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1. Introduction

Let Ω be a bounded domain in R3 and C∞(Ω̄) be the set of all smooth functions defined in Ω̄ .
Let the body B with reference configuration Ω be occupied by a transversely isotropic medium. More
precisely, let the axis of rotational symmetry coincide with the x3 axis, then the non-zero components
of the elasticity tensor C(x) = Cijk�(x) are

C1111, C2222, C3333, C1122, C1133, C2233, C2323, C1313, C1212

and they satisfy

C1111 = C2222, C1133 = C2233, C2323 = C1313, C1212 = (C1111 − C1122)/2.
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For notational simplicity, we set

C1111 = A, C1122 = M, C1133 = F , C3333 = C, C2323 = L. (1.1)

It should be noticed that the elasticity tensor C(x) satisfies the full symmetry properties:

Cijkl = Ckli j = C jikl for all x ∈ Ω̄. (1.2)

We assume that the elasticity tensor satisfies the strong convexity condition, i.e. there exists δ > 0
such that for any real symmetric matrix E

C(x)E · E � δ|E|2 for all x ∈ Ω̄. (1.3)

In other words, we assume that

C > δ̃, L > δ̃, (1/2)(A + M) > δ̃, (1/2)(A − M) > δ̃, (A + M)C − 2F 2 > δ̃ (1.4)

in x ∈ Ω̄ for some δ̃ > 0. Now let u(x, t) be the displacement vector, then the dynamic elastic equation
is given by

ρ∂2
t u − Lu = 0 in Ω × (−T , T ) (1.5)

with

(Lu)i =
3∑

j=1

∂ jσi j in Ω × (−T , T ), 1 � i � 3, (1.6)

where ∂ j = ∂x j and the stress–strain relation is

⎛
⎜⎜⎜⎜⎜⎝

σ11
σ22
σ33
σ23
σ31
σ12

⎞
⎟⎟⎟⎟⎟⎠=

⎛
⎜⎜⎜⎜⎜⎝

A M F 0 0 0
M A F 0 0 0
F F C 0 0 0
0 0 0 L 0 0
0 0 0 0 L 0
0 0 0 0 0 (A − M)/2

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

ε11
ε22
ε33

2ε23
2ε31
2ε12

⎞
⎟⎟⎟⎟⎟⎠ ,

where σi j and εi j denote the stress and strain tensors.
It should be noted that the strong convexity condition implies the strong ellipticity condition for

the elasticity tensor, which ensures that the system of Eqs. (1.6) is strongly elliptic.
In this paper, we will study the weak unique continuation property of (1.5) by the method of the

localized Fourier–Gauss transformation. The method was introduced by Lerner [8] for proving some
uniqueness result for an ill-posed problem and it was also used by Robbiano [13] to prove some kind
of unique continuation property. Henceforth we abbreviate this property by UCP. In this paper using
the Calderón uniqueness theorem, we generalize the result in [13] to (1.5) with smooth coefficients
satisfying some conditions. In addition, we apply the UCP to extend the Dirichlet to Neumann map
given for large enough time interval to the infinite time interval. This is a generalization of the results
[2,6] given for scalar equations and the result [1] given for the isotropic elastic system.

For the related results, the study of line unique continuation property was initiated by Cheng, Ya-
mamoto and Zhou [3] for the wave equation and they showed it along each line in the hyperplane.
They combined the localized Fourier–Gauss transformation abbreviated by LFGT to transform (1.5) to
the Laplace equation with a small inhomogeneous term and the conditional stability estimate for the
unique continuation of the solution of the Laplace equation along lines. Cheng, Lin and Nakamura [4]
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Fig. 1. Equation of the ball in the figure: |x′|2 + (x3 + r)2 = r2 and γ = 2/r.

extended the line unique continuation property to general hyperbolic systems with analytic coeffi-
cients.

For x0 ∈ R3, r > 0, let B(x0, r) := {x ∈ R3; |x − x0| < r}. Let y ∈ ∂ B(x0, r) := {x ∈ R3; |x − x0| = r}
and ny be its unit outer normal with respect to B(x0, r). Also, let A y,n0 be an affine transforma-
tion which transforms y to the origin and ny to n0 := (0,0,1)t . Then, we define U (γ , r1, r2) = {x =
(x′, x3) ∈ R3; |x′| < r2, 0 � ξ := x3 + γ |x′|2 < r1} and V (γ , r1, r2) = A−1

y,n0
U (γ , r1, r2). Fig. 1 is about

U (2/r, r, r) with ξ := x3 + 2|x′|2/r = 0, r.
From now on, we assume that the elasticity tensor C(x) satisfies the additional condition

F + L = 0

or

(A − L)(C − L) = (F + L)2, A > C .

Then, the main results of our paper are the following.

Theorem 1.1. Assume B(x0,3r) ⊂ Ω . Let y be the point at the boundary of B(x0, r) with its outer normal ny
not perpendicular to n0 . Suppose u ∈ C∞(B(x0,3r) × (−T , T )) satisfying (1.5) in B(x0,3r) × (−T , T ) and

u(x, t) = 0
(
(x, t) ∈ B(x0, r) × (−T , T )

)
.

Then there exist a positive constant r0 < r depending on ρ(x) and L in B(x0,3r) and a positive constant k < 1
such that

u(x, t) = 0 for (x, t) ∈ V (2/r0,kr0,kr0) × (−T1, T1), (1.7)

where T1 = T − kr0 . Moreover, the constants r0 and k can be taken uniformly in Ω .

