, ¢ = d = € = diag(—Iz, Izn,—2).
Similarly, we can choose the lifting of d and ¢ as d=2¢=ejes. Then & = éde1d =
—1. We have
(n—n.)(n—n,+1)

U)Q(Pl):k?1+"'+kr_1+’i 9

(mod 2), wq(P) =1 (mod 2),

(n—=ny)(n—n,+1)
2

1,U2(P>:wg(P1)+w2(P2):k1+"'+kr71+i +1(1’I10d2)
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To summarize, when k, = 0 we have

¢ 00 (- 1yFrt ki el Gmne =l
V4L (SO(2n + 1)) HV X Vi) iy ;

where Véi\z}[(SO(Qn + 1))ff is the €,-reduced version of X@&(SO(Qn + 1))#.
To simplify the notation, we write

o=, ) = (2—k1 2 2k’")

T e e
1 e
instead of
2k 2k,
V- dlag( ! nl,...,—JnT,Ofl).
Ny
Let
R 2k 2k 2k 2k
Isoiny) = {,u: (n—ll,...,n—ll,..., nr,..., nr)‘ n; € Zso,
ni Ty
k k,
nt 4. =mn, kj €2, —- -->_20}7
7 L in(ntl)
Iéccl)@nﬂ) = {pe€lso@ntn) | pn >0, (—1)’€1+ et T — 4,
ISO(2n+1) = {p € Ilso@nt) | pn =0}

For i = 1,2, define twisted moduli spaces
~0i 0 i, %1 00,41
My = Vo /U(n), MGy 21 = Vo, +1/50(n).

PROPOSITION 5.9. Suppose that £ > 2i, where i =1,2. Let

2k 2k, 2k, %\ -
5.11 :(—— ) Tsoomat-
( ) 1Y " " o o € Iso(2n+1)
ni Ny
W) If p € I3 0nsny then X34(SO2n + 1)), = Xyp(SO(2n + 1)) s

nonempty and connected (coming from either the trivial bundle or the
nontrivial bundle). We have a homeomorphism

X1 (SO(2n 4 1)),,/S0(2n + 1) HM%,,C

and a homotopy equivalence

4 hSO(2n+1 Yy n
X500+ 1), LTI )",

n;,—kj
Jj=1

(ii) If p € fgo(2n+1), then X%&(SO(QTL +1)), has two connected components
(coming from both bundles)

Xy (SO@2n+1))ft and X4y (SO(2n + 1)),
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We have homeomorphisms
Xy (SO(2n + 1)) /SO(2n + 1)

r—1 _
L0,k (—1)Fr e 1+17M] nr)(n—np—1)

~ ~ 0
= HM —k; X Mg 2nr+1)( 1yn—nr

j=1
and homotopy equivalences

; hSO(2n+1)
(Xf(’M(SO(Qn +1)E)

— hU(n') &i,i(fl)’“l‘*”"*kr—l”% hSO(2n,+1)
~ H TLJ, : 7 X (VO(2TL,,~+1),(*1)”_"T ) .
PROPOSITION 5.10. Suppose that ¢ > 2i, where © = 0,1. The connected com-
ponents of X1 (SO(2n+1))*! are
Y Y
Xym(SO@n+1)), | 1€ I3 5 1)} U{XGM(SO2n + 1) | € 02041}
Notice that, the set {u = /—1diag(p1J, ..., pnd, 0I1) | (1,. .., fn) € ISO(2n+1)}

is a proper subset of {u € (E1)7|I C A, 7(I) = I} as mentioned in Section .5
The following is an immediate consequence of Proposition [5.9

THEOREM 5.11. Suppose that £ > 2i, where i = 1,2, and let p be as in (BII]).

(i) Ifue Igcl)(%ﬂ) then

PO (X{H(S0@n+1)),) = HPU(”“ )

(i) If p € 16041 then
Pfo@"*” (X“ (SO(2n + 1))31)

n],fk t O(2n,+1),(=1)n—"r .






CHAPTER 6

Yang-Mills SO(2n)-Connections

The maximal torus of SO(2n) consists of block diagonal matrices of the form
diag(Ay, ..., Ay)

where Aj,..., A, € SO(2). The Lie algebra of the maximal torus consists of
matrices of the form
2rdiag(tiJ, ..., tnJ)

where

The fundamental Weyl chamber is
Co = {V—1diag(t1J,... . t,J) [ t1 > ta > -+ >[ 1, [> O}
As in Chapter [l in this chapter we continue to assume

Niyeoo Ny € Zsg, N1+ +n,. =n.

6.1. SO(2n)-connections on orientable surfaces
There are four cases.
Case 1. t,_1 > [tn]|, n, = 1.
p=~—1diagA1Jnys s Ae1Jn s M),
where Ay > -+ > A\._1 > |A\+] > 0. Thus
SO(2n)x, = ®(U(ny)) x -+ x ®(U(ny—1)) x &(U(n,)).
Suppose that (a1,b1,...,a¢, b, X,,) € Xé&(SO@n)). Then

14

exp(X,,) = [ [lai, bi]

i=1
where ay,by,...,ar,by € SO(2n)x,. Then we have
exp(X,) € (SO(2n)x,)ss = ®(SU(n1)) x -+ x ®(SU(n,—1)) x {l2}.
Thus

k k_
X, = 27rdiag(—1Jn1,..., 1Jn7‘71,k,«,]>,
ni Npr—1
k ky_
wo o= v—ldiag(—lJnl,..., 1Jnr_1,/€TJ),
ny r—1
where ) L
ki,o. ke €2, > LS k| >0.
ni Nr—1

53
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Recall that for each pu, the representation variety is

V(SO (2n)) . = {(a1, by, ..., ar, be) € (SO(2n)x ”|Haz,i—exp W)}

Fori=1,...,¢, write
a; = diag(A%, ..., AL), b; =diag(B],...,B.),
where A%, Bi € ®(U(n;)). Define V; as in (5.4). Then

r

(6.1) Ve (S0@2n)), = [ vi-

j=1

We have a homeomorphism
(6.2) Vi (SO(2n)),/SO(2n) x, = H (V;/U(nj))
and a homotopy equivalence

(6.3) VES(50(2n)), 7 H vy,

Case 2. t,,_ 1 = —t, >0, n, > 1.
p=vV=1diag(MJny, s A1 dny 1y Aednn—1, =Ard),
where Ay > -+ > A, > 0. Thus
SO@2n)x, = @(U(n1)) x -+ x ©(U(ny-1)) x ®'(U(n,)),

where ® : U(m) — SO(2m) is the embedding defined as follows. Consider the
R-linear map L' : R?™ — C™ given by

Ty
y'l 1 +vV—1y

L —

ym ! Tm—1 T+ Vv _1ym71
et Tm — V—1Ym
T
Ym

We have (L')~to+/—11I,, 0 L'(v) = diag(Jym_1, —J)(v) for v € R?™. If Aisamxm
matrix, and let ®’'(A) be the (2m) x (2m) matrix given by
(LY toAoL'(v) =d(A)v).
Note that A(v/—11,) = (V—11,)A = &' (A)diag(Jpm—1, —J) = diag(Jm—1, —J )P’ (A).
Suppose that (a1,b1,...,a¢, b, X,,) € Xé&(SO(%L)). Then
‘

exp(X,.) = [ Jlai, bi]

i=1
where ay,by,...,ar,by € SO(2n)x,. Then we have
exp(X,) € (SO(2n)x,)ss = ®(SU(n1)) x -+ x ®(SU(nr—1)) x &' (SU(n,)).
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Thus
k Ky k —k
X, = deiag(—ljm,...,T—lJ,Lr,l,—’“Jnr_l,—’"J),
Ny—1 Ny s
kr_ kr 7k1”
L= V- dlag( nl,..-,;Jnr_l,*z]nr—laij),
Ney—1 Ny ny
where
k ky
ki,....kr €Z, —L>...>"">0.
ny Uz

Recall that for each p, the representation variety is

VES(SO(2n)), = {(a1, b1, . .., as,bs) € (SO(2n)x,)*" | Ha“ i = exp(X,)}.

Fori=1,...,¢, write
a; = diag(A%, ..., AL), b; =diag(Bi,...,BY),
where A%, B € ®(U(ny)) for j =1,...,7 =1, and A}, B} € ®'(U(n,)).
For j =1,...,r —1, define V} as in (54]). Recall that
3 = ( cos(2mt)  —sin(27t) )

P\ sin(27rt)  cos(2nt)

Define
Vi = {(ALBL... ALB) € ¥ (Um)* |
£ . . A A A
[114%, Bi] = diag(Ji, jns- - i jm J_kr/nr)}
i=1
@’ B
= {(ALB,..., AL B € Uln, 2Z|H B] = eVl

1

XPu(U () ke ke

T Mg

Then we have ([€1]), (6.2), and ([E3).
Case 3. t,_1=t, >0, n,. > 1.
p=v=1diag(MJp,, ..., Ay, ),
where Ay > -+ > A, > 0. Thus
SO(2n)x, = ®(U(ny)) x --- x &(U(n,)).

Let X, = —2mv/—1p. Suppose that (ai,b1,...,ae, b, X,) € X@S/I(SO(Qn)).
Then
¢

exp(X,,) = [ [la:. bi]

i=1
where ay,by,...,ar,by € SO(2n)x,. Then we have

exp(X,.) € (SO(2n)x, )os = D(SU(n1)) x - - x B(SU(n,)).
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Thus

k k,
X, = 27rdiag(—1Jn1,...,—Jnr),

Ny

k,
nw o= V- dlag( nl,...,n—Jm),

where L %
ki,....ky€Z, L >...>2 >0

ni1 n,

Recall that for each u, the representation variety is

VES(SO(2n)), = {(a, by, . .., as,bs) € (SO(2n)x,)*" | Haz, ] = exp(X,)}.

Fori=1,...,¢, write
a; = diag(A%, ..., AY), b; = diag(B.,...,B’),

where A%, B} € ®(U(n;)).

Define V; as in (0.4). Then we have (@.1)), (62)), and (6.3]).

Case 4. t,_ 1 =t, =0, n,. > 1.

p=~—1diag A1 Jnys s Ae1Jn, 150, ),
where Ay > -+ > A\._1 > 0. Thus
SO(2n)x, = ®(U(n1)) x --- x ®(U(n,—-1)) x SO(2n,.).

Let X, = —2my/—1pu. Suppose that (ai,b1,...,a¢,bs, X,) € Xf(’&(SO(Qn)).
Then

¢
exp(X,)) = [ [lae-bd
i=1
where a1,b1,...,a¢,b; € SO(2n)x,. Then we have

exp(X,) € (SO(2n)x, )ss = O(SU(ny)) X -+ X ®(SU(ny—1)) x SO(2n,).
Thus

k ky_
X, = 27rdiag(—1Jm,..., Fret gy 1,0Jnr),
Npr—1
k_
no= V- dlag( Jngseos 1Jnr_l,OJnT),
Npr—1

where

k ko
kiy... k1 €7, L>...>1
ni Tyr—1

Recall that for each u, the representation variety is

> 0.

