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ROOTLESS PAIRS OF EE8-LATTICES

ROBERT L. GRIESS, JR. AND CHING HUNG LAM

Abstract. We describe a classification of pairs M, N of lattices isometric to
EE8 :=

√

2E8 such that the lattice M+N is integral and rootless and such that
the dihedral group associated to them has order at most 12. It turns out that
most of these pairs may be embedded in the Leech lattice. Complete proofs
will appear in another article. This theory of integral lattices has connections
to vertex operator algebra theory and moonshine.

1. Introduction

Associated to a sublattice S of an integral lattice L is an orthogonal trans-
formation of order 2 on Euclidean space (defined to be −1 on S and 1 on the
annihilator of S). This involution leaves L invariant if S satisfies the RSSD con-

dition (2L ≤ S + ann(S)) [9, 10]. An example of such an S is
√

2U , where U is

an integral unimodular lattice, such as EE8 :=
√

2E8. A pair of RSSD sublattices
gives a dihedral group in the isometry group of L.

In this article, we describe our classification of pairs of EE8-lattices which span
an integral and rootless lattice and whose associated involutions (isometries of order
2) generate a dihedral group of order at most 12. There are exactly 11 such pairs.
Most can be realized inside the Leech lattice, which we denote by Λ. We refer to
an upcoming article [11] for proofs and details.

This work may be considered purely as a study of positive definite integral lat-
tices. Our real motivation, however, is the evolving theory of vertex operator
algebras (VOA) and their automorphism groups.

2. Motivation from VOA theory

The primary connection between the Monster and vertex operator algebras was
established in [3]. In [15], Miyamoto gave a theory for defining involutions on a
VOA. Suppose that (V, Y, ω,1) is a VOA. A degree 2 element e ∈ V is called
a rational conformal vector of central charge 1/2 if the components of Y (e, z) =
∑

n∈Z
enz−n−1 (The ei are in End(V )) together with IdV span a Virasoro Lie

algebra with central charge 1
2

and the subVOA of V generated by w is a simple

VOA, so is isomorphic to the simple Virasoro VOA L(1
2
, 0).

The simple Virasoro VOA L(1
2
, 0) has only three irreducible modules, L(1

2
, 0),

L(1
2
, 1

2
), L(1

2
, 1

16
), and the fusion rules give two formulas for an involution on V .
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Since L(1
2
, 0) is rational, i.e., all L(1

2
, 0)-modules are completely reducible, we

can decompose V := V0 ⊕V 1

2

⊕V 1

16

into the direct sum of Vc, where Vc denotes the

sum of all L(1
2
, 0)-submodules of V isomorphic to L(1

2
, c).

(1) Define a linear map τe : V → V to be 1 on V0 ⊕ V 1

2

and −1 on V 1

16

.

Miyamoto [15] showed that τe is always an automorphism of V . This automorphism
is called a Miyamoto involution if τe has order 2.

(2) If τe = IdV , i.e., V 1

16

= 0, then the linear map σe defined by 1 on V0 and −1

on V 1

2

is also an automorphism. It is called a Miyamoto involution of σ-type.

These involutions have been studied a lot. Miyamoto proved [16] the important
result that there is a bijection between the conjugacy class of 2A involutions in the
Monster simple group and conformal vectors of central charge 1

2
in the moonshine

vertex operator algebra V ♮.

2.1. Lattice type vertex operator algebras. Recall that a lattice VOA VL

associated with an even positive definite lattice L is given by VL = S(ĥ−) ⊗ C[L],

as a vector space, where h := C ⊗ L, ĥ− = ⊕∞
n=1t

−n ⊗ h, S(ĥ−) is the symmetric

algebra of ĥ− and C[L] = spanC{eα|α ∈ L} is the group algebra of L.
Let VL be a lattice VOA. It is common to study an involution on V which is a

“lift” of the −1 map on L. The standard lift of −1, called θ, acts as −1 on ĥ− and
takes eα to e−α, for all α. The fixed point subVOA of θ is denoted V +

L .

For VOAs of lattice type VL or V +
L , there are two known explicit general formulas

for rational conformal vectors of central charge 1/2.

First formula:

When α is a norm 4 vector of L,

(1) e =
1

16
(t−1 ⊗ α)2 ± 1

4
(eα + e−α)

is a rational conformal vector of central charge 1/2.

Second formula:

When E is a sublattice of L, E ∼= EE8,

(2) e =
1

8
q +

1

32

∑

α∈E/{±1}
ϕ(α)(eα + e−α)

is also a rational conformal vector of central charge 1/2, (here q is the sum
∑

i(t
−1⊗

ui)
2, where ui is an orthonormal basis of C⊗E; ϕ is a homomorphism E → {±1}).
This second formula explains our interest in EE8.