Corollary 1.2 (UCP). Let B(x0, r) ⊂ Ω and given T2 > 0. There exists a positive constant T3 depending on L
in Ω such that if T > T3 and u ∈ C∞((−T , T ) × Ω̄) satisfies (1.5) in (−T , T ) × Ω and

u(x, t) = 0
(
(x, t) ∈ B(x0, r) × (−T , T )

)
,

then

u(x, t) = 0 for (x, t) ∈ Ω × (−T2, T2). (1.8)
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As an immediate byproduct of Corollary 1.2, we have the following corollary.

Corollary 1.3. We can take τ0 > 0 (large enough) such that the following property is satisfied for the solutions
of (1.5). For any τ > τ0 , let u ∈ C∞(Ω̄ × [0,2τ ]) be a solution in Ω × [0,2τ ] of (1.5) such that u = 0 and
∇xu = 0 at ∂Ω × [0,2τ ]. Then

u(x, t) = 0 (x ∈ Ω),

if t is near τ .

The proof of Theorem 1.1 relies on the Carleman estimate of Calderón’s uniqueness theorem which
will be described in the next section. The rest of this paper is organized as follows. We review
the Carleman estimate of Calderón’s uniqueness theorem in Section 2. In Section 3, we diagonalize
the associated elliptic system and check the conditions for applying Calderón’s uniqueness theorem.
The proofs of Theorem 1.1 and Corollary 1.2 are given in Section 4. In Section 5, we apply these results
to extend the dynamical Dirichlet–Neumann map.

2. Carleman estimate of Calderón’s uniqueness theorem for systems

To begin, we first review Carleman estimate of Calderón’s uniqueness theorem from Zuily’s book
[15, Chapter 2]. The purpose for doing this is to make this paper as self-contained as possible. Let V
be an open neighborhood of x0 ∈ Rn (n ∈ N). In this section we do not specify the dimension n ∈ N.
In the neighborhood of V we define a C∞ hypersurface

S = {
x ∈ V : ψ(x) = ψ(x0)

}
. (2.1)

Let

L(x, D) = P (x, D) + Q (x, D) (2.2)

be a differential operator, where

P (x, D) =
∑

|α|=m

aα(x)Dα
(

D = (D1, . . . , Dn), D j = √−1∂x j

)
(2.3)

being an mth order differential operator with C∞ coefficients and the lower order part Q (x, D) has
bounded coefficients. Denote p(x, ξ) = ∑

|α|=m aα(x)ξα the full symbol of P (x, D). As usual, the hy-
persurface S is assumed to be non-characteristic for L at x0, i.e. p(x0, N0) 	= 0, where N0 = dψ(x0).
Let u satisfy Lu = 0 near x0 and u = 0 if ψ(x) � ψ(x0) near x0. Before stating the main theorem of
this section, we want to clearly describe the assumptions on the characteristic roots. For each x and ξ ,
we assume that

(C.1) there exist a conic neighborhood ΓN0 of N0 and m functions {λ�(x, ξ, N)}m
�=1 which are C∞ in

(x, ξ, N) ∈ V × (Rn \ 0) × ΓN0 such that for every ξ ∦ N , p(x, ξ + τ N) is written as

p(x, ξ + τ N) = p(x, N)

m∏
�=1

(
τ − λ�(x, ξ, N)

)

in V × (Rn \ 0) × ΓN0 ;
(C.2) for any �, 1 � � � m, if λ�(x, ξ, N) is real (or complex) at one point, then it remains real (or

complex) at every point;
(C.3) the real roots are simple and the multiplicity of the complex roots is not more than two.
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As in [15], assuming x0 = 0 and using the Holmgren transform

xi = xi, 1 � i � n − 1, t = 〈x, N0〉 + δ|x|2, (2.4)

with a suitable constant δ > 0, let P (x̃, t, ξ̃ , τ ) with x̃ = (x1, . . . , xn−1) be the principal symbol of
P (x̃, t; Dx̃, Dt), where we abused the notation P (x̃, t; Dx̃, Dt) to denote the operator (2.3) in terms of
(x̃, t). Then, there exist a function c(x̃, t) and {λl(x̃, t, ξ̃ )}m

l=1, such that

p(x̃, t, ξ̃ , τ ) = c(x̃, t)
m∏

l=1

(
τ − λl(x̃, t, ξ̃ )

)

in Ṽ × (Rn \0), where Ṽ is a small neighborhood of (0,0) and c(x̃, t) is a C∞ function with c(0,0) 	= 0
and λl(x̃, t, ξ̃ ) is C∞ in Ṽ × (Rn \ 0) homogeneous of degree one in ξ̃ , 1 � l � m. That is, condition
(C.1) is satisfied. Moreover, {λl(x̃, t, ξ̃ )}m

l=1 satisfy conditions (C.2) and (C.3). Since the result is local
near (0,0), it suffices to assume that the characteristic roots {λl}m

l=1 = {λl(0,0, ξ)}m
l=1 outside of a

small neighborhood of (0,0). Furthermore, it is readily seen that transform ũ of u by (2.4) satisfies

supp ũ ⊂ {
(x̃, t) ∈ Rn: t � c̃|x|2}

for some constant c̃. Then, we have the following Carleman estimate, which was given in [15].