4
Vear(S0(2n)), = {(a1, b1, ..., a, be) € (SO(2n)x,)* | H[ambi] = exp(Xy)}.

Fori=1,...,¢, write
a; = diag(A%,... AL, b; = diag(Bi,...,B’),
where A;, B;- € ®(U(n,)) for j=1,...,r — 1, and A’, B! € SO(2n,).
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For j=1,...,r —1, define V} as in (54]). Define
v, = {(A},B}, .. AL BY € SO(2n,)* | H (Al Bi] = 12,“,} =~ X10(S0(2n,)).
Then Vf’l\%(SO@n)) = H;:1 V;. We have a homeomorphism
Ve (80(2n)),./S0(2n) x = 1:[ (V;/U(nj)) x V,./SO(2n,)

and a homotopy equivalence

r—1
hSO
Vé,l\?[(SO(Qn))u (2n)X“ ~ H ‘/]hU(nJ) X ‘/’,‘hSO(QnT).
j=1

We can decide the topological type of the underlying SO(2n) as in Section [5.11
Then Case 1, Case 2, Case 3 and Case 4 give exactly the same Atiyah-Bott points
as in Section 3431

To simplify the notation, we write

k1 k1 k, ky. )

:u:(ulw"a,un):<_7"'a_a"'7_7"'a_
ny ny oy Ny

instead of

and write

= (1, fin) = (ﬁ,...,ﬁ,...,kr_l,...,kr_l,ﬁ,...,ﬁ,_kr)

ni ni Ny—1 Nyp—1 Ny Ny Ny
ni Np—1 nr—l
instead of
ki k k
vV — dlag( n17 7T—1Jnr_17_r<]nr717__r<])'
Nyr—1 ny zs
Let
kl k?l k —1 kr—l
1E1 { :(—,...,—,..., el ,k) n; € Zoo, k; €7
So(2n) — M T T - e j >0, Rj
ni MNp—1
k'l kr—l ki+-+k,
n1+-~-+nr,1+1:n,n—>--->n > k| >0, (—1) =+1
1 r—1

Uem (B e el ke by g,

Sy N N s .
s ny Ney—1 Ney—1 nr ’I’LT Ny

n1 Np—1 ny—1

k k
kj € Z,ny € Zs1,n1+ -+ Ny zn,—1 >o> L >0, (—1)k1+”'+k7‘ = :I:l}
ny Ny
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IO :{ _ (E ﬁ kr—l kr—l
S0O(2n) w nl’.“’nlv.”,nrflv.”,nr—lv

ni MNp—1

o,...,o)‘njezw,
——

zs

k k_
nr€Z>1,n1—|—-~-+nr:n,kj6Z,—1>---> T1>0}.
ni Nyr—1

From the above discussion, we conclude that

PROPOSITION 6.1. Suppose that £ > 1.

k1 k1 kr—1 kr—1 4
I ( A N k)e[ ,
W) Fu ny’ ny N1 N1 S0(2n)
n1 r—1
k k Ky ko1 k k. k.
/L:(_lv"'7_17"'7 : 17"'7 . 17_Ta""_77:|: )GISi012 ’
ni n1 Nr_1 nr—1 Ny ne " ony (2n)
ni Np—1 nr—l

then X%&(SO(ZTL))H = X@&(SO(QTL + 1))f1 is nonempty and connected.
We have a homeomorphism

X\ZH?/I(SO(QTL ))u/SO(2n) HM (26, Pro—h)
j=1

and a homotopy equivalence

hSO(2n) 1 hU (ny)
xgusoen), " S T (W m) e w)
j=1 j j
. k1 k1 k1 k1 0
Ifu=—,....,—, ... 0,...,0 I
(11) flu“ (’I’L17 ) nl’ ) 7747-71’ ) 7747-71’ ) ) ) S SO(Zn)’
S ~ N
then X@&(SO(QTL))H has two connected components (from both bundles
over ¥§)
Xy (S0(2n))ft and  Xgpy(SO(2n));, "
We have a homeomorphism
r—1
XR(S0@n) ! (50(@n) = T M(Sh, Po—) < M6, Pl )
j=1

and a homotopy equivalence

1hso(zn) hU (n)
) x

X (50 (@) (Xé&wmm T

j:1 717""7 n;
. hSO(2n,)
(Xﬂat(SO(2nr))i(_1)kl+ +hy, 1) '

PROPOSITION 6.2. Suppose that £ > 1. The connected components of the rep-
resentation variety X@&(SO(Qn))il

{XP(SO@2n)) 0 | 1 € T5h 0} U{XGM(SOR))E | 11 € T30 (am }-

are

The following is an immediate consequence of Proposition
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THEOREM 6.3. Suppose that £ > 1.

: k1 k1 kr_1 kr_1 +1
(i) If p= <n_17”.’n_1’”"7%71’.”’7%71’]%) EISO(QTL), or
ni Npr—1
kl kl kr—l r—1 kr kr k +1
o= (;1,...,;1,...,nril,...,nril,nir,...,ni’r,:tnr) GISO(QTL)’ then
ni Np—1 nr—l

PIOCM (X{R4(50(2n),) = _HPtU("j)(Xff’&(U () 5 )

yeue

kl kl krfl krfl 0
I —( N S ,0,...,0)e] ., then
(ii) If p SO(2n)

ﬂl ni Nyr—1 Nyr—1

PEOC (Xy3i(s0@n)E)

r—1
U(n; SO(2n, R —1)k1t AR
[1R7 (X)) s ) - BP0 (K50 @n,) =Y )

Jj=1

6.2. Equivariant Poincaré series

Recall from Section [3.4.3}

A:{ai:Oi—HiH|z':1,...,n—1}U{an:0n_1+0n}
V={a)=e—eq1|i=1,....n—1}U{a) =en_1+en}
n—1

@Zeza A= @Z i — €i41 @Z(en 1 +en)

1(SO(2n)) = (en) X Z/QZ
We now apply Theorem 4] to the case Gg = SO(2n).

Wy =01 +---+0;, i=1,....,n—2
1 1
Wa,_, = 5(01+~-~+9n_1—0n), Wa,, = 5(91+--~+0n_1+0n)

0 1<n-—2
Wa, (ken) =< —k/2 i=n-—1
k/2  i=n

We have the following four cases:
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Case 1. ap_1,ap,€I: n. =1

I= {anl’an1+n2? sy Onytedn, oy On—1, Oén}
= GL(ny,C) x --- x GL(n,—1,C) x GL(1,C), ny + - —|—n,~ 1+1=n

. . . n(n—1
dime 31 — dime 3so(an,c) =7 dime U’ = Z nin; + ————= nn—1)

2
1<i<j<r
I_ 1 G n—1
P Z n-— 22”3 + Zan1+---+m—1+j + (014 +6)
i=1 j=1
(p,ax1+__,+ni>:%, fori=1,...,7r—2,
Np—1+ 1
<p17a1\1/71> = <;01a047\;> = T

Case 2. ap_1€l,a,¢1:n.>1

1= {an17an1+n2a ey an1+--~+n7,,1aan71}
=GL(n1,C) x --- x GL(n,,C), ni+---+n,=n
n(n—1)

dime 370 — dimc 3soency =7, dimg U’ = Z ning + =

1<i<j<r

pI . Z(n - 22”] + n1> <i: 9n1+"'+ni1+j> + nT_l(Z 9]) - (nT - 1)971
Jj=1 j=1

i=1

ng + Nijt1

5 fori=1,....,7r—1, (pl,a’ |)=n,—1

<p1aa1\1/1+-~-+n7,> =

Case 3. ap_1 ¢, a,€l:n.>1

I'={an,, Qnytnys s Onybngtotng_1s On}
= GL(n1,C) x --- x GL(n,,C), ni+---+n,=n

. . . n(n—1
dim 31 — dime 3soenc) =7, dimcU' = " nin; + 5 n(n—1)
1<i<j<r

IOI . Z( 22”] + nl) (zl: 9n1+"'+ni1+j)
j=1

-1
(B 6,)

i=1

ng + Nit1

(ph ) o) = fori=1,....,r—1, (pl,a¥)=n,—1
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Cased. a1 ¢ 1,0, ¢1:n. >1

I= {an1’an1+n2’ ERE! O‘n1+n2+"-+nr71}
L' =GL(ny,C) x -+ x GL(n,_1,C) x SO(2n,), ni+---+n.=n
dimc 3z — dimc 3so@nc) =7 — 1,

— 2
1<i<j<r

= % Z(n — QZTLJ' + TL1> <Z 9n1+--~+nq,_1+j>
Jj=1 j=1

n—1 n—ny
5 (01t Onin, ) +

_|_

(9n1+~~+m‘71+1 +e en)

I v g 4 N1 ,
<p,an1+_“+ni>:f, fori=1,...,7—2,

I Np_1+2n, — 1
0 Yy, ) = 200 2

We have the following closed formula for the SO(2n)-equivariant Poincaré series
of the representation variety of flat SO(2n)-connections over §:

THEOREM 6.4. n > 2
SO(2 e, _1)k
PO (X (S0(2n) 1) =
n r H7LL (1+t2] 1)25

2 = e ey
=123, ning+n(n=1))

. {H:;ll(l B t2(ni+ni+1))} (1 — 2 14D)
n—-1 . [T, (1 + $23-1y2¢
RN <2(1) e ey
D22, ninj+n(n-1))
| [H’-ﬂ;l(l - t2<m+m+1>)} (1 — t4nr—1))

T 11_[ (1_|_t2j 1) (1+t2n7—1)22Hn7‘_1(1+t4j 1)25
= o (-7 (= e (= ) [ 21— )
t(é—l)(Z Picj mingtn(n—1)—n,(n,—1))

{HT:Q(l _ t2(ni+ni+1)):| (1 — e(r)2n—1+2n,-1))

=1
0 r=1
6(’")_{1 r>1

REMARK 6.5. For n > 2, we have

PO (X0 (SO(2n)) ) = PP (X (S (Spin(2n))),

flat

+2 S (nitniga)+4(ne_1+1)(k/2)

220000 (i) A (ne—1)(k/2)

2 Yzt (nitnig1)+2e(r) (nr—1+2n,—1)

where
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so Theorem [6.4] also gives a formula for Xﬁ’aot (Spin(2n)).