2.2. Why rootless? If L is rootless, V +
L has zero degree 1 term and so (by general

VOA theory) the degree 2 part is a commutative algebra (generally nonassociative).
In this case, the automorphism group of V +

L is finite (not generally true for VOAs).
Moreover, it is conjectured [14] that the two kinds of conformal vectors in (1) and
(2) will exhaust all the rational conformal vectors of central charge 1/2 in V +

L if L

is rootless. This conjecture was proved when L is
√

2 times a root lattice or the
Leech lattice [14, 13] but it is still open if L is a general rootless lattice. The results
of this paper could help settle this conjecture.
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2.3. Why dihedral groups of order at most 12? We may consider pairs of
Miyamoto involutions and what they generate. For a general VOA, this is an
arbitrary dihedral group. In the case of V +

L when L is rootless, the possibilities are
limited to dihedral of order at most 12, by a recent theorem of Shinya Sakuma [17].
In fact, his hypotheses are more general: the VOA need not be lattice type, but it
should be defined over R with a positive definite form, have no negative terms, the
degree 0 component should be 1-dimensional, and the degree 1 component should
be 0-dimensional. His proof is quite technical.

Even without the Sakuma theorem, one knows that the restriction to dihedral
groups of order at most 12 is relevant to a study of sporadic groups. Consider the
2A class of involutions in the Monster [12] and classes within the Baby Monster,
Fi24, etc., discussed in [4].

3. The classification of integral, rootless EE8-pairs

In this section, we shall discuss our classification of EE8-pairs. The following is
our main theorem.

Theorem 3.1. Suppose that in Euclidean space, the integral lattice L is the sum

M + N of sublattices, where M ∼= N ∼= EE8, and L is rootless. Let tM be the

involution defined by M and let tN be the involution defined by N . Assume that the

dihedral group 〈tM , tN〉 has order at most 12. Then the possibilities for L are listed

in Table 1 and all these possibilities exist. The lattices in Table 1 are unique up to

isometry of pairs M, N . Except for DIH4(15), all of them embed as sublattices of

the Leech lattice.

Table 1. NREE8SUMs: integral rootless lattices which

are sums of EE8s

Name 〈tM , tN〉 Isometry type of L (contains) D(L) In Leech?

DIH4(12) Dih4 ≥ DD⊥3
4 142642 Yes

DIH4(14) Dih4 ≥ AA⊥2
1 ⊥ DD⊥2

6 142842 Yes

DIH4(15) Dih4 ≥ AA1 ⊥ EE⊥2
7 12214 No

DIH4(16) Dih4
∼= EE8 ⊥ EE8 216 Yes

DIH6(14) Dih6 ≥ AA2 ⊥ A2 ⊗ E6 173362 Yes
DIH6(16) Dih6

∼= A2 ⊗ E8 1838 Yes
DIH8(15) Dih8 ≥ AA⊥7

1 ⊥ EE8 11045 Yes

DIH8(16, DD4) Dih8 ≥ DD⊥2
4 ⊥ EE8 182444 Yes

DIH8(16, 0) Dih8
∼= BW16 1828 Yes

DIH10(16) Dih10 ≥ A4 ⊗ A4 11254 Yes
DIH12(16) Dih12 ≥ AA2 ⊥ AA2

⊥ A2 ⊗ E6 11264 Yes

X⊥n denotes the orthogonal sum of n copies of the lattice X .

Notation 3.2. A1, . . . , E8 denote the root lattices of the corresponding type;

AA1, . . . , EE8 denote the lattices isometric to
√

2 times the lattices A1, . . . , E8;

D(L) = L∗/L is the discriminant group of L;
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DIHr(s) means a pair of EE8 lattices (M, N) such that tM , tN generates a

dihedral group of order r and rank(M + N) = s;
DIH8(16, P ) means DIH8(16) and that P = annM (N) ∼= annN(M).

3.1. Some highlights of the proof. Next, we shall discuss the main steps for the
classification. We go through cases |tM tN | = 2, 3, 4, 5, 6. Our respective analyses are
called DIH4-theory, DIH6-theory, DIH8-theory, DIH10-theory, DIH12-theory.

In 〈tM , tN 〉, let g := tM tN . Then Z[〈g〉] acts on L and it acts on
J := annL(FixL(g)), where FixL(g) denotes the set of all fixed points of g in
L. The action is that of a ring of integers in a number field when |g| is prime.

The main idea is to determine possibilities for FixL(g), J , annM (N), annN(M)
and related sublattices. Exhaustive case by case analysis gives a list of candidates.
In all cases, the candidates are proved unique, given certain things we deduce about
their sublattices.

First, we observe that 〈tM , tN 〉 acts faithfully on L and leaves FixL(g) = M ∩N
invariant.

Case: |g| = 2, 3, 5.
In these cases, we determine all sublattices of E8 which are direct summands

and whose discriminant group is an elementary abelian p-group for p = 2, 3, 5.
Exhaustive case by case analysis gives a list of candidates. It turns out M ∩ N is
isometric to

√
2 times one of these lattices. In fact, M ∩ N ∼= 0, AA1, AA1 ⊥ AA1,

or DD4 if |g| = 2; M ∩ N ∼= 0 or AA2 if |g| = 3; and M ∩ N = 0 if |g| = 5.