Lemma 2.1. There exist positive constants c, T0 , η0 and r such that for T � T0 and η � η0 we have that

∑
|α|�m−1

T∫
0

eη(t−T )2∥∥Dα w
∥∥2

L2(Rn−1)
dt � c

(
T 2 + η−1) T∫

0

eη(t−T )2‖Lw‖2
L2(Rn−1)

dt (2.5)

for any w ∈ C∞(Rn) with supp w ⊂ {(x̃, t): 0 � t � T , |x̃| � r}, where L = L(x̃, t, Dx̃, Dt) is the op-
erator (2.2) in terms of (x̃, t). Moreover, the constants c, T0 , η0 and r only depend on the coefficients of
P (x̃, t, Dx̃, Dt).

3. Transversely isotropic dynamical systems

In this section, we will study the possibilities of (1.5) to have UCP. Having in our mind the solu-
tion u of (1.5) will be transformed by LFGT, we aim to apply (2.5) to ρ∂2

s + L by diagonalizing its
principal part. A direct way is to use the cofactor of the principal part of ρ∂2

s + L. The question is
now whether the conditions (C.1), (C.2) and (C.3) for characteristic roots are satisfied. By assuming the
elasticity tensor Cijk�(x) ∈ C∞(Ω̄) and in view of the strong ellipticity (1.4), we only have to check the
smoothness condition (C.1) of the characteristic roots and the multiplicity condition (C.3). It should be
noted that when the characteristic roots are not smooth, Plis [11] constructed a fourth order elliptic
differential operator in which the Cauchy problem is not unique. We will first discuss the multiplic-
ity condition (C.3). It turns out that we need to exclude certain directions and put a condition (3.3)
or (3.4) in order to guarantee (C.3). To begin with, we factor the determinant of the principal symbol
of ρ∂2

s + L by direct computations by a result in [9] (see Proposition 3.9, for a more general result
see Lemma 2.7 in [12]), which also contain a detail discussion of the multiplicity of the eigenvalues
for more general systems.
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Proposition 3.1. The determinant of the principal symbol of ρ∂2
s + L can be factored as

det

(
ρδikη

2
4 +

3∑
j,l=1

Cijklη jηl

)

= (
ρη2

4 + ρλ0
)(

ρη2
4 + ρλ+

)(
ρη2

4 + ρλ−
)
, (3.1)

where

ρλ0(x, η) = (1/2)(A − M)
(
η2

1 + η2
2

)+ Lη2
3,

ρλ±(x, η) = (1/2)(A + L)
(
η2

1 + η2
2

)+ (1/2)(C + L)η2
3 ± (1/2)|D|,

D2 = (A − L)2(η2
1 + η2

2

)2 + (C − L)2η4
3 − 2

[
(A − L)(C − L) − 2(F + L)2](η2

1 + η2
2

)
η2

3.

Lemma 3.1. Let {ξ, ζ } be a pair of orthogonal vectors in R3
x . Consider the characteristic equation

det

(
ρδikη

2
4 +

3∑
j,l=1

Cijk�η jηl

)
= 0 in τ , (3.2)

where η = (η1, η2, η3, η4) = (ξ, ξ4)+ τ (ζ,0). Let � := ξ × ζ and φ be the angle between � and the x3 axis. If

F + L = 0 (3.3)

or

(A − L)(C − L) = (F + L)2, A > C, (3.4)

then the characteristic roots of (3.2) satisfy (C.1) and have at most double roots for φ 	= 0 and π .

Proof. Let

Q = (Q ik) = ρξ2
4 I +

3∑
j,l=1

Cijklξ jξl,

R = (Rik) =
3∑

j,l=1

Cijklξ jζl,

T = (Tik) =
3∑

j,l=1

Cijklζ jζl,

where i,k = 1,2,3, and ξ = (ξ1, ξ2, ξ3), ζ = (ζ1, ζ2, ζ3), then the characteristic equation (3.2) is equiv-
alent to

det
[
τ 2T + τ

(
R + Rt)+ Q

]= 0. (3.5)
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From (1.3), we see that (3.5) contains only complex roots and they form conjugate pairs. Since the
axis of rotational symmetry coincides with the x3 axis, the elasticity tensor Cijk� is invariant under
the orthogonal transform O rotating around the x3 axis, i.e.

O =
( cos θ sin θ 0

− sin θ cos θ 0
0 0 1

)
.

Moreover, by the transform rule of tensor, the multiplicities are also invariant under the rotation of
ξ and ζ in the plane spanned by ξ, ζ . Therefore, the multiplicities of the characteristic roots for (3.2)
are invariant under the same transform O on ξ and ζ . Thus, it suffices to prove this proposition for

ξ = (cos φ,0,− sin φ), ζ = (0,1,0),

where � = (sin φ,0, cosφ) (see [14] or [10]).
First, we assume that (3.3) holds. Then from (3.1), we get

det
[
τ 2T + τ

(
R + Rt)+ Q

]
= [

(1/2)(A − M)τ 2 + ρξ2
4 + (1/2)(A − M)ξ2

1 + Lξ2
3

]
× [

Aτ 2 + ρξ2
4 + Aξ2

1 + Lξ2
3

]× [
τ 2L + ρξ2

4 + Lξ2
1 + Cξ2

3

]
= 0. (3.6)

We take τ1, τ2, τ3 to be three roots of (3.6) with positive imaginary part. Let τ1, τ2 and τ3 satisfy

(1/2)(A − M)τ 2
1 + ρξ2

4 + (1/2)(A − M)ξ2
1 + Lξ2

3 = 0, (3.7)

Aτ 2
2 + ρξ2

4 + Aξ2
1 + Lξ2

3 = 0 (3.8)

and

Lτ 2
3 + ρξ2

4 + Lξ2
1 + Cξ2

3 = 0. (3.9)

From (3.7) and (3.8), the necessary condition for τ1 = τ2 is

(1/2)(A − M)

ρξ2
4 + (1/2)(A − M)ξ2

1 + Lξ2
3

= A

ρξ2
4 + Aξ2

1 + Lξ2
3

. (3.10)

We derive from (3.10) that

(1/2)(A + M)
(
ρξ2

4 + Lξ2
3

)= 0

which implies from (1.4) that

ξ3 = 0 = ξ4 and then ξ2
1 = 1.