EXAMPLE 6.6.
PPOW(XES (SO = PP (X (Spin(4))

flat flat
B (1+t)4lt4é+4 B (1+t)2€(1+t3)2€t26+2 (1—|—t3)4l
(=1 —t)? (1—2)2(1—t4)? (1—2)*(1—t4)?
1

_ 1 td 40 2t2l+2 1 t 20 1 t3 2¢ t4€+4 1 t 40

PO (XS (S04) ™

- (1+t)4£t45+2 (1+t)2£(1+t3)2£t2£ (1+t3)4£
N G ) TR A G W) P S 7 R G Q) T Ty
(1+1)*

— (1 — t2)2(1 — t4)2 ((1 + t3)4£ _ 2t2£(1 + t)QZ(l + t3)2£ + t4£(1 + t)M)

Note that Spin(4) = SU(2) x SU(2), so

flat flat

PO XS Spina) = (PO 08 SU@))

as expected, where PtSU(Z) (Xé’aot(S U(2))) is calculated in Example 7]

EXAMPLE 6.7.
PO (X (SO(6) ™) = B (X (Spin(6)))

flat flat
(1+t)4€(1+t3)2€t10€+2 (1+t)6€t12€
(T— 2P — )12 (1 2P0 )
(1+t)2£(1+t3)2£(1+t5)2£t6£+2 (1+t)4£(1+t3)2£t10£
A= e2)R2A - 201 —8) (1 —2)3(1 — t9)2(1 — £9)
(L8321 4 °)* (1 +47)* (14)%(1 4 ¢3)443"

1 — )1 — 921 —t6)2(1—15) (1 —2)3(1 — t4)2(1 — 19

B0 (X5 (S0(6)) )
(1 + t)4l(1 + t3)2lt10l—4 (1 + t)6£t12£—4
(1—2)3(1—t4)(1—15)2  (1—1¢2)3(1 —t4)3

(1 +t)2£(1 +t3)22(1 +t5)22t6£—2 (1 +t>4£(1 +t3)2£t102—2

(1= 221 — 921 —15) (1 — ) “(1—12)3(1 — t9)2(1 — 19)

(14 83)26(1 4 %)% (1 + £7)* (14 1)2(1 + ¢3)*48
T @)L 21— 021 — ) (1—2)3(1— t)2(1 — %)
Note that Spin(6) = SU(4), so

PtSpin(G) (Xﬁft(Spm(G))) _ PtSU(4) (XZ,O (SU(4)))

flat

as expected, where PtSU(4) (Xflft(SU(él))) is calculated in Example .8

6.3. SO(4m + 2)-connections on nonorientable surfaces
In this section, we consider SO(2n) where n = 2m + 1 is odd, so that

Co = {V=1diag(t1 ..., tomJ,0J) | t1 = -+ = to, = 0}.
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Any p € US is of the form
pw=—1diag A Jn, sy Ar—1dn, 1, 0J,),
where Ay > --- > A\._1 > 0 and n, > 0. We have
SO(2n)x, = ®(U(n1)) x -+ x ®(U(n,_1)) x SO(2n,),

where X, = —2mv/—1p.
Given p € Cp, let

€ = diag(Hpn,, (=1)" ") 11, I, 1),

Then Ad(e,)X,, = —X,. Note that n, > 1.
Suppose that

(a1,b1, ... a0, bs, e, X, /2) € X501 (SO(2n)).

Then
£

exp(X,/2)e e, d = H[ai,bi]
i=1
where a;, b;, ¢ € ®(U(ny)) x -+ x &(U(ny—1)) x SO(2n,).
Let L : R2("=nr) — C"~"r be defined as in Section .1} and let
X, = Lo (2rdiag(MJnys-- -3 Ar—1n,_,)) 0 L7
= 27V —1diag()\1]n1 s a)\r—ljnT_l) S u(nl) X e X u(nr_l).
Then the condition on X}, is

¢
exp(X,,/2)cc’ = [ [lai,bi] € SU(n1) x -+ x SU(ny_1)
i=1
where a;, b;, ¢ € U(ny) x -+- x U(n,_1), and ¢ is the complex conjugate of ¢’. In
order that this is nonempty, we need 1 = det(e’r‘/’_v‘j L)), ie.,
2k
(6.4) Nj==—"2 kjez, j=1,...,r—1L
nj
Similarly, suppose that (ai,bq,...,a¢,be,d,€e,¢', X, /2) € Xf(’f/[(SO@n). Then
¢
eXp(Xu/Q)(fucl)d(ﬁucl)ild = H[aia bil
i=1
where a;, b;, d, ¢ € ®(U(ny)) x --- X ®(U(n,—1)) x SO(2n,.). The condition on
X, is
exp(X),/2)cde ™ d € SU(ny) x - x SU(n,_1).
Again, we need
2k; .
Nj=—, kjeZ, j=1,...,r—1.
nj
We conclude that for nonorientable surfaces,

2k 2k,
w= v—ldiag(n—lJm, e sl
1

Npr—1

ki ks
Jnr_l,OJnr),where ki €Z, ~L > ZHL S 0 n, > 0.
n; Ni41
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For each p, the €,-reduced representation varieties are

Ve (SO(2n), = {(a1,b,-.,as,be, ') € SO@2n)5E |
14

X
[Tlai. 0] = exp(S)euc'enc’),

i=1
V\?l\%l(so(?n))u = {(CL1,b1,...,ag7bg7d7 CI) c SO(Qn)gf:ﬂ |
14

H[ai, b = exp(%)euc’d(euc')*ld}.
i=1

Fori=1,---,/, write
a; = diag(Af, ..., AL), b =diag(Bi,...,B}),
¢ = diag(Cy,...,C,), d=diag(Dy,...,D,),
where A;-, B;, Cj, Dj € ®(U(ny)) for j =1,...,7 =1, and Al Bl C,, D, €

SO(2n;).
i = 1. Define V; as in (5.7)), and define

65) V= {(A,{,B;,...,Afi,Bf,c ) € SO(2n,)24+! | H (Al B (60,»)2},

i=1
where € = diag((—1)"""", Iap, 1), det(e) = (=1)""". Let C. = eC,. We see that

V., {(A,{,B}_, . AL B O € SO(2n,)% x O(2n,) |
4

H[Ai,Bﬂ = (04)2,det(07’,) _ (71)71777,7.}

i=1
~ 161
- V (2nr)( 1)n oy
where VO’( ),+1 18 the twisted representation variety defined in (EII) of Section A7
VE( i is nonempty 1f {>2. We have shown that V ’( i is disconnected with

two components VO :|:1 and VO( :|:1 if £ > 2 and n > 2 (Proposition [£.14)).
We have

Van(S0@n), = [T ;-

j=1
We define a U(n]) actlon onV; = Vnﬁf,,C by ([@9) of Section @6l and an SO(2n,.)-

action on V, = V (2n (—1yn—nr DY #I3) of Section L7l Then we have a homeo-
morphism

V(S0(2n)),/SO(2n) x, = H V;/U(n;)) x V,/SO(2n,)
and a homotopy equivalence

(SO( ))hSO(Qn H VhU(”J) V }LSO(ZTLT)

Jj=1



6.3. SO(4m + 2)-CONNECTIONS ON NONORIENTABLE SURFACES 65

i = 2. Define V; as in (5.9), and define
(6.6)

V. = {(A,{,B;, ... AL BL.D,,C,) € SO(2n,)2*2 | H ' = ¢C, D, (C,) !
=1

where € = diag((—1)"""rI1,Iapn, 1), det(e) = (=1)"""r. Let C. = eC,. We see
that

Vo = {(ALBL... AL B D, C)) € SO(2n,)2 ! < O(2n,) |
L
[114i, Bi] = C;D,C 71D, det(C) = (—1)" " }
i=1
o VZ2

0(2ny),(~1)n—nr

where Vé’(Zn) 4, is the twisted representation variety defined in (4.12)) of Section {7
Vé’(zn) 4y i nonempty if (> 4. We have shown that VZ’(z) is disconnected with

two components V ( ) ﬂ and V. 0( D, ﬂ if ¢>4andn>2 (PI‘OpOSlthIlm
We have

Vi (S0(2n)), = [ vi-

j=1

We define a U(n]) actlon onV; = vh _kj by (I0) of Section L6 and an SO(2n,)-

Mg,

action on V, = V by (£I4) of Section 7l Then we have a homeo-

2"7‘)( 1)n nr
morphism

VE2(50(2n)),/50(2n) x, = 1:[ (V;/U(n;)) x V,./SO(2n,)

and a homotopy equivalence

r—1
Véﬁ(SO(Qn))uhSO(%)X“ -~ H thU(nj) % V;‘hSO(QnT).
j=1

Note that, VZ(ZQ) = Nf}”oi = U(1)%*% is connected as mentioned in Section
B7 ,

We have seen that Vf’&(SO(%L))H is disconnected with two connected com-
ponents if £ > 2i and n, > 1 (notice that when n, = 1, n — n, = 2m is even).
To determine the underlying topological SO(2n)-bundle P for each component, we
consider four special cases.

Case 1. Assuming that n, > 1, we consider special points

(a1,b1,...,ap,bp,c) € VYM(SO(2n)) (a1,b1,...,ap,bp,d,c) € VYM(SO(2n))
where

a; = diag(A%, ..., AL I,), b; =diag(Bi,...,B: |, Iz, ),
C=¢€, = diag(annra (_1)n—n,~ll7 IQn,,fl)a d= Is,.
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Let ¢ = diag((—=1)"""" I, I2,,.—1). Then
(AL, Bl,..., AL, B e X (U(ng)) «, 1y, j=1,...,7—1,

'nj""’ n;

£,1,(=1)"""r £,2,1
(IQTLT; ) IQnT, 61) € VO(QT(LT),%—I)"_"T’ (IQHT, L) Ianv IQTLT; 61) S VO(Qnr),(—l)"_"T .

We have P = P; X Ps, where P; is an SO(2(n — n,) + 1)-bundle, and P, is an

SO(2n, — 1)-bundle with trivial holonomies I, ;. We have

(n—n.)(n—n,+1)
2

where the second equality follows from the argument in Section (5.3
Case 2. Assuming that n, > 1, as in Case 1, we consider special points

(a1,b1, ..., a5, bs,c) € VEl(SO(2n)),, (a1, by, ... a0 b, d,c) € VEZL(SO(2n))
where
a; = diag(At,... A |, I, ), b;=diag(Bi,..., B | I,,,),
¢ = diag(Hp—n,, (-1)" "L, —Is, In,,—3), d = diag(Ian_n,y11, —12, L2n,—3).
Let ¢; = diag((—=1)"""r Iy, =13, Ion,—3), €2 = diag(ly1, —I2, I, —3), and € =
diag(—1Is, I, —3). Then
(AL, Bl,..., AL, BY e X (U(ng)) «, 1y, j=1,...,7—1,

nj T g

wz(P):wg(Pl):k1+"'+kr_1 +1 (mod 2),

2,1, —(—=1)"—"r 0,2,—1
(IQnT; sy IQnT, 61) S Vo(gnr()7(_)1)n—nrv (Iana ey IQnT; €2, 61) S VO(an),(—l)"_”T .

We have P = P; X P, where P; is an SO(2(n — n,.) + 1)-bundle, and P, is an

SO(2n, — 1)-bundle With~ holonomies a; = b; = Loy, -1, ¢ = d = €. We can choose

the lifting of d and c as d = & = ejes and & = éé 'd = —1. Thus we have

(n—n.)(n—mn,+1)
2

U)Q(Pl):k?l+"'+kr_1 +1

SO

(mod 2), wq(P) =1 (mod 2),

(n—n.)(n—n.+1)
2
Case 8. Assuming that n,. = 1 so that n —n,. = 2m is even, we consider special
points
(a1,b1, ..., a5, bs,c) € VEL(SO(2n)),, (a1, by, .. a0 be,d,c) € VEL(SO2n)),,

where

’wg(P):wg(P1)+’w2(P2):k1+"'+kr_1+i +1 (mod 2)

a; = dla'g(Azl, BRI sz‘”—lv IQ); b, = dlag(Bia BERE) B;L-“—l’IZ)a
Cc = diag(Hgm, —Ig), d= diag(I4m, —IQ).

