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Abstract. Let A be a Jordan algebra of linear operators on a vector space
over a field of characteristic different from 2. In this short note, we show that
(1) if A is 2-transitive, then it is dense, and (2) if A is n-transitive, n ≥ 1, then
a nonzero Jordan ideal of A is also n-transitive. These answer two questions
posed by Grünenfelder, Omladič and Radjavi.
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1. Introduction

Let L = L(V ) be the algebra of all linear operators on a vector space V over
the field F . A subset S ⊆ L is said to be n-transitive (n ≥ 1) if for any linearly
independent set {x1, . . . , xn} of V and any elements y1, . . . , yn ∈ V , there is an
S ∈ S such that Sxi = yi for i = 1, . . . , n. If S is transitive for all n ≥ 1, it is
called dense.

There are nice results on dense associative algebras of linear operators in L.
Burnside’s theorem states that if V is finite-dimensional and F is algebraically
closed, then the only transitive associative subalgebra of L is L itself. Jacobson [5]
showed that if S is an associative subalgebra of L and S is 2-transitive, then S is
dense.

In 1993 Grünenfelder, Omladič and Radjavi [3] studied transitive nonassocia-
tive algebras, and obtained the Jordan analogs of the Burnside’s and Jacobson’s
theorems. By a Jordan algebra of linear operators over a field F of characteristic

The second author was partially supported by National Science Council, Taiwan, grant #095-

2811-M-006-005.



580 Chebotar, Ke and Lomonosov IEOT

not 2 we mean a linear subspace A of S such that for all A,B ∈ A, it holds that
A ◦B = AB + BA ∈ A. In [3], the following theorems were proved.

Theorem 1.1 ([3, Theorem 2.1]). Let F be any formally real closed field. Then, the
only transitive Jordan algebra of Sn(F ), the symmetric n× n matrices over F, is
Sn(F ) itself.

Theorem 1.2 ([3, Theorem 2.4]). Let F be an algebraically closed field, and let A
be a transitive Jordan algebra of n× n matrices over F . Then either A = Mn(F )
or there exists an invertible matrix T such that T−1AT = Sn(F ).

Theorem 1.3 ([3, Theorem 1.3]). Let A be a Jordan algebra of finite rank operators
on a vector space V If A is 2-transitive, then it is dense, i.e. n-transitive for all
n > 1.

Theorem 1.4 ([3, Theorem 3.2]). Every Jordan ideal J 6= 0 of an (n+1)-transitive
Jordan algebra A of operators on a vector space V is n-transitive, n > 1.

Two questions were raised in [3, p. 346] aiming at parts untouched by Theo-
rems 1.3 and 1.4:

Question 1. Is there an n-transitive Jordan algebra A with a Jordan ideal
A 6= 0 which is not n-transitive?

Question 2. Is there an n-transitive Jordan algebra which is not (n + 1)-
transitive for any n ≥ 2?

The purpose of this paper is to complete the unfinished task left by Grünen-
felder, Omladič and Radjavi. Namely, we are going to answer the two questions
stated above. The answers to both questions are negative. We will first prove

Theorem 1.5. Let A be a Jordan algebra of linear operators on a vector space
V over the field of characteristic different from 2. If A is 2-transitive, then A is
dense.

Thus Question 2 would be answered. It is interesting to note that there are
1-transitive Jordan algebras which are not dense. The Jordan algebra Sn(C) of
symmetric n×n matrices, n ≥ 2, over the complex number field C serves as a nice
counterexample (see [3, Theorem 1.2 and Corollary 2.5] for details).

Partial answer to Question 1 is already provided by Theorems 1.4 and 1.5.
But we will prove the following result to have it covered completely.

Theorem 1.6. Let A be an n-transitive Jordan algebra of linear operators on a
vector space V over the field of characteristic different from 2, where n ≥ 1. If J
is a nonzero Jordan ideal of A, then J is also n-transitive.

Related problems for Lie algebras can be found in [1] and [4]. Also, some very
interesting results were obtained recently for more general situation of transitive
spaces of operators, and the paper by Davidson, Marcoux and Radjavi [2] provides
a comprehensive study of algebraic and topological transitivity for linear spaces of
operators.
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2. The results

Throughout this section F is a field of characteristic not 2, V a vector space over
F , L = L(V ) the algebra of all linear operators on V , and A a Jordan algebra
of operators from L. Note that for A,B ∈ A, we have A2 = 1

2 (A ◦ A) ∈ A and
ABA = 1

2 ((A ◦B) ◦A−A2 ◦B) ∈ A.
We start with the following auxiliary lemma.