Therefore, we get the necessary conditions for triple roots τ1 = τ2 = τ3 and the triple root are i.
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Secondly, we assume that (3.4) holds. Then

det
[
Q + (

R + Rt)τ + Tτ 2]
= [

(1/2)(A − M)τ 2 + ρξ2
4 + (1/2)(A − M)ξ2

1 + Lξ2
3

]
× [

Aτ 2 + ρξ2
4 + Aξ2

1 + Cξ2
3

]× [
Lτ 2 + ρξ2

4 + Lξ2
1 + Lξ2

3

]
= 0. (3.11)

We take τ1, τ2, τ3 to be three roots of (3.11) with positive imaginary part. Let τ1, τ2 and τ3 satisfy

(1/2)(A − M)τ 2
1 + ρξ2

4 + (1/2)(A − M)ξ2
1 + Lξ2

3 = 0, (3.12)

Aτ 2
2 + ρξ2

4 + Aξ2
1 + Cξ2

3 = 0 (3.13)

and

Lτ 2
3 + ρξ2

4 + Lξ2
1 + Lξ2

3 = 0. (3.14)

From (3.12) and (3.14) we have the necessary condition for τ1 = τ3 is

A − M = 2L. (3.15)

In this case, Eqs. (3.12) and (3.14) are the same. So, we consider τ1 = τ2 under (3.15). Therefore, the
necessary condition for τ1 = τ2 = τ3 is

L

ρξ2
4 + Lξ2

1 + Lξ2
3

= A

ρξ2
4 + Aξ2

1 + Cξ2
3

. (3.16)

We derive from (3.16) that

ρ(A − L)ξ2
4 + L(A − C)ξ2

3 = 0. (3.17)

Plugging (3.15) into (3.17), it implies from (1.4) and (3.4) that

ξ3 = 0 = ξ4 and then ξ2
1 = 1.

On the other hand, the left-hand side of (3.2) is −1 times the determinant of the principal symbol
of ρ∂2

s + L and it has the factorization (3.6) and (3.11). Hence, the smoothness of the characteristic
roots can be easily verified. �
Remark 3.2. Let x0 ∈ R3 and V be a neighborhood of x0. Assume that S = {x: ψ(x) = ψ(x0)} is a C∞
surface with N0 = dψ(x0) satisfying

N0 is not perpendicular to the x3 axis.

Let the elasticity tensor Cijk� satisfy the additional condition (3.3) or (3.4) in V . With the help of
Lemma 3.1, we will see in the next section that we can apply (2.5) for the system ρ∂2

s + L in some
neighborhood V 0 of x0.
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4. Proofs of Theorem 1.1 and Corollary 1.2

We will use the method given in [3] to prove Theorem 1.1. We define LFGT va,λ(x, s) of u(x, t) by

va,λ(x, s) :=√
λ/2π

T∫
−T

e−λ(is+a−t)2/2u(x, t)dt, (4.1)

where λ > 0, a, s ∈ R and i = √−1. Associated with the operator ρ∂2
t − L, we define an elliptic

operator Q x,s = Q (x, s, Dx, Ds) in (x, s) ∈ R3
x × R1

s by Q x,s := ρ∂2
s + L. Let Q co

x,s = Q co(x, s, Dx, Ds) be

the operator whose symbol is the cofactor matrix of the principal symbol of Q x,s and define Q̃ x,s by

Q̃ x,s = Q̃ (x, s, Dx, Ds) = Q co
x,s ◦ Q x,s.

Then, the principal symbol of Q̃ x,s is

qx,s(η1, η2, η3, η4) = −det

(
ρδikη

2
4 +

3∑
j,l=1

Cijklη jηl

)
I. (4.2)

By Lemma 3.1, qx,s satisfies (C.1)–(C.3). We also define

χa,λ := Q̃ x,s va,λ. (4.3)

Let y be the point at the boundary of B(x0, r) and ny be the unit normal of ∂ B(x0, r)
at y. By an affine transformation A y,n0 , we can assume that y = 0 and n0 = (0,0,1)t . To be
compared with Section 2, the C∞ hypersurface S = {x: ψ(x) = ψ(x0)} in (2.1) is given by
S = {(x1, x2, x3, s): ψ(x1, x2, x3, s) = x2

1 + x2
2 + (x3 + r)2 − r2 = ψ(0,0,0, s) = 0, −r < x1, x2, (x3 +

r) < r, −T < s < T }. Here r is the radius of B(x0, r) and is independent of s. We now perform a
change of coordinates near 0 by using the “Holmgren transform,” i.e.,

s → s, x j → x j ( j = 1,2), μ = x3 + 2
(
s2 + |x′|2)/r,

where x′ = (x1, x2). For simplicity, we will use the same notations Q̃ x,s and va,λ even after applying
the Holmgren transform to them. Then, in the region V = {(μ, x′, s); x3 > −r, 0 < μ < r},

supp(va,λ) ⊂ V̄ ∩ {
(μ, x′, s); s2 + |x′|2 � r2} (4.4)

and the new qx,s satisfies (C.1)–(C.3). For (4.4), the readers are referred to Fig. 2 in the proof of
Corollary 1.2. Moreover, by the definition of LFGT, va,λ(x, s) is smooth in B(x0,3r) × R. Therefore, we
are in a position to apply the following Carleman estimate which is deduced from (2.5).