Then
i pi i pi 2
(A]aB_]77A]7B])6XYI?/I(U(TL]))7’“7] _ ki ]:17 7T_15
”'j LARRE] ’!Lj
£,1,—1 £,2,—1
(127 oI, —IQ) S VO(2),+17 (12, ey Io, —1s, —IQ) S VO(2),+1'

We have P = P; X Py, where P; is an SO(4m)-bundle with holonomies d = I, and
¢ = Hop, with lifting ¢ = esey - - - €4, and ~Pg is an SO(2)-bundle with holonomies
a; =b; = Iy and ¢ = d = — I with lifting d = ¢ = e;e3. Then we have

wg(Pl) =ki+--+k—1+im (HlOd 2), 'LU2(P2) =1 (mod 2),
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SO
we(P)=ki+ -+ k-—1+im+ 1.
Case 4. Assuming that n,. = 1 as in Case 3, we consider special points
(a1,b1, ... a5, bs,c) € Vol (SO(2n)),,  (an, by, ..., a0, be,d,c) € VEZL(SO(2n)),,

where

a; = diag(AL,... AL |, ), b =diag(Bi,...,B._1,I5),

¢ = diag(Hom, I2), d= Ia,.
Then

(A}, B,..., A}, B)) € Xyn(U(ny))_x, he J=Lerol

WIEIERE]
J

(I, I, o) € VE 1y (I, 12,12,12) € Ve 11
We have P = P; x Py, where P; is an SO(4m)-bundle with holonomies d = I,
and ¢ = Ha,, with lifting ¢ = egey - - - €44, and Py is an SO(2)-bundle with trivial
holonomies Is. Then we have

’LUQ(P) = wg(Pl) =ki+--+kom—1+im (HlOd 2)
To summarize, when n = 2m + 1, we have

Y 0,0, £(—1 Ryt ki R (ginril
VYM(SO 27’L HV V Z2n() ()1)n np )

where VYM(SO(Qn)) is the €,-reduced version of XYM(SO(Zn))il. Note that

- lop - Ty T 1 . r\!tr 1
(n—n )(T; r ) i(m+ %) (mod 2), m—n,=n,—1 (mod 2).
To simplify the notation, we write

,U/:(/j/lw"v/’(‘ZmaO):(

) ey o
N,
ni Npr—1
instead of
2k 2k,_1
Ve dlag( Tngseny Jm_l,OJnr).
Ny—1
Let
N 2k, 2k 2k, _1 2k, _1
ISO(4m+2) = {[,L—( ey T ey T gy " ,0,...,0)|7lj€Z>0,
n ni Npr—1 Np—1 “——
ni Np—1 "

k k_
n1+...+n7‘:n:2m+1’ ijZ’—1>,_.> 7"1>O}
ni Ny—1

Recall that the twisted moduli spaces for U(n) are defined by M"" = Vé; /U(n),
where i = 1,2. Also we define the twisted moduli spaces for SO(n ) by

Méi’fﬁil = Vé(zn)iil/SO(n), where i = 1,2.
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PROPOSITION 6.8. Suppose that £ > 2i, where i =1,2. Let

2%, 2% 2%, 2%,

(6.7) u:(—— *,o,...,o)efso(4,,L+2>.
ni ni Npr—1 Np—1 N——

N
n1 Ny —1

Then X@&(SO(Zlm +2)), has two connected components (from both bundles over
i)

Xy (SO(dm+2))/t,  and  Xyy (SO(4m +2)),*
We have a homeomorphism

Xf,’fv[(SO(Zlm +2))E /SO(4m + 2)

)k1+ kg 1+im+i%

0,0, +(—
HMn],fk x Mg ZnT)( 1)nr—1

and a homotopy equwalence

; hSO(4 2
X4, (SO(4m + 2)) £ 50U

r—1 _
. hrU(nj) fid(—1 k1+»«»+kr71+i7n+i% hSO(2n,)
N H(Vz,z ) % (V i, (—1) ) .

n;,—k;j 0(2n,.),(=1)nr—1
j=1
PROPOSITION 6.9. Suppose that £ > 2i, where i = 1,2. The connected compo-
nents of Xl (SO(4m + 2))E! are
{sz’fv[(so(‘lm + 2))2[1 | ne jSO(4m+2)}-

Notice that, the set {u = /—1diag(p1J,. .., pamd,0J) | (i1,- .., pam,0) €
f50(4m+2)} is a proper subset of {u € (EL)7 | I C A,7(I) = I} as mentioned in
Section 5]

The following is an immediate consequence of Proposition

THEOREM 6.10. Suppose that £ > 2i, where i = 1,2, and let p be as in ([61).
Then

protm+?) (Xﬁ;fw(SO(sz + 2))351)
T SU(n,) e SO@ny) (17l (—1)k1+Fhr oy imes telip=2)
H W) P (VO(%T)’(I)MI .

6.4. SO(4m)-connections on nonorientable surfaces

In this section, we consider SO(2n) where n = 2m is even, so that C, = Cj.
There are four cases.

Case 1. t,—1 > |tp], n, = 1.
p=v-1diag(A1Jp, -, Ar—1dn, 1, Ard),
where Ay > -+ > A._1 > |\.| > 0. Thus
S0(4m)x, = ®U(ny)) x - x ®(U(ny—1)) x ®(U(n,)).
where X,, = —2mv/—1p.
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Let € = Hy,,. Suppose that (ai,bi,...,aebe,ec’, X, /2) € Xf;i/[(SO(élm)).

Then
¢
exp(X,/2)ec’ed = H[ai, b;]

i=1

where a;, b;, ¢ € ®(U(ny)) x -+ x ©(U(n,)).
Let L : R?® — C" be defined as in Section [5.1} and let
XL = LoX,o Lt
2nv/—1diag(M Ly, -+ s Aen,) € u(ng) X - X u(n,).

Then the condition on X, is
¢
exp(X,,/2)c'c = [[lai, bi] € SU(n1) x -+ x SU(n,_1) x {I}
i=1
where a;, b;, ¢ € U(ny) x --- x U(n,.), and ¢ is the complex conjugate of ¢’. In
order that this is nonempty, we need 1 = det(e™ =1 In,), ie.

2k,
Aj:#, kJGZ, 3:1,,7“
J

Similarly, suppose that (ai,bq,...,a¢,be,d,ec’, X,,/2) € X@fA(SO(élm)). Then

¢
exp(X,,/2)(ec’)d(ec') 1 d = H[ai, b;]

where a;, b;, d, ¢ € ®(U(n1)) x --- x ®(U(n;)). The condition on X, is

¢
exp(X},/2)cde’ ™ d = [[lai,bi] € SU(n1) x -+ x SU(np_y) x {I2},
i=1
where a;, b;, d, ¢ € U(ny) x --- x U(n,), and ¢ is the complex conjugate of .

Again, we need

2k
)\j:—j, ijZ, j=1...,nr
g
We conclude that for nonorientable surfaces
2k 2k,._ k ky_
p= VT Tdiag (T S 2k ),y €2, S s> 2L s > 0,
nq Ny 1 ni Ny—1

For each p, define e-reduced representation varieties
Vé’l\h(SO(élm))# :{(al, b1,...,ag,by, c’) c 50(4m)§fj1 |

(6.8) ¢ X, ,
H[ai, bi] = exp(7)ec ec'},

i=1

Vi (SO(4m)), ={(a, by, ..., ar, b, d, ) € SO(4m)5EH? |

(6.9) ¢
[Tl b = exp( 5 )ecd(ec’) " d).

=1
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Fori=1,...,¢, write
a; = diag(A}, ..., AY), b; = diag(B.,...,BY),
d =diag(Cy,...,C,), d=diag(Dy,...,D,),
where A%, Bi, Cj, D; € ®(U(ny)).
Deﬁne V; as in (5.7) when i = 1, and as in (5.9) when ¢ = 2. Then V; = V> tk
is connected, and

V(SO (4m)) H V.

Thus Vé’l\i,[(SO(élm))u is connected, and it corresponds to connections on a fixed
topological SO(4m)-bundle P. By the argument in Section B3]

2m(2m +1)
2
Let U(n;) acts on V; = f/rf;ffkj by (@9) and @I0) in Section A6l when ¢ = 1
and when ¢ = 2, respectively. Then we have a homeomorphism

wa(P)=ki+ -+ k- + =k + - -+k+im (mod?2).

(6.10) Vo (SO(4m)) /SO (4m) x, = [ (V;/U (ny))
j=1
and a homotopy equivalence

i hSO(4m)x, _ T "
(6.11) Vi (SO(4m)),, =[] v"v0).

Case 2. t,_1 = —t, >0, n, > 1.
w=V _ldiag()\ljnlv ceey >\T—1Jnr,17)‘7“]nr—17 _/\T"J)v
where A\ > .-+ > A\, > 0, Thus SO(4m)x, = ®(U(ny)) x - x ®(U(n,_1)) ¥
®'(U(n,)), where @ : U(k) < SO(2k) is the standard embedding, and ®" : U(k) —
SO(2k) is defined as in Section

Let € = Hy,,. Suppose that (aq,b1,...,a0,be,ec’, X, /2) € Xﬁ,’i/[(SO(Zlm)).

Then
¢

exp(X,/2)ec’ec’ = H[ai, by
i=1
where a;, b;, ¢ € ®(U(ng)) x -+ x ®(U(np—1) x ' (U(n,)).
Let L& L' : R2(n—7r) g R2?r — C* " @ C"r, and let
X, = (LoL)oX,o(LoL") ™" = 2rv/=1diag(A1n,, .. ., ALy, ) € u(ng) x- - -xu(n,).
Then the condition on X}, is

¢
exp(X),/2)c/¢/ = H[ai,bi] € SU(ny) x -+ x SU(n,)
i=1
where a;, b;, ¢ € U(ny) x --- x U(n,.), and ¢ is the complex conjugate of ¢’. In
order that this is nonempty, we need 1 = det(e’r‘/’_v‘j I,;),ie

2k;
)\j:n—j, ijZ, j=1...,nr

J
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Similarly, suppose that (a1,b1,...,as b, d,ec’, X, /2) € X@fA(SO(ZLm)). Then

¢
exp(X,./2)(ec')d(ec') " d = [ Jla, bi],
i=1
where a;, b;, d, ¢ € ®(U(ny)) x -+ x ®(U(ny—1)) x ®(U(n,)). The condition on
X/ is
o

exp(X),/2)cdc " d = Haz, € SU(ny) x -+ x SU(n,),

=1

where a;, b;, d, ¢ € U(ny) x -+ x U(n,) and d is the complex conjugate of d.
Again, we need
2k ;
=" kic€Z j=1,...,r
j n; j J r
We conclude that for nonorientable surfaces
2k, _ 2k, 2k, k k,
w=v-— dlag( 7L17"" 1Jnr71’n_Jnr_1’—7’L_J)7 kjEZ, —1>...>_>0.

Npr—1 T T ni Ny

For each i, define e-reduced representation varieties as in ([6.8)) and ([©9). For
i=1,...,¢, write
a; = diag(A}, ... AY), b; = diag(B.,..., BY),
' =diag(Cy,...,C,), d=diag(Dy,...,D,),
where A%, Bi, Cj, Dj € ®(U(ny)) for j = 1,---,7 —1, and A, B;, C,, D, €

' (U(ny)).
t=1 Forj=1,...,7r—1, define V; as in (B.7). Define

’ 4
P L x ”
v, = {(Ai,B,%,...,Aﬁ,Bf,CT) € Un, )2 | TIAL Bl = 5 1,,C,.C, }
g V’If,:v];—k‘,’..
Then V& (SO(4m)), = v
i=2 Forj=1,. , define V; as in (0.9]). Define

Ve = {(A}”?Brlv e ')Af‘)B£7DT7C7‘) S U(nr)%-‘rQ |

4
[T14i Bi) = ™5 1,,C,D,C; ' D, }

~ 1742
- Vn,,.,fkr .