Lemma 2.1. Let S be a n-transitive linear subspace of L, n ≥ 2, and let x1, . . . ,
xn+1 ∈ V , be linearly independent. Then there exists an S ∈ S such that

Sxi = 0 for all i = 3, . . . , n + 1, and Sx1 /∈ span{Sx2} (2.1)

Proof. Assume the contrary, i.e. Tx1 ∈ span{Tx2} for any T ∈ S with Tx3 =
· · · = Txn = 0.

Suppose that there exists a T1 ∈ S such that T1x1 = T1x3 = . . . = T1xn+1 =
0 and T1x2 = u 6= 0. Let w ∈ V be a vector linearly independent with u. It exists
since S is n-transitive with n ≥ 2. By the n-transitivity of S, there exists some
T2 ∈ S such that T2xi = 0 for i ≥ 3 and T2x1 = w. By our assumption, T2x1 ∈
span{T2x2}, and so T2x2 = αw for some nonzero α ∈ F . We have S = T1 +T2 ∈ S
satisfies (2.1), a contradiction. Therefore, for any T ∈ S, if Tx1 = Tx3 = . . . =
Txn+1 = 0, then readily Tx2 = 0.

Let S1, S2 ∈ S with S1xi = S2xi = 0 for all i ≥ 3 while S1x1 6= 0 and
S2x1 6= 0. By our assumption, there are λ1, λ2 ∈ F such that S1x1 = λ1S1x2 and
S2x1 = λ2S2x2.

Now, it may be that S1x1 and S2x1 are linearly independent. In this situation,
we set S = S1 + S2. Then

Sxi = 0 for i = 3, . . . , n + 1, Sx1 = S1x1 + S2x1, and Sx2 = λ−1
1 S1x1 + λ−1

2 S2x1.

We see that if λ1 6= λ2, then Sx1 and Sx2 are linearly independent, which cannot
be. Hence we have

if S1x1 and S2x1 are linearly independent, then λ1 = λ2. (2.2)

Or, it may be that S1x1 and S2x1 are linearly dependent. We argue that
λ1 = λ2 as well. Assume that λ1 6= λ2. Note that we cannot have any T ∈ S and
µ ∈ F with Txi = 0 for i = 3, . . . , n + 1, and Tx1 = µTx2 6= 0, such that Tx1 and
S1x1 are linearly independent (hence Tx1 and S2x1 are linearly independent as
well), otherwise a contradiction that λ1 = µ = λ2 would arise by (2.2). Now, this
means that for all T ∈ S, Txi = 0 for all i ≥ 3 implies Tx1 ∈ span{S1x1}. But
this contradicts the fact that S is n-transitive. Therefore, we have

if S1x1 and S2x1 are linearly dependent, then λ1 = λ2. (2.3)

From (2.2) and (2.3) we conclude that there is a λ ∈ F such that if S ∈ S
with Sxi = 0 for i ≥ 3 and Sx1 6= 0, then Sx1 = λSx2. By above if Sx1 = Sx3 =
. . . = Sxn+1 = 0, then Sx2 = 0. But then for every S ∈ S with Sxi = 0 for all
i ≥ 3, we have S(x1 − λx2) = 0. Again, as S is n-transitive, this cannot happen.
Therefore the lemma holds. �



582 Chebotar, Ke and Lomonosov IEOT

We are ready to prove Theorem 1.5.

Proof of Theorem 1.5. The theorem will be proved if we show that the n-transiti-
vity of A with n ≥ 2 implies that A is (n + 1)-transitive.

Let x1, . . . , xn+1 ∈ V be linearly independent, and y1, . . . , yn+1 ∈ V . Notice
that if we can find Tj ∈ A (j = 1, . . . , n + 1) such that Tjxi = 0 for i 6= j and
Tjxj = yj , then T = T1 + · · · + Tn+1 will do the required job that Txi = yi for
i = 1, 2, . . . , n + 1. And to achieve this goal, it suffices to show that for any y ∈ V ,
there is some T ∈ A such that Txi = 0 for i ≥ 2 and Tx1 = y.

Let y ∈ V . Certainly we may assume that y is nonzero, or the zero operator
will do the job. Let A ∈ A be such that Ax1 = y and Axi = 0 for i ≥ 3. If Ax1

and Ax2 are linearly independent, we may take B ∈ A such that BAx1 = x1

and BAx2 = 0, and put T = ABA ∈ A. Then Tx1 = ABAx1 = Ax1 = y
and Txi = ABAxi = 0 for all i ≥ 2, and we are done. So we assume that
Ax2 = λAx1 = λy for some λ ∈ F .