Theorem 4.1. There exist positive constants r0 < r, η0 , and c depending on ρ and L in Ω such that for all
η � η0 , we have that

∑
|ν|�5

r0∫
0

eη(μ−r0)2∥∥∂ν v
∥∥2

dμ � c
(
η−1 + r2

0

) r0∫
0

eη(μ−r0)2‖Q̃ s,x v‖2 dμ (4.5)

for all v(x′,μ, s) ∈ C∞ with supp(v) ⊂ {(x′,μ, s): s2 + |x′|2 � r2
0, 0 � μ � r0}, where ‖ · ‖2 = (·,·) is the

L2(R3) norm.
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Fig. 2. Equation of the ball: |x′|2 + s2 + (x3 + r0)2 = r2
0 and μ = x3 + 2(s2 + |x′|2)/r0.

It should be noted that the constants r0, η0, and c can be taken uniformly in Ω̄ . As in the proof
of [15], the constants r0, η0, and c are independent of the normal vector.

To prove the main theorem, we still need the following properties of LFGT given in [3].

Lemma 4.2. Let u ∈ C6(B(x0,3r0) × [−T , T ]) and s0 ∈ (0, T ) be fixed. If u satisfies ρutt − Lu = 0 in
B(x0,3r0) × [−T , T ], then for s ∈ (−s0, s0) and 0 � μ � r0 , we have

va,λ(x′,μ,0) → u(x′,μ,a) as λ → ∞, |a| < T , (4.6)∣∣(∂ν va,λ

)
(x′,μ, s)

∣∣� C1λ
9/2eλs2

0/2 (|ν| � 5
)
, (4.7)∣∣χa,λ(x′,μ, s)

∣∣� C2λ
11/2e−λ[(T −|a|)2−s2

0]/2, (4.8)

where C1 > 0 depends on ‖u‖C5(B(x0,3r0)×[−T ,T ]) and C2 > 0 depends on s0, T ,a and ‖u‖C6(B(x0,3r0)×[−T ,T ]) .

Remark 4.3. In [3], (4.8) is shown for ∂2
s + Δ. Here, we note that

∂s va,λ(x, s) = −i
√

λ/2π

T∫
−T

e−λ(is+a−t)2/2∂t u(x, t)dt − i
√

λ/2πe−λ(is+a−T )2/2u(x, T )

+ i
√

λ/2πe−λ(is+a+T )2/2u(x,−T ).

In this identity, only s-derivatives have been transformed into t-derivatives with end point values. So
the proof for Q̃ s,x is almost the same as that given in [3].

Now, let a C∞ function θ(μ) ∈ C∞
0 (R) defined in μ � 0 with θ(μ) = 0 for μ � r0 and θ(μ) = 1

for μ � 4r0/5. Denote η = λ and wa,λ = θ(μ)va,λ . Since Q̃ s,x wa,λ = θ Q̃ s,x va,λ + [Q̃ s,x, θ]va,λ . We can
apply (4.5) to wa,λ with (4.7) and (4.8) to get that

e(λr2
0/4)

r0/2∫
0

‖va,λ‖2 dμ �
r0∫

0

eλ(μ−r0)2‖wa,λ‖2 dμ

� c
(
λ−1 + r2

0

) r0∫
eλ(μ−r0)2‖θ Q̃ s,x va,λ‖2 dμ
0
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+ c
(
λ−1 + r2

0

) r0∫
0

eλ(μ−r0)2∥∥[Q̃ s,x, θ]va,λ

∥∥2
dμ

� c
(
λ−1 + r2

0

)
λ11eλr2

0−λ(T −|a|)2+λs2
0 + c

(
λ−1 + r2

0

)
λ9e(λr2

0/25)+λs2
0 . (4.9)

Multiplying e−λr2
0/4 on both sides of (4.9), we have

r0/2∫
0

‖va,λ‖2 dμ � c
(
λ−1 + r2

0

)
λ11e(3λr2

0/4)−λ(T −|a|)2+λs2
0 + c

(
λ−1 + r2

0

)
λ9e(−21λr2

0/100)+λs2
0 . (4.10)

Let |a| < T − √
7/8r0 and s0 < r0/10, they imply the power exponents in the first and second terms

on the right-hand side of (4.10) satisfy

{
(3/4)λr2

0 − λ
(
T − |a|)2 + λs2

0 < −(1/10)λr2
0,

−(21/100)λr2
0 + λs2

0 < −(1/5)λr2
0 .

(4.11)

By (4.9), (4.10) and (4.6), we have for |a| < T − √
7/8r0, 0 < μ < r0/2 and |x′| � r0 that

va,λ(x′,μ,0) → 0 = u(x′,μ,a) as λ → ∞.

This completes the proof of Theorem 1.1.

Proof of Corollary 1.2. First of all, we note that the constant r0 in Theorem 1.1 can be taken uniformly
with respect to x ∈ Ω̄ . Hence, T1 can be also taken uniformly with respect to x ∈ Ω̄ . We use the
following steps to continue u by zero from B(x0, r) onto the whole Ω .