Then Vi (SO(4m)), = TT)—, V.

Thus Vﬁd(s O(4m)),, is also connected, so it corresponds to a fixed topological
SO(4m)-bundle P. As in Case 1,

we(P)=ki+ -+ k. +im (mod 2).

We also have a homeomorphism (610) and a homotopy equivalence ([G.1T).
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Case 3. t,_ 1 =1t, >0, n,. > 1.
pw=—1diag(A1Jn,, - Ardn,),
where Ay > --- > X, > 0. Let X, = —2m+/—1p as before. Then
SO(2n), = SO(2n)x, = ®(U(ny)) x --- x &(U(n,)).

Let € = Hoy, as in Example A1l Suppose that (a1, b1, ..., az,be, e, X, /2) €
X1 (80(4m)). Then
¢
exp(X,/2)ec’ec’ = H[ai, by

i=1
where a;, b;, ¢ € ®(U(ny)) x -+ x &(U(n,)).
Let L : R?® — C" be defined as in Section [5.1], and let
XZL = LoX,o L1
= 2nv—1ldiag(M I, .-, Arly,) € u(ng) x -+ x u(n,).
Then the condition on X, is
¢
exp(X,,/2)c'c = [[lai, bi] € SU(n1) x -+ x SU(n,),
i=1
where a;, b;, ¢ € U(ny) x --- x U(n,), and ¢ is the complex conjugate of ¢/. In
order that this is nonempty, we need 1 = det(e”‘/’_l)‘j L)), ie.,

2k;
)\j:n_-j’ ijZ, j=1...,nr
J

Similarly, suppose that (a1,b1,...,as, b, d,ec’, X, /2) € Xf(’f/l(SO(Zlm)). Then

¢
exp(X,,/2)(ec’)d(ec') 1 d = H[ai, b;]

where a;, b;, d, ¢ € ®(U(n1)) x -+ x ®(U(n,)). The condition on X}, is
exp(X/,/2)cdd ™ d € SU(ny) x --- x SU(n,),

where d, ¢/ € U(ny) x --- x U(n,), and d is the complex conjugate of d. Again, we
need
2k ;
N="" ki€Z j=1,...,m
J n; Jj J r
We conclude that for nonorientable surfaces,

2k 2k k k.
= \/—1diag(—1Jn1,..., 7"Jn,,,), k;j €Z, N}
ni Ny ny Ny
For each i, we define the e-reduced representation varieties as in (6.8)) and (6.9)
when i = 1 and when ¢ = 2, respectively; we define V; as in (51) and (5.9) when
1 =1 and when 7 = 2, respectively. Then

Vi (SO(4m)), = [ vi.

J=1
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Again, vaf/[ (SO(4m)),, is connected, so it corresponds to a fixed topological SO (4m)-
bundle P, and

wo(P)=Fki+---+ k. +im (mod 2).
We also have a homeomorphism (6.10) and a homotopy equivalence (G.IT)).
Case 4. t,,_1=t, =0, n,. > 1.
=V —1diag()\1Jn1, ey >\r—1']nr,1 y OJnr);

where Ay > -+ > A1 > 0. Let X, = —27+/—1u as before. Then

SO(2n), = SO(2n)x, = ®(U(n1)) x --- x ®(U(n,—1)) x SO(2n,.).
Let ¢, = diag(Ham—n,., (—1)""I1, I2,,—1). Consider (a1,b1,...,ap be,€,¢, X,,/2) €
X$1,(SO(4m)). Then

¢
exp(X,./2)e, e c = H[ai,bi]
i=1
where a;, b;, ¢ € ®(U(ny)) x -+ x ®(U(n,—1)) x SO(2n,.).
Let L : R2(n=nr) 5 C"—"r be defined as in Section (.1, and let

X, = Lo (2ndiag(MJn,,. - Arc1n,_,)) o L7
= 271V 71diag()\1[n1, ceey )\r—lInr_l) S u(nl) X oo X u(nr_l).
Then the condition on X ;/L is

¢
exp(X,/2)c'c = H[ai,bi] € SU(ny) x -+ x SU(np_1),
i=1
where a;, b;, ¢ € U(ny) x --- x U(n,_1), and ¢ is the complex conjugate of ¢/. In
order that this is nonempty, we need 1 = det(e”‘/jl)‘j I,,), ie.,
2k
Nj==—"2 kjez, j=1,...,r—1L
nj

Similarly, suppose that (a1, b1, ..., as, b, d, €, X, /2) € Xf(’f,[(SO(ALm)). Then
‘
exp(X,./2) (e, )d(e,c) rd = I_I[ai7 bi,
i=1
where a;, b;, d, ¢ € ®(U(ny)) x --- X ®(U(n,—1)) x SO(2n,.). The condition on
X, is
exp(X/,/2)cdd ™ d € SU(ny) x -+ x SU(n,_1),

where d, ¢ € U(ny) x --- x U(n,_1), and d is the complex conjugate of d. Again,
we need
2k
N=—"2, kjez, j=1,...,r—1
1
We conclude that for nonorientable surfaces,

2% 2% k Ky
u:\/—ldiag( 1Jn1,...,—1Jnr_1,0Jnr), k€2, L. Sl

— > 0.
ni Ny—1 ni Ny—1
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For each p, define €,-reduced representation varieties

Véi\}[(SOHm))# = {(a1,b1,...,a0,bs,¢') € SO(4m)§f:rl |
¢

H[ai, bi] = exp(X,/2)euc'e '},

i=1
Varr(SO(m)), = {(a1, by, ar, by, d, ') € SOAm)Y T |
¢
H[ai7 bi] = exp(X,./2)e,c d(e ) d}.
i=1

i=1Forj=1,...,r—1, define Vj as in (&7)). Define

(6.12) V, = {(Al BL,... A", B’.C,) € SO(2n,)2+! | HAl B (eC’T)Q},

=1

where € = diag((—1)"" Iy, Izn, 1), det(e) = (—1)". Let C} = eCy. We see that

V., {(Ag,Bg,...,Af,Bf,o;) € SO0(2n,)% x O(2n,) |

12
[Ti45 Bl = (€)% det(C)) = (1) }

0,1
= VO(QnT),(—l)"T

2

where Vé’(l 1 is the twisted representation variety defined in (.11]) of Section .71
Vg(ln)’ 4, is nonempty if £ > 2. We have shown that V ’( )1 is disconnected with
two components VO’(ln;ril and VO( ), ﬂ if £ > 2 and n > 2 (Proposition [£14)). Then

V(SO (4m)) H V.

i=2 Forj=1,...,r—1, define Vj as in (53)). Define
(6.13)

V. = {(A,%,B,%, ... AL B'.D,,C,) € SO(2n,)*+? | H i — ¢C, D (ecT)—lpr},

=1

where € = diag((—1)"" Iy, Izn,—1), det(e) = (—1)". Let C}. = eC,.. We see that

1%

v, {(Ai,B}, .. AL BY D,,Cl) € SO(2n,)% ! x O(2n,) |

l
[114. Bl = C/D,C;7 Dy det(CY) = (~1)" }
=1

0,2
Voian,),(~1ynr

1

where Vé’fn) 4, is the twisted representation variety defined in (4.12)) of Section .7
Véfn)’ 4, is nonempty if £ > 4. We have shown that Vé’(zn)’ 4 s disconnected with
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two components V., o ’;ril and Vé’ﬁ;;il if ¢ > 4 and n > 2 (Proposition 14). Then

Vi (SO(4m)), = T vi-
j=1

Thus Vég’&(s O(4m)),, is disconnected with two connected components if £ > 2¢
and n, > 1 (because V; is). By the argument in Section [6.3]

i P
Vi (SO(4m))i! HV X VoS

- lip - lip —1 . r\'tr 1
Note that z(n ny)(n = n ) =i(m+ %)
Let U(n;) act on V; = Vrf:ﬁk by (@9) and (@I0) of Section 6] when ¢ = 1

and when ¢ = 2, respectively; let SO(2n,) act on V, Voe(gn )(—1yne DY &E13)
and [@I4) in Section A7 when ¢ = 1 and ¢ = 2, respectively. Then we have a
homeomorphism

Vg (SO(4m)),./SO(4m) x, = H V,/U(n;)) x V,/SO(2n,),
and a homotopy equivalence

) SO(4m
Vé’l\z/I(SO(ALm));Lh m)x, ~ H V'jhU(”J V. hSO(2n,)

To simplify the notation, we write

,u:(,ul,...,ugm):(2—161,...,2—]61,...,ri,...,ri)

ni ny Ny s
ni Uz
instead of
2k 2k,
V- dlag( ! nl,...,—JnT).
zs
Let
2k 2k 2k, _ 2k, _
j£1 — (2 “h r—1 r—1 ) )
IEY ey = {u— (m e i S ,ri) n; € Zso, kj € Z,
ni MNp—1

ky— ,
Py, (<1 g

Ny—1

k
n1+---+nr,1—|—1=n,—1>--->
ni

2k 2k 2k, 2ky_1 2k, 2k, | 2k,
Ua= (B, 2 e Doy Ohe 2k (PR e 7,
ni ni Npr—1 Np—1 Ny Uz Ny

ni Np—1 TLT—l
k k .
Ne>1 my 4 4n,=n, kj €L, — > > L >0, (=1)ktthetin _ il},
ni Ny
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A 2k 2k 2k, _1 2k, _1
1 :{ :(—ﬂ“qgfwu, . ,anﬁ‘lez ,
SO(4m) a n n Np_1 Nyl St K >0

Ny

ni MNp—1

k ky._
n.>1 n+--4+n.=n, k:jEZ,—1>~-~> 701>O}.
ni Nr—1

PROPOSITION 6.11. Suppose that ¢ > 2i, where ¢t = 1,2.
2k 2k 2k, 2k,
Q)Uu:( Lo Lo 1,k) c [*!

ny Ty [ T s0(m)” O
ni Np—1
2k 2k 2k, 1 2k, 1 2k, 2k, 2k, f1q
S(Ch 2 e ke P 2k ey g
K (nl ny Nyp_1 Np_1 TNy Ny SO(4m)
n1 Nyp_1 ny—1
then
0 ¥
Xyn(SO(4m)),, = Xy (SO(4m)) ;!
is nonempty and connected. We have a homeomorphism
£,
Xyri (SO(4m)),./SO(4m) HMW_,C
and a homotopy equivalence
Z i hSO(4m) hU(nj)
Xyu(50(4m H :
. 2k 2k 2k, _1 2k, _1 0
I :(—ﬁ”w——w”, - ﬁwuﬁ)eI ,
(i) 1f ni ni Ny—1 Nr—1 S~ sotm)
ny N1 "
then Xf(’fvl(SO(élm))u has two connected components (from both bundles
over ¥¢)
Xy (SO(@dm))t,  and  Xyp,(SO(dm)),*
We have homeomorphisms
0 1 r—1 v i (= 1)kt R 1+imi nelnetl)
XY’M(SO(ZLm))p, /SO(4m) = H MnJ —k; X M QnT)( 1)mr
j=1
and homotopy equivalences
; RSO (4m)
(XS (soEm)
TT ot WU (lik(—1)irt ey tim 2l 1SO(2n,)
~ ( nj,—k,) X (VO(ZnT),(—l)nr ) .
j=1

PROPOSITION 6.12. Suppose that £ > 2i, where i = 1,2. The connected com-
ponents of X1 (SO(4m))E! are

(X5, (SOWUm)), | 1 € TES 1} ULX S (SOUm)E | 1 € Dam }-
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Notice that7 the set {N =V _1dia‘g(ﬂ1‘]7 v 7N2mJ) | (Mla S 7N2m) € jgtOl(ﬁlm) v
ng(sz)} is a proper subset of {u € (Ei)T | I € A,7(I) = I} as mentioned in
Section

The following is an immediate consequence of Proposition

PROPOSITION 6.13. Suppose that € > 2i, where i = 1,2.