Assume that if S ∈ A with Sx2 6= 0 and Sxi = 0 for i = 3, . . . , n + 1, then
Sx1 6= 0. By Lemma 2.1 there is an S such that Sxi = 0 for i = 3, . . . , n + 1,
and Sx2 /∈ span{Sx1}. Thus Sx1 and Sx2 are linearly independent. Let L ∈ A be
such that LSx1 = 0 and LSx2 = x2. Then SLS ∈ A and SLSx1 = 0, SLSx2 =
Sx2 6= 0, and SLSxi = 0 for i = 3, . . . , n + 1, a contradiction. Therefore, there is
an S ∈ A with Sx1 = Sxi = 0 for i = 3, . . . , n + 1 and Sx2 = v 6= 0, and we fix it
for what follows.

In the case that v and y are linearly independent, we set C = A + S. Then
Cx1 = Ax1 + Sx1 = y, Cx2 = Ax2 + Sx2 = λy + v, and Axi = 0 for i ≥ 3. Since
Cx1 and Cx2 are linearly independent, we can find D ∈ A with DCx1 = x1 and
DCx2 = 0. Then T = CDC ∈ A will do the job.

Finally, assume that v = µy for some nonzero µ ∈ F , and set T = A − λ
µS.

Then Tx1 = Ax1 − λ
µSx1 = y, Tx2 = Ax2 − λ

µSx2 = λy − λ
µv = 0, and Txi = 0

for i ≥ 3. This completes the proof. �

Remark 2.2. We note that the above proof is valid for any 2-transitive space A
of linear operators on a vector space over any field satisfying ABA ∈ A for all
A,B ∈ A.

As a corollary to Theorem 1.5 and Theorem 1.4 (or Corollary 3.3 of [3]), we
have

Corollary 2.3. If A is n-transitive Jordan algebra of linear operators on a vector
space V with n ≥ 2, and J is a nonzero Jordan ideal of A, then J is also n-
transitive. Moreover, both A and J are dense.

Thus, it remains to treat the 1-transitivity case in order to prove Theorem 1.6,
which we shall present in the following. Note that if A ∈ A and B ∈ J , then
ABA = 1

2 ((A ◦B) ◦A−A2 ◦B) ∈ J .

Theorem 2.4. Let A be a 1-transitive Jordan algebra of linear operators on a vector
space V , and J a nonzero Jordan ideal of A. Then J is also 1-transitive.
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Proof. Let V0 = J V . We first show that V0 = V .
We claim that V0 is a subspace of V . First of all, if v0 ∈ V0, then there is a

u0 ∈ V and an S ∈ J such that Su0 = v0. Thus, for any λ ∈ F , λv0 = λSu0 =
S(λu0) ∈ V0. Now, take v1, v2 ∈ V0. If either v1 = 0 or v2 = 0, then v1 + v2 ∈ V0.
So we assume that both v1 and v2 are nonzero. Let u1, u2 ∈ V \{0} and T1, T2 ∈ J
be such that T1u1 = v1 and T2u2 = v2. In the case that T2u1 = v 6= 0, we may pick
T ∈ A such that Tv = u2. Then (T1 + T2TT2) ∈ J and (T1 + T2TT2)u1 = v1 + v2.
On the other hand, in the case that T2u1 = 0, we may pick T ∈ A such that
Tu1 = u2. Then (T1 + T2 ◦ T ) ∈ J and (T1 + T2 ◦ T )u1 = v1 + v2. Hence we see
that, in both cases, v1 + v2 ∈ V0. Therefore V0 is indeed a subspace of V .

Pick an arbitrary w ∈ V . Let S ∈ J be nonzero, and u, v ∈ V such that
Su = v 6= 0. Let T ∈ A be such that Tv = w. Then (ST + TS)u = S(Tu) + w.
From ST + TS ∈ J , it follows that w = (ST + TS)u − S(Tu) ∈ V0. Therefore
V0 = V .

Now, let u, v ∈ V with u 6= 0. We want to find some R ∈ J such that Ru = v.
Let S ∈ J and w ∈ V be such that Sw = v. If Su = 0, we can simply pick T ∈ A
with Tu = w and put R = ST + TS ∈ J to get Ru = v. If Su = v′ 6= 0, we can
pick T ∈ A such that Tv′ = w, and put R = STS ∈ J to get Ru = v. Therefore,
J is 1-transitive. �
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