Step 1. Let

D+(x0, r, θ0) := {
y ∈ B(x0, r); ∣∣(y − x0) · n0

∣∣� |y − x0| cos θ0
}

with small 0 < θ0 < π/2. In each boundary point y ∈ ∂ D+(x0, r, θ0), we can get a ball with ra-
dius r0 inside B(x0, r) and y is in its boundary. By Theorem 1.1, we can continue u by zero onto
a neighborhood U (y) of each boundary point y ∈ ∂ D+(x0, r, θ0). We give Fig. 2 about y = (0,0,0)

and ny = (0,0,1). Hence, covering ∂ D+(x0, r, θ0) by finite numbers of such U (y)’s, we can continue
u by zero onto D+(x0, r̃, θ0) with r̃ > r.

Step 2. Since the constant r0 in Theorem 1.1 can be taken uniformly, we apply Theorem 1.1 to
y ∈ ∂ D+(x0, r, θ0) to continue u by zero onto

D−(x0, r̂, θ0) := {
y ∈ B(x0, r̂); ∣∣(y − x0) · n0

∣∣� |y − x0| cos θ0
}
,

where the small enough θ0 is chosen dependently on r0 and r < r̂ < r̃.
Step 3. Next take any z ∈ ∂ B(x0, r̂) and repeat Steps 1 and 2. Then we can continue u by zero onto

a more larger ball centered at x0. It should be noted that the size of extending the radius of the ball
in which u is zero can be kept uniform.

By repeating these steps, we can continue u by zero onto the whole Ω if T3 is large enough. �



C.-L. Lin et al. / J. Differential Equations 245 (2008) 3008–3024 3019
5. Application to extending the Dirichlet–Neumann map

Let u f (t, x) be the solution of

⎧⎪⎨
⎪⎩

∂2
t u f (t, x) − Mu f (t, x) = 0

(
(t, x) ∈ Q T

)
,

u f (t, x)
∣∣
Σ T = f (t, x),

u f (t, x)
∣∣
t=0 = ∂t u f (t, x)

∣∣
t=0 = 0,

(5.1)

where Q T := (0, T ) × Ω , Σ T := (0, T ) × ∂Ω , f (t, x) ∈ H1(Σ T ) and the αth component (Mu)α(t, x)
is given by

(Mu)i(t, x) = ρ(x)−1
3∑

j,l,k=1

∂ j
(
Cijkl(x)∂luk

)
(1 � i � 3),

here Cijkl(x) is the same elasticity tensor as above and 0 < ρ(x) ∈ C∞(Ω̄). We assume f to satisfy the
compatibility condition: f (0, x) = 0. It should be noted that u f ∈ C1([0, T ], L2(Ω)) ∩ C([0, T ], H1(Ω))

for T > 0.
We define the response operator

RT : H1
0

(
Σ T )→ L2(Σ T )

by

(
RT f

)
i =

3∑
j,l,k=1

ν j Ci jkl(x)∂luk (1 � i � 3),

where ν := (ν1, ν2, ν3) is the outer normal vector of ∂Ω , u f = (u f
1 , u f

2 , u f
3 )t is the solution to (5.1)

and H1
0(Σ T ) := { f ∈ H1(Σ T ), f (0, x) = 0}. See Appendix A for a justification of the statement of this

operator.

Theorem 5.1. Let r be the radius of Ω . There exists a positive constant T4 coming from Corollary 1.3 such that

if we have RT̃ f for some T̃ , T̃ � T4 , then we can determine RT f for every T > 0.

The proof follows that of Theorem 1.4 in [6]. To do it, we need the following key lemma whose
proof is given by the standard argument using Corollary 1.3.

Lemma 5.2. Let r be the radius of Ω . There exists a positive constant T4 such that for any T � T4 the set
{(u f (T ), ∂t u f (T )); f ∈ C∞

0 ([0, T ] × ∂Ω)} is dense in H1
0(Ω) × L2(Ω).

Proof. Assume that the conclusion is false. Let (ψ,ϕ) ∈ H−1(Ω) × L2(Ω) be such that

〈
u f (·, T ),ψ

〉− 〈
∂t u f (·, T ),ϕ

〉= 0

for all f ∈ C∞
0 (Σ T ), where the first and the second pairings are for the pairs in H1

0(Ω)× H−1(Ω) and
L2(Ω) × L2(Ω) which use the natural extension of the pairing

〈a,b〉 =
∫

ab dx
(
a,b ∈ L2(Ω)

)
.

Ω
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Since C∞
0 (Ω) is dense in both L2(Ω) and H1

0(Ω), we can assume (ψ,ϕ) ∈ C∞
0 (Ω)× C∞

0 (Ω). To show
that ϕ = ψ = 0, we consider the solution e ∈ C1([0, T ], H−1(Ω)) of the following initial–boundary
value problem:

⎧⎪⎨
⎪⎩
(
∂2

t − M
)
e = 0 in Q T ,

e|Σ T = 0,

e|t=T = ϕ,

∂te|t=T = ψ.

(5.2)

Let u f (x, t) be the solution of the initial–boundary value problem (5.1). Taking the inner product of
the equation in (5.1) with ρe and doing the same for the equation in (5.2) with ρu f and integrating
by parts, we have

0 =
∫

Q T

[(
ρ
(
∂2

t − M
)
u f ) · e − u f · ρ(∂2

t − M
)
e
]

dx dt

=
∫

Σ T

f N e ds dt, (5.3)

where (N e)i =∑3
j,l,k=1 ν j Ci jkl(x)∂lek for e = (e1, e2, e3)

t . Since f ∈ C∞
0 (Σ T ) is arbitrary,

N e|Σ T = 0.