2 2% 2%y 2 .
(l) Ifﬂ—(nil,,nil,, nril,..., nTil’QkT) EISO(4’m.)’ or
ny P
2kq 2k1 2k, _1 2k,._1 2k, 2k, 2k, Ay
(P e o 2k 2k By g
H (nl nq Np_1 Np_1 Ty Ny n € SO(4m)
ni Np—1 ny—1
then
SO(4m ; S Ung) et
PR (XG(s0wm)),) = [T PP (7).
j=1
. %, 2% 2%k, 2k, .
I :(—— ,0,...,0)e[ th
(ii) If p " " F— Y 50 (4m) then
ny T "

PO (X{a(SOm))E )

r—1 onp(nptl)
_ U(nj) crlyi SO(2n..) LyiyE(—1)F1 Ry timd RS
= 12" W) <P Vo ey (o 1y :

Jj=1






CHAPTER 7

Yang-Mills Sp(n)-Connections

Sp(n) = {( p ‘AB ) cUEn) | 4Be GL(n,(C)}

The maximal torus of Sp(n) consists of diagonal matrices of the form

diag(uy, ..., Un,uyts ... unt),
where uq,...,u, € U(1). The Lie algebra of the maximal torus consists of diagonal
matrices of the form
—2my/—1diag(ty, ... tn, —t1,...,—tn), t; €R.
The fundamental Weyl chamber is
Co = {diag(t1,. .., tn, —t1,...,—tn) | t1 > ta > -+ >t, > 0}.

In this chapter, we assume
NiyeueyNp € Loy, N1+ -+ N0y =n.
7.1. Sp(n)-connections on orientable surfaces

Any p € Oy is of the form
p=diag(AIn,, . s NI,y —Ailng, ooy —AeIn,),
where A\; > --- > A, > 0. When A, >0, Sp(n)x, consists of matrices of the form
diag(My,..., M., My,...,M,),
where M; € U(n;). When A, =0, Sp(n)x, consists of matrices of the form

M,y 0
M'r'—l e
M, 0 —N,
0 M,
Mrfl
0 N, M,

where M; € U(n;) for j=1,...,r—1, and

Mr *Nr
S = < N. I, ) € Sp(n,) C U(2n,).

~ U(Th)X"-XU(TLr), Ar >0,
Sp(n)x, = { U(ni) x - x U(ny—1) x Sp(ny), Ar = 0.

79
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Suppose that (a1,b1,...,ae,be, X,) € Xf(’&(Sp(n)). Then

¢
exp(X,) = [ [lai, bil,
i=1
where ay,b1,...,a¢, by € Sp(n)x,. Then we have

~ | SU(n)x---xSUn,), Ar >0,
exp(Xyu) € (Sp(n)x,,)ss { ST x o x SU2) x Sp(n). A =0,

Thus

k, k ky
X,u = —2mv- dlag( n1,'--;*Inr,filjnm'-'v**]'nr)a
Ny ny Ny
kq kr k ky
o= diag(—[nl,...,—Inr,——llnl,..., —Im>,
ny Ny ny Ny
where ) L
kj€Z, —>...>-">0.
ny Ny

This agrees with Section 3441
Recall for each u, the representation variety is

Van(Sp(n)u = {(an by, arbe) € x,) er[az, ] = exp(X,)}.
Leti=1,...,£. When k, > 0, write
ai:diag(Ag,...,Aj,Ag,...,Ag), b,»:diag(B{,...,Bg,é;',...,Bg;),

where A%, BS € U(n;). When k, = 0, write

A 0 B! 0
A; ~E; B! —F
a; = Al , b= Bi s
0 E Ai 0 FE! Bi

where
Ai:diag(Ail,...,Ai_l), Bi:diag(Bf,...,Bi_l),
ALBieU(ny), j=1,....,r—1,

i szﬂ 7EZ i __ B7Z“ 7F7%
P = < B Al ) Q' = < F B ) € Sp(n,) C U(2n,).
For j=1,...,r — 1, define

:{(A},B;,.. AL B e U(n 2Z\HAl Bi]= 2TV Inj}
(7.1)
> Xym(U(ny))

Tlr]‘ Tlr]‘

When k,. > 0, define V,. by (ZI). When k,. = 0, define

vo={(rhal ... Pt < Spln ) | ]I Q] = I, } = X5 (Sp(n,)).

i=1
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Then Vi, ..., V, are connected, and fol\(/)[(Sp(n))u = H;:l V;j. We have homeomor-
phisms

L (Vi/U(ny)) k. >0
0 o o e d T (ViU 0)) 7
WS S, {H;_iwj/mnmxvr/spm b —0.
and homotopy equivalences
hSp(n TV hUmG) k. >0
W sp" "~ T T e
N A

Recall that Sp(n) is simply connected, so any principal Sp(n)-bundle over an
orientable or nonorientable surface is trivial. For i = 0,1, 2, let

M(2, Sp(n)) = X4, (Sp(n))/Sp(n)

be the moduli space of gauge equivalence classes of flat Sp(n)-connections on %.
To simplify the notation, we write

u:(m,...,un)=(ﬁ Rk ’f_)

nla 77’117 77’11_7«’ ’Tl.,-
ni Ny
instead of
. k1 k kq k
dlag(—fm,...,—TInT,——Inl,...,——TInT).
ny (s ny Ny
Let
k1 k1 k. k,
ISP(”) - {IU’:(n_l""an_lv---7n_ra---;n_r>‘njEZ>0,
ni 7S
k k
ny Ny

From the discussion above, we conclude:

PROPOSITION 7.1. Suppose that £ > 1. Let

k1 kq k., k.,
7.2 =—,. ..., —, ., —, ., — I .
( ) M (’I’Ll’ ’ nla ) nra ) nr) S Sp(n)
Then
T M(SL, Praks) k> 0
XE’O So(n Sn(n) = Hzil 0> ’ T )
Y5/ o) {HZ_EM(%P”J"’“J‘)XM(Eé,Sp(nr)), = 0.

In particular, Xf(’&(Sp(n))# is nonempty and connected. We have homotopy equiv-
alences

hSp(n)
Xy (Sp(n)) s
r hU(nj)
Hi:l (X\Z{’l(\)/I(U(nJ))’LJ7)’LJ) ) kr > 0,
~ - nj nj hU(n))
I (XD, w ) X (Spm)"S#n), = 0.

pETERR
g g
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PROPOSITION 7.2. Suppose that £ > 1. The connected components of the rep-
: ) £,0
resentation variety Xy, (Sp(n)) are

‘,
(X (Sp(n)) e | 1 € Topam }-
The following is an immediate consequence of Proposition [l

THEOREM 7.3. Suppose that £ > 1, and let p be as in (2). Then
Sp(n l,
PP (XG0 (Spn)),)

[T PP (X0 s x ) k>0,

EYRREE
n; n
— J

o P (X)) e ) - PP (XER(SpO)) s e = 0.

AEEEEE R
n n

7.2. Equivariant Poincaré series
Recall from Chapter B.Z4t
A={a;=6;—0;11]i=1,....,n—1}U{a,, = 26,}
AV ={a) =e -—ei+1|i=1 an—1 Uu{a) =€y}

@Ze“ A= @Z —ei1) ©Zen, m(Sp(n)) =0

We will apply Theorem 4] to the case Gg = Sp(n).
W, =01+ -+ 0;
Case 1. a,, € I:
I ={0n,, Qnitngs- s Qnyteotn,_1s On}

L' =GL(n1,C) x -+ x GL(ny,C), ni+---4n,=n

1
dimc 371 — dimg 3spn,c) =7, dimc Ul = Z nin; + nin + )

2
1<i<j<r
1o : - n+1
pI = 5 Z(n - 2an + nl) (Z 0n1+"'+nil+j) + (91 +e A+ an)

=1 Jj=1 Jj=1

i i . r+1

<pI7ar\{1+-~+ni> = % for i = 1,...,r—1, <p1,a7\;> = %

Case 2. ay, ¢ I:

I= {an17an1+n27 R an1+-“+nr—1}

= GL(ny,C) x --- x GL(n,—1,C) x Sp(n,,,C), n1+---+n.=n

dim(cz,LI — dimc 3Sp(n Cc) = r— 1

dim¢ Ul = Z nin; + n(n+1) = np(n, +1)

2
1<i<j<r
n;
o =33 (n- 2znj 10 ) (D Ooviiniiis)
i=1 j=1
n+1 n—n,

_|_

5 (014 4 Ony g, ) + T(Q"ﬁ'"*""*l“ ot bn)
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ng + Nit1

<p1,ax1+--~+n7,> = 2

r— 1
fori=1,...,7—2, L

<P17 ar\i1+---+nr_1> = 9 +n,

Then we have the closed formula for the equivariant poinaré series for the
moduli space of flat Sp(n)-connections:

THEOREM 7.4.

P (X0 (Sp(n))) =

T Hﬂ;1(1+t2jfl)2l
—1) J
S Q " ey

HE-DE Y, ningtn(nt1))

[H:;ll(l _ t2(ni+ni+1))i| (1 _ tZ("T'H))

12 St (nitnien)+2(ne+1)

25—1 N 45—1\2¢
- 11_[ (L2 .Hj:1(1+tj )
t2m 751(1 — 127)2 H?Zi(l — 127

t(é—l)(2 Yicy minjtn(ntl)—ny(ny+1))

L2200~ mne) (1 rypatre-reanrsn)

2 ST (nitnign)+2e(r) (ne—14+2n,+1)

where
0 r=1
«(r) = { 1 r>1
EXAMPLE 7.5.
So(1 (1+t)2£t25+2 (1—!—253)25
PO (X0 (Sp(1))) = —

-0  1-2)(1-6)
Note that Sp(1) = SU(2) = Spin(3), so
PO (X0 (Sp(1) = PP (XE0(SU(2) = P (XSS,

flat ﬂat(SpZn(?))))
as expected, where PtSU(z)( éa?t(SU (2))) is calculated in Example 7 and that

prnt)(x X402 (Spin(3))) is calculated in Example [5.71

EXAMPLE 7.6.

P (XS (Sp(2))

_ (14 1)2°(1 + ¢3)45 (1+¢)4e8t
T =221 =) (1 —5) (1 —#2)2(1 — t4)2
(1 —|—t3)2é(1 +t7)2é (1 —l—t)%(l +t3)26t6€+2

(T2~ (1~ )1~ (1~ PR~ )1~ )
Note that Sp(2) = Spin(5), so

PO (X (Sp(2)) = P70 (X (Spin(3))

as expected, where PSpm(5) (XZ 0 +(Spin(5))) is calculated in Example 5.8
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EXAMPLE 7.7.