By Corollary 1.3, we obtain that

e|t=T /2 = ∂te|t=T /2 = 0. (5.4)

Hence, e(t, x) is the solution of the hyperbolic system (5.2) stated on (T /2, T )×Ω with homogeneous
initial conditions (5.4) on T /2. This implies that e(t) = 0 for t ∈ [T /2, T ]. Therefore,

ϕ = e|t=T = 0,

ψ = ∂te|t=T = 0.

This completes the proof. �
Proof of Theorem 5.1. Let T4 be the value given in Lemma 5.2 and T > T4. Suppose that we know RT

and set ε = (T − T4)/2. We are going to prove that RT +ε is known. We take f ∈ C∞
0 ([0, T + ε]× ∂Ω).

We write f = g + h where supp h ⊂ [0, T4] × ∂Ω and supp g ⊂ [ε, T + ε] × ∂Ω . Since u f = uh + ug , if
we know N uh|[0,T +ε]×∂Ω and N ug |[ε,T +ε]×∂Ω then we know N u f |[0,T +ε]×∂Ω .

Now, let gε(t, ·) := g(t + ε, ·) and g0 := g . By gε(t, ·) = g(t + ε, ·), then N ug(t)|[ε,T +ε]×∂Ω(t, ·) =
N ug(t+ε)|[0,T ]×∂Ω(t, ·). As supp gε(t, ·) ⊂ [0, T ] × ∂Ω , then N ug |[ε,T +ε]×∂Ω is known since we
know RT . So, we have to continue N uh from [0, T ] to [0, T + ε]. To do it, we denote t0 = T4 + ε . By
Lemma 5.2, there exist hm ∈ C∞

0 ([0, T4] × ∂Ω) such that

lim
(
uhm (T4, ·), ∂t uhm (T4, ·)

)= (
uh(t0, ·), ∂t uh(t0, ·)

)
(5.5)
m→∞
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in H1
0(Ω) × L2(Ω). The functions ym(t, ·) := uhm (t, ·) with t ∈ [T4, T ] are the solutions of the initial

value problem

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂2
t ym(t, x) − M ym(t, x) = 0

(
(t, x) ∈ [T4, T ] × Ω

)
,

ym(t, x)
∣∣[T4,T ]×∂Ω

= 0,

ym(t, x)
∣∣
t=T4

= uhm (T4, x),

∂t ym(t, x)
∣∣
t=T4

= ∂t uhm (T4, x).

(5.6)

On the other hand, the function y(t, ·) := uh(t +ε, ·) satisfies the same equation in (5.6) with different
initial data ⎧⎪⎪⎨

⎪⎪⎩
∂2

t y(t, x) − M y(t, x) = 0
(
(t, x) ∈ [T4, T ] × Ω

)
,

y(t, x)|[T4,T ]×∂Ω = 0,

y(t, x)|t=T4 = uh(t0, x),
∂t y(t, x)|t=T4 = ∂t uh(t0, x).

(5.7)

The continuous dependence of solutions on initial data, Lemma A.1 in Appendix A, and (5.5) imply
that

lim
m→∞ N ym

∣∣[T4,T ]×∂Ω
= N y

∣∣[T4,T ]×∂Ω
(5.8)

in L2 space. By (5.8), N uh|[T4+ε,T +ε]×∂Ω is determined. Combining the known information
N uh|[0,T ]×∂Ω , we can determine N uh|[0,T +ε]×∂Ω . �
Appendix A

The purpose of this appendix is to give the proof to following theorem which justifies the defini-
tion of the operator RT and the well-posedness of the problem (5.6).

Lemma A.1. Let Ω be a bounded domain in Rn and ∂Ω is smooth. Denote Q T := (0, T ) × Ω and Σ T :=
(0, T ) × ∂Ω . Assume that F ∈ L1((0, T ); L2(Ω)), f ∈ H1(Σ T ), ψ0 ∈ H1(Ω) and ψ1 ∈ L2(Ω) with the com-
patibility condition f (0, ·) = ψ0|∂Ω . Then, there exists a unique solution u = u(t, x) ∈ C((0, T ); H1(Ω)) ∩
C1((0, T ); L2(Ω)) to

⎧⎪⎨
⎪⎩

∂2
t u − Mu = F in Q T ,

u|Σ T = f ,
u|t=0 = ψ0 in Ω,

∂t u|t=0 = ψ1 in Ω.

(A.1)

Moreover, it satisfies

⎧⎪⎪⎨
⎪⎪⎩

N u ∈ L2
(
Σ T

)
,

‖N u‖L2(Σ T ) � C(T )

( T∫
0

∥∥F (t)
∥∥

L2(Ω)
dt + ‖ f ‖H1(Σ T ) + ‖ψ0‖H1(Ω) + ‖ψ1‖L2(Ω)

)
,

(A.2)

where N u is given by (5.3) replacing e by the solution u to (A.1).