PP (X (Sp(3)))

(1—|—t)2z(1+t3)23(1—|—t5)23t12£_4 (1—!—75)4[(1—4—253)2[1?16[_4
TR (1 O) (L) (12— (1 P)
(1+t)4£(1+t3)2£t16£76 (1+t)6ft18Z76
(1—#2)3(1 — t4)2(1 —t6) (1 —#2)3(1 — t%)3

(1+t3)2£(1+t7)26(1+t11)2l
1—2) 1 —tH(1—t5) (1 — £8)(1 — £10)(1 — £12)

(1+t)2£(1+t3)2£(1+t7)2£t10l+2
T —2)2(1 — (1 — 5)(1 — 5)(1 — £12)
(1—|—t)2z(1+t3)4zt145_4 (1—0—75)45(1—!—1?3)222?162_4
(1= 2)3(1—t9)2(1—£10) ' (1—2)3(1 — tH)2(1 — 3)

+

7.3. Sp(n)-connections on nonorientable surfaces
We have Cp = Co. Any p € Cy is of the form
pw=diag(MIn,, .. s NeIn,, =M1l oy =M In,),
where A\ > --- > A\, > 0. We have

{U(TM)X"-XU(’I’LT), )\7«>O,
U(nl) X e X U(’I’Lr_l) X Sp(nr), )\,« =0.

1

SP(“)X“

Suppose that (a1,b1,...,ae,be,ec’, X, /2) € X@&(Sp(n)), where

6:(5 dg)e%m)

is defined as in Example E.12} Notice that here €2 # 1. Then

¢
exp(X,/2)ec’ec’ = H[ai, by

i=1

where a;, b;, ¢ € Sp(n)x,. Note that ec'ec’ = —c'¢’ where ¢ is the complex
conjugate of ¢/, so

~ SU(nqy) x -+ x SU(n,) Ar >0
PN o) ~ 9 )
eXp(Xu/2)( CC) S (Sp(n)Xu)éS - { S’U(nl) X o0 X SU(nril) X Sp(nr)’ )\T = 0

In order that this is nonempty, we need 1 = det(—e™v 1% I,), ie.,

2k
N="2 1 k€T, j=1,....m
n;
Similarly, suppose that (a1, b1,...,a¢,be, d,ec’, X,,/2) € ngf/[(Sp(n)). Then

14

exp(X,./2)(ec')d(ec') " d = [ Jlai, bi],
i=1
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or equivalently,

exp(X,,/2)(—c'dc” ' d) € (Sp(n)x, )ss =
{ SU(ny) x -+- x SU(n,), Ar >0,
SU(n1) x --- x SU(np—1) x Sp(n,), A\ =0.

Again, we need
2k; )
/\j:——l’ k‘jEZ, j=1...r
nj
We conclude that for nonorientable surfaces, either

o2 R (e
pfdlag<( - 1)In1,...,(nr 1)InT, (711 1)In1,..., (nr
where N
1 T 1
k; € Z, T>~~>E>§a
or
B 1 2kr1
p=ding (= Dl (7 = ), O
2k 2k, _1
~( = D e 1)Im_1,01nr),
where " "
1 o1 1
k; € Z, n_1>m>nr,1>§'

Recall the for each p, the e-reduced representation varieties are

Varr(Sp(m) = {(an,ba,.. arbe. ) € Sp(m)¥ |
¢
H[au b;] = exp(X,,/2)ec’ec’},
i=1
Vé’l\Q/I(Sp(n))# - {(al’ bl’ <oy Gy b@v da Cl) € Sp(n)géj_Z |
¢

[ Tla:, bi] = exp(X,./2)ec’d(ec’) " d}.

i=1
Let i =1,---,¢. When \. > 0, write

ai:diag(A’i,...,Ai,fl’i,...,flfn), bi:diag(Bi,...,Bf,,Bf,..

c’:diag(C’l,...,CT,C_’l,...,C_'T), d:diag(Dl,...,Dr,Dl
where A%, BY, Cj, Bj € U(n;). When A, = 0, write

goe e

Al 0 B 0
. A =B, Bi  -F
a; = Al ) ) i = Al .
0 E} A}; 0 F,E Bf;
C 0_ D 0_
/o T 4l _ Dr _GT
€= c | 4= D

85
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where
A’ =diag (A},...,AL_,), B'=diag(B},...,B._4),
Czdiag(C’l,...,C}_l), D:diag(Dl,...,Dr_l),
A;—,B;’-,Cj,D'EU( j)a j=1...,r—1,

P(g a )@= 5 B ) esum)cuen)
i Cr I:I i Dr -
5= ( H, G, ) R = ( G,
0 —I,. .
Lete(I 07>€Sp(nr).For]1,...,r1,define
(7.3) '

0 s
i i —271'\/—_17'7_ e
= {(A;,B;., - ALBSLCy) € U(ng)* | T1AY By = e / (Cjcj)}

= S,

Q3%

" ) € Sp(n,) C U(2n,).

]

T

~ 1741
- nj,kj7

where ‘7@,1 k, 18 the twisted representation variety defined in [#20) of Section

Vf lk is nonempty if £ > 1. We have shown that VZ 1 ; is connected if ¢ > 2
(Proposnlonm) When A, > 0, define V. by (T3). When Ar = 0, define

v = {rhaeh. Pl S)esp(nﬂ”w]'[ = (e5,)%}
i=1

(S!=€S;) )
=" {(PLQL....PLQLS)) € Sp(n 2“1|H (1)}
>~ X (Sp(no)).

Then Vi (Sp(n)), = [T)—, V-
Similarly, for 7 =1,...,r — 1, define

V= {43 8L 4 8D, C) € (U(n)4
k.
[]i4i, Bi] = exp > 15 Inj@ijC*lej} N e

n; ,k}j )

where fokj is the twisted representation variety defined in (8] of Section
‘75121@] is nonempty if £ > 1. We have shown that f/?ffkj is connected if ¢ > 4
(Proposition AI3]). When A, > 0, define V;. by (). When A, = 0, define

Vo= {(PLQ}L. ... PLQL R S,) € Spln, 2f+2|H ,Qi] = €S, Ry (e5,)

(S!=€S;)
=7 ((PLQL .. PLQL RS} € Sl ”+2|H Ry (50!

= Xﬁjt(s (ny)).
Then Vyy (Sp(n)), = [T;_, V.
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Let U(n;) act on V; = Vf}’kj by (£9) and (@I0) in Section A6l when ¢ = 1 and
when ¢ = 2, respectively. Then we have homeomorphisms

2 ~ H;:l(‘/j/U(nJ))v Ar >0,
VYM(Sp(n))M/Sp(n)Xu - {H;_i(‘/j/U(nj)) % V;"/Sp(nr), A =0,

and homotopy equivalences

i semx, [T V"0, A >0,
VYM(Sp(n))M ~ {Hiﬂ_} ijhU(ny‘) « VThSp(nr)7 Ar = 0.

To simplify the notation, we write

2k 2k 2k, 2k,
(7.5) uz(m,...,un)z(—1—1,...,—1—1,..., 1., —1)
n ni ny- Ny
instead of
. 2k 2k, 2k, 2k,
d (——1In,..., O (g, (2 In),
(g By (B,
and write
(7.6)
2k 2k 2k, _ 2k, _
u:(ul,...,un):(—1—1,...,—1—1,..., Lo, 1—1,0,...,0)
n1 ny N1 Nr—1 =
n1 Np—1 '
instead of
21 2kr71
d (7*1[n7 ) 7]-In 1aOIn7
s (2 = ), 522 0, o,
2k‘1 2]@,”,1
(g, - 1 Inf,OIn)
B 1)~ ),
Let
. 2k 2k 2k, 2k,
1 n = { :(__ ) y — — 4y ) _17 ) _1) ] Z )
Sp( ) /’L nl nl nr nr | n] 6 >0
ni Ny
k k, 1
ni+ -4 n, =n, kjeZ,—1>~~~>—>f}
n Ny 2
2k 2k 2k, _ 2k, _
U {u:(—1—1,...,—1—1,...,71—1,...,71—1,0,...,0>|
nq ny Npr—1 Np—1 ——
ni "

Nr—1

k ko 1
n; € Zsg, Ny +---+n, =n, k‘jEZ7—1>-~-> r1>—}
ny Npr_—1 2

PROPOSITION 7.8. Suppose that { > 2i, where i = 1,2, and let u € fsp(n),
(1) If p is of the form (TA), then

X (Sp(n))/Sp(n) = T M .
j=1
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We have a homotopy equivalence
0, hSp(n) . ~¢i \hU(n;)
Xoaspm)e ~ [T (V)

(i) If w is of the form (L), then

r—1
yx3 yx3
Xyu(Sp(n)),/Sp(n) = [T M2 x M(SE, Sp(n,)).
j=1
We have a homotopy equivalence
r—1
2, hSp(n) 04 \hU(nj) X .
Xyn(Spm) ~ 1TV X Xk (Sp(ny))h v,
j=1
In particular, X@;A(Sp(n))u is nonempty and connected.
PROPOSITION 7.9. Suppose that £ > 2i, where i = 1,2. The connected compo-
nents of Xt (Sp(n)) are
i -
{Xym(Sp(n))u | 1 € ISp(n)}'
Notice that7 the set {:u = dia’g(:ula ceey My THL - _ﬂn)|(/‘1a ce 7,“”) € fSp(n)}
is a proper subset of {p € (EL)7|I C A,7(I) = I} as mentioned in Section 5l
The following is an immediate consequence of Proposition [.8]
THEOREM 7.10. Suppose that £ > 2i, where i = 1,2, and let p € fgp(n).
(1) If u is of the form (A, then

PSp(n) (X“ (Sp(n ) HPU(nJ) nj’ ,)
(ii) If p is of the form (L6)), then

o) (xthsmon) =TT 050 17 (siisvon)



APPENDIX A

Remarks on Laumon-Rapoport Formula

In this appendix, we explain how to use the argument in [LR] to obtain The-
orem [£4] which is a slightly modified version of [LR] Theorem 3.4]. We work over
C.

A.1. Notation

The following is a correspondence between the notation in [FM] (which we
followed closely in Chapter B)) and that in [LR].

[LR] [FM]
minimal parabolic P
subgroup (Borel) 0
Cartan of G My H
parabolic subgroup P =MpNp P=LU
Levi subgroup Mp L
unipotent radical Np U
center of the
Levi subgroup Zp Z(L)
conne(:tft(;\(/i[;enter Ap Z(L),
Ap C Mpay L/IL, L] = Z(L)o/Z(L)o N [L, L]
X.(Ap) m1(Z(L)o)
X, (A)) 1 (H)/AL = m(LJIL, L)
X, (A%) ™1 (H)
ap = ap, br
ap = R® X, (Ap)
:R®X*(A'P) (30)r
aG: []}sg;(i*(%s)) (Gc)r = hr/V*
af =af Cao VF=A®RCbg
root system Oy =Pp, C ag R C by
set of positive roots |  ®J = @}, C Do RTCR
set of simple roots Ao = Ap, C OF ACRT
coroot lattice of G Doca, Lo’ A=, cnZa’ Cmi(H)

In this appendix, we will closely follow the notation in [LR]. We will not repeat

most of the definitions in [LR].
Following [LRI, if P C @ C R are three parabolic subgroups of G, there are

canonical splittings ap = ag @ ag ®ag and af = af" @ ag* @ ag. Given H € ap,

89
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we denote by [H]?, [H]|§, and [H]g the canonical projections of H onto ag, ag,

and ap, respectively. The components of 8 € a} in ag*, ag*, and ay are 3] q,
2

B|ag, and B|q,, respectively. Given a € Ap = AG C a$*, let & denote the unique

element in Ay C af* such that G|,g = a. Then & € af and ¥ = [@"]p € af.

The subset IT of the set of simple roots in [FM] corresponds to Ap = A% in the
following way:

r = {d|aeAP}cAocag;

Ap = {Blap|BeI"} Caf"

Aflio = {ﬁ|ugo |B € AO\IP} - Clg;
AR = {Bl,g|BeI”\I%} Caf

We continue the table of correspondence between notations in [LR] and [FMI:

LM [EM]
X, (Ap) m(H)/A,
AIC; :X*(AIP)/ @aGAg Za\/ W](H)/(AL @@aelp Zav)
Topological type G B
of G-bundle APo m(H)/A =m(G)
Topological type P _
of Mp-bundle APO 1 (H)/AL =T1 (L)

Given a parabolic subgroup P of G, the topological type of an Mp-bundle is
given by vp € Ago = 71(Mp). The slope of an Mp-bundle is given by vp € X, (A%).
The commutative diagram in Section can be rewritten as follows:

0 0

l l

~ Jes ~ Paeag®
0 —— Ap/Ap —_— A/A @QGAIGDQ/Z
e b \
P [la G Paeag@s
ap He,ag BacagQ/Z

JPP lpc
X.(Ap) —19 X, (ay)

| l

0 0

Here Ap = ENINS ZaY C X.(Af,), and Ap is the saturation of Ap in X (Ap,)-
Let vp and v, denote the projections pp(vp) and pg(va), respectively.

Recall that {w, | o € Ag} is a basis of the real vector space a%* which is
dual to the basis {aV | @ € Ag} of aIGDO. Given a € Ay, we extend wy, : aIGDO — R
to w, Ay = ago ® ag — R by zero on ag. Then w, takes integral values on

Daen,Za” C ago C dag, and takes rational values on X.(A, ) C ag. So it induces
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a map

wa:AIngzX*( 330)/ @ Za¥ — Q/Z

ozEAgO

where ) is any parabolic subgroup of G. More explicitly, given vg € Agﬂ, let
X € X.(A%p,) be a representative of vg. Then w,(vq) = wa(X) + Z.

A.2. Inversion formulas

Let A be a fixed topological abelian group. In [LR], Laumon and Rapoport

introduced the notion of f—converging functions and I'-converging functions from
B to A, where

P={(Pvp)| PeP,vp e X.(Ap)}.
We will introduce similar notion for functions from ¥ to A, where

T={(P,vr) | P Pvp € AR},

DEFINITION A.1. Let T = {(P,vp) | P € P,vp € Ap; }, and let A be a fixed

topological abelian group. A function a : T — A is I'~converging if for each standard
parabolic subgroup P C @ of G and each vg € Ago, the finite sum

> TR(p? T)a(P,vp)

IJPGAEO

vrlo=vrq

admits a limit as 7 € a%" goes to infinity. If this is the case, we shall denote this
limit by
> FB(pl®)aPrp) .
VPEAIIZO
[vrle=vaq
A function b : T — A is I'-converging if for each standard parabolic subgroup
P C Q@ of G and each vg € I‘go, the finite sum

> TR([Wp]?, T)b(P, vp)

vp EAgO

vrlo=vq
admits a limit as T € ag+ goes to infinity. If this is the case, we shall denote this
limit by
> mEWEN(Pvp) .
VPEAII;O

[vrlo=vq

The following inversion formula is an analogue of [LR) Theorem 2.1].

THEOREM A.2. For each ffconverging function a : T — A, there exists a
unique I'—converging function b : T — A such that, for each (Q,vg) € T, we have

a@Qug)= > Y. R(p)b(Pvp) .

PeP P
PCQ VPGAPO

vrlo=vrq
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The function b is given by the following formula : for each (Q,vg) € T, we
have
bQ.rg) = Y (~1)™CH 3T FR(p)a(Povp) -
PeP vpEAR,

PCQ
vrlo=vrq

Theorem is an easy consequence of the following two lemmas:

LEMMA A.3 (Langlands). For any standard parabolic subgroups P C R of G
and any H € aft, we have

(A1) ST (-8 (H])RE ([H]g) = oF
PCQCR

and

(A:2) > ()RR ()5 (H]o) = oF.
PCQCR

LEMMA A4 (Arthur). If T € aft C *ak, the function H — TR(H,T) (resp.
H v TE(H,T)) is the characteristic function of the bounded subset

{H € all | (a,H) > 0,(wa, H) < (wa,T),Ya € AR} C ait
(resp.
{Hcall | (@B H) >0, (o, H) < (a,T),Va € AR} ¢ Tall)
of alk.
PROOF OF THEOREM [A2]

Yoo > W@ )

P Q
QCR UQEAPO

[velr=vr
im(a% A~
= > Y el Y (IR T mR(whl (P ve)
8?}3 uQeA,QDO f;gg vpEAL,
vQlr=rr [vrlo=vq

= Y Y (ImCRRE () (v B)a(P, vp)
PCQCR VP€APO

[vPlr=VR
For fixed vp, we have

3 (1) EmCRRL (W) () B) =

PCQCR
S ()RR ()9S (V) Rlo) = oF
PCQCR
where the last equality follows from (A2) in Lemma [AZ3] So
Z Z Tg([ } b(Q,vq) = Z Z 5I}§a(P7UP):a(R’VR)

8?}3 VQEA?_—,O II;EP VPEA

vQlr=vr [vplr= VR
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Now we consider a special case of Theorem [A.2l For any P € P, fix np € Z>o
and €&’ € al’* C aj such that for any standard parabolic subgroups P C Q of G,

np > ng, (~SOQ—6(1JD)|Q(};:07 (eg,av)€Z>o VaEA?,,

where €2 = (e§ — 65)|ag. (Here we use €% instead of 6%, which is used in [LR], to

avoid confusion with the % in Lemma [A:3])
We have the following analogue of [LR), Lemma 2.3]:

LEMMA A.5. For each (Q,vg) € T and each standard parabolic subgroup P C Q
of G, we have

i 1 GQ;(XV wa (Vv
> AR — (] 7Q)t2(@§< Bia¥) (atva))
b 1-— t<€P7aV>
VPGAPO QGA?_-,
vple=vq

where, for each p € R/Z, (i) € R is the unique representative of the class p such
that 0 < (u) < 1.

Notice that < -,- > denotes the pairing between dual spaces, while < - >
denotes the unique representative in (0, 1] of the class - € R/Z.

ProoF. Given
vg € AQ = X..( ’PO)/ P za",
aeAgo
we choose a representative Xo € X, (A% ) C ag of vg. Let
S = {X0+ 3 maa¥ ’ma e Z} C X (Alp).
aeAf
Then the natural projection
X.(Ap,) = Ap = X.(AR) / P zo”

aEAgo

restricts to a bijection

j:8 = S={vpe Al | vrlo =ro)

Let
O = > FR(pOELHY,
VPEAgo
[vrlo=vq
Then
F(t) = Z ;_g([VHQ)t(eiQm[V%]Q) — Z (B vp?)
vp€eS vpESL
where

Sy ={vp eS| (@, [Vp]?) >0 Va e AL}
Let S, = j'(S;). Then

S, = {Xo+ Z maa” ’ma € Z,w4(Xo) +ma > 0Va € AL}
aGAIQ_-,
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So
) = 3 RN = 37 HRNR = § T R =3 D)
vPESY xed, xe8y aen?
= I 3> He.a¥) (wa (Xo)+ma)
aeA® me€Z
AP o (KXo} trma>0

Note that (wa, vg) = wa(vg) = wa(Xo) + Z € Q/Z for all & € AY. As in the
proof of [LR), Lemma 2.3], for p € Z~( and = € R, we have

Z gp(a+m) _ oot
meZ - 1-¢ .
z+m>0

Thus,
HeR V) (wa (vqQ))
fo=1 —=——
aEA}QD 1 — t{ep,aY)
O

Set m(P,vh) = np + (¢§,v}). We have now concluded with the following
inversion formula, which is a slightly modified version of [LR] Theorem 2.4].

THEOREM A.6. Given ag : P — A, there exists a unique function by : ¥ — A
which satisfies the relation

w@ =3 S TR(Wbo(Pvp)m PR Q)
e e,
[vrlo=vq

for each (Q,vg) € . This function is given by

bO(vaQ) =
Z (_1)dim(ag)a0(P)tnpan( H <].Q v>).tzaeAg(Eg,aVﬂwa(VQ» €A,
gég aEAg L=t

for each (Q,vq) € .

A.3. Inversion of the Atiyah-Bott recursion relation

Let C(G,vg) be the space of complex structures on a C*° principal G-bundle
over a Riemann surface of genus g > 2 with topological type vg € AIGDD >~ 71 (Q). Let
C**(G,vg) C C(G,vg) be the semi-stable stratum. Let P;(G,vg) and P (G, vq)
be the G-equivariant Poincaré series of C(G,vg) and C*¥(G, vg), respectively. Let
C(G,P,vp) C C(G,vg) be the stratum which corresponds to (P,vp) € T, where
[vplc = vg. Then the real codimension m(P,vp) of the stratum C(G, P,vp) is
equal to

2 dim(Np)(g — 1) + 4G, v,
where Np is the unipotent radical of P and

1
G _ ~ G* *
ppfz E acap Cap.
a€<1>g+

Clearly m(G,vj) = 0.
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With the above notation, the Atiyah-Bott recursion relation can be stated as
follows:

THEOREM A.7 (Atiyah-Bott). The stratification of M(G,vg) by the M(G, P,vp)
is perfect modulo torsion, so that for the Poincaré series, we have

(A.3) P(Gvg)=Y_ > 18(wpl®m PR P (Mp,vp).
PeP VPEA%)
[vple=ra

Note that Theorem and [LRJ), Theorem 3.2] are slightly different when G
is not simply connected.

THEOREM A.8 ([LR) Theorem 3.3] ). For any vg € AG, we have

im(a§
PG, ve) = (w)dw%’)d (0 (1 + 124:(G)=1y29
PG =\ T 2 (1 — 24i(G)=2)(1 — £2i(G)) °

In particular, P,(G,vg) does not depend on vg.

Note that in both Theorem [A7] and Theorem [A.§ we may replace G by the
Levi component Mp of a parabolic subgroup P.
To invert the recursion relation (A3]), we apply Theorem [AL6] with

ao(P) = Pi(Mp,vp), bo(P,vp) = P¥*(Mp,vp), np = 2dim(Np)(g—1), €& = 40,
We obtain

THEOREM A.9. For any vg € Ago, we have

B (Gve) =
; P
> (*1)dim(ag)((1 + t)2g)dim(ap> (d’nﬁ“ (1 4 £24:(Mp)=1y29 )
Pep 1—¢2 P (1— t2d7:(Mp)—2)(1 _ tzdi(Mp))
2N (] 1 t4<1pc_v> )44 Fecas () @ae) o
— B
aceAg

This is exactly Theorem 4]
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