Proof. (A.1) can be proven in the same way as Theorem 2.1 of [7]. This is because M is formally
self-adjoint and it satisfies Gårding’s inequality, and hence all the argument in Theorem 2.1 of [7] can
be applied without any essential change to prove (A.1).
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(A.2) can be proven like Step 2 in the proof of Theorem 2.30 in [5]. However, we need to adapt
the proof a little. We only give the part of the proof which differs from that given in [5]. Let ν be C∞
vector field on Ω̄ such that ν(x) coincides with the outer unit normal vector field of ∂Ω if x ∈ ∂Ω .
Also let χ ∈ C∞(R) satisfy χ(t) = 1 for t � T and 0 for t � 2T . Continue F by zero onto the interval
[T ,2T ). Write

∫
Q T

ρχ F · (∇uν)dx dt =
∫

Q T

χρ
(
∂2

t u − ∇ · (C∇u)
) · (∇uν)dx dt = I1 + I2,

where I1 = ∫
Q 2T ρχ∂2

t u · (∇uν)dx dt and I2 = − ∫
Q 2T (χ∇ · (C∇u)) · (∇uν)dx dt . It should be noted

that ∇uν stands for the matrix ∇u multiplied by the vector ν . Also, let

J1 :=
∫
Ω

ρψ1 · (∇ψ0ν)dx +
∫

Q 2T

ρ∂tχ∂t u · (∇uν)dx dt − (1/2)

∫
Q 2T

ρχ(∇ · ν)|∂t u|2 dx dt

− (1/2)

∫
Q 2T

χ∇ρ · |∂t u|2ν dx dt + (1/2)

∫
Σ2T

ρχ |∂t u|2 ds dt.

Then, by integration by parts, it is easy to see

I1 =
[∫

Ω

ρχ∂t u · (∇uν)dx

]2T

0
−

∫
Q 2T

ρ∂tχ∂t u · (∇uν)dx dt −
∫

Q 2T

ρχ∂t u · (∇(∂t u)ν
)

dx dt

= −
∫
Ω

ρψ1 · (∇ψ0ν)dx −
∫

Q 2T

ρ∂tχ∂t u · (∇uν)dx dt − (1/2)

∫
Q 2T

ρχ
(∇|∂t u|2) · ν dx dt

= −
∫
Ω

ρψ1 · (∇ψ0ν)dx −
∫

Q 2T

ρ∂tχ∂t u · (∇uν)dx dt + (1/2)

∫
Q 2T

ρχ(∇ · ν)|∂t u|2 dx dt

+ (1/2)

∫
Q 2T

χ∇ρ · |∂t u|2ν dx dt − (1/2)

∫
Σ2T

ρχ |∂t u|2 ds dt

= − J1, (A.3)

where the second identity use

∂t u · (∇(∂t u)ν
)=

∑
i

∂t ui

∑
j

∂ j(∂t ui)ν j

= (1/2)
∑
i, j

∂ j(∂t ui)
2ν j = (1/2)

(∇|∂t u|2) · ν.

On the other hand, the integration by parts yields

I2 =
∫

Q 2T

χC∇u · ∇(∇uν)dx dt −
∫

Σ2T

χ
(
(C∇u)ν

) · (∇uν)ds dt.

By the direct computations, we get
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C∇u · ∇(∇uν)

= C∇u · ((ν · ∇)∇u
)

= (1/2)(ν · ∇)(C∇u · ∇u) − (1/2)
(
(ν · ∇)C

)∇u · ∇u + C∇u · (∇u∇ν)

= (1/2)div
(
(C∇u · ∇u)ν

)− (1/2)divν(C∇u · ∇u) − (1/2)
(
(ν · ∇)C

)∇u · ∇u + C∇u · (∇u∇ν).

Therefore,

I2 = (1/2)

∫
Σ2T

χ(C∇u · ∇u)ds dt −
∫

Σ2T

χ
(
(C∇u)ν

) · (∇uν)ds dt − J2 (A.4)

with

J2 := (1/2)

∫
Q 2T

χ(∇ · ν)(C∇u · ∇u)dx dt + (1/2)

∫
Q 2T

χ
(
(ν · ∇)C∇u

) · ∇u dx dt

−
∫

Q 2T

χC∇u · (∇u∇ν)dx dt.

Now, we analyze

K := (1/2)

∫
Σ2T

χ(C∇u · ∇u)ds dt −
∫

Σ2T

χ
(
(C∇u)ν

) · (∇uν)ds dt

=
∫

Q T

χ F · (∇uν)dx dt + J1 + J2 (A.5)

locally, that is we analyze K when we confine u to a neighborhood ⊂ Ω̄ around a point ∈ ∂Ω by using
a partition of unity. In this neighborhood, we introduce boundary normal coordinates (y1, y2, y3) such
that ∂Ω and Ω are given locally by

∂Ω = {y3 = 0}, Ω = {y3 > 0}.

Define g and C̃ by

g = ∣∣det(gij)
∣∣, gij =

3∑
k=1

∂xk

∂ yi

∂xk

∂ y j
(1 � i, j � 2)

and

C̃ = (C̃iαkβ), C̃iαkβ =
3∑

j,l=1

Cijkl
∂ yα

∂x j

∂ yβ

∂xl
,

respectively. Then K has the term

−(1/2)

∫
2T

χ

3∑
i,k=1

C̃i3k3∂y3 ui∂y3 uk
√

g dy′ dt, (A.6)
Σ
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where y′ = (y1, y2, y3). The rest of the terms of K only contain at most ∂y3 ui (1 � i � 3). Since
(C̃i3k3)1�i,k�3 is positive definite, it is easy to prove the estimate in (A.2) from (A.3), (A.4), (A.5)
and (A.6) by the argument of Step 2 in the proof of Theorem 2.1 in [5]. �
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