Given M ∩ N , we then analyse J and its sublattices.

When |g| = 2, 〈tM , tN 〉 is a four-group. Then we have M ∩ J = annM (N),
N ∩ J = annN(M) and M ∩ N ⊥ annM (N) ⊥ annN(M) is an index 2 sublattice
of L. In this case, the isometry type of L is uniquely determined by M ∩ N .

When |g| = 3, we consider the Z[〈g〉]-submodule K generated by M ∩ J . Then
K is a sublattice of J and K is isomorphic as a lattice to A2 ⊗ 1√

2
(M ∩ J). The

possibilities for M ∩ J in this case are EE6 or EE8. Again, the isometry type of
L is uniquely determined by M ∩ N .

When |g| = 5, M ∩ N = 0. We show that for any norm 4 vector α ∈ L, the
Z[〈g〉]-submodule generated by α is isomorphic as a lattice to AA4. In fact, we
show that L = M + N contains a sublattice U isometric to the orthogonal sum of
4 copies of AA4 such that M ∩ U ∼= N ∩ U ∼= AA8

1. The uniqueness of L is then
shown by explicit glueings.

Case: |g| = 4, 6.
In each of these cases, let h := g2. Then (M, Mh) and (N, Nh) are EE8 pairs

whose associated dihedral group has order 4 or 6. We then use the results for Dih4

and Dih6 to deduce the structures of L. It turns out that there is only one possible
case for |g| = 6 but 3 different cases for |g| = 4.

A proof that the candidates are really rootless is made easier by a magic tool.
Most candidates can be embedded in the Leech lattice by direct constructions (and
use of a uniqueness result). Since the Leech lattice is rootless, so is our candidate
L. See the last section for examples of embeddings.
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4. Glauberman-Norton subgroups

In [4], Glauberman-Norton computed the centralizers in the Monster of a pair
of 2A-involutions. We hope to study these subgroups by promoting pairs M, N of
lattices from our list to involutions on the Moonshine VOA. An interesting point is
that the Glauberman-Norton subgroups have “Levi factors” which look like index 2
subgroups of a direct product of a pair of Weyl groups modulo centers. Our theory
may give a context for this by viewing such a subgroup as acting on the Moonshine
VOA. At this time, we can see actions of direct products of Weyl groups on large
subVOAs of the Moonshine VOA, in the following way. The Moonshine VOA is a
twisted lattice type VOA based on the Leech lattice. The Leech lattice contains
sublattices of types AA1 or EE8 which will give a concrete realization of each pair
of 2A-involutions in the Glauberman-Norton theory (by Formula (1) or Formula
(2)). Since there are examples of tensor products of lattices contained in our M +N
when |g| = 3 or 5 (3.1), we have actions of a finite group with quotient a direct
product of Weyl groups on a subVOA of lattice type.

5. Examples of some pairs M, N in the Leech lattice

In this section, we shall give a few examples of EE8-pairs M, N in the Leech
lattice. Because of space limitations, these are just for the DIH6-theory. First, we
recall some notation for describing the Leech lattice and its isometries [1, 7].

Notation 5.1. Arrange the set Ω = {1, . . . , 24} into a 4×6 array such that the six

columns form a sextet. For each codeword in the Golay code G, 0 and 1 are marked

by a blanked and non-blanked space, respectively, at the corresponding positions in

the array. For example, (18016) is denoted by the array

∗ ∗
∗ ∗
∗ ∗
∗ ∗

By the same notation, every vector in the Leech lattice Λ can be written in the

form

X =
1√
8

[X1X2X3X4X5X6] , juxtaposition of column vectors.

For example,

1√
8

2 2 0 0 0 0
2 2 0 0 0 0
2 2 0 0 0 0
2 2 0 0 0 0

.

Definition 5.2. Let

A =
1

2









−1 1 1 1
1 −1 1 1
1 1 −1 1
1 1 1 −1









.
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Define a linear map ξ : Λ → Λ by Xξ = AXD, where

X =
1√
8

[X1X2X3X4X5X6]

is a vector in the Leech lattice Λ and D is the diagonal matrix

















−1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

















.

Recall that ξ defines an isometry of Λ (cf. [1, p. 288] and [7, p. 97]).

Notation 5.3. Let O be an octad. Denote by E(O) the sublattice of the Leech

lattice Λ which is supported on O. Then E(O) ∼= EE8.

Here are examples for the DIH6 cases.

When |g| = 3, M ∩ N = 0 or AA2.

DIH6(16)
Let

O1 =

∗ ∗
∗ ∗
∗ ∗
∗ ∗

be an octad and M := E(O1) ∼= EE8. We choose a basis {β1, . . . , β8} of M , where

β1 =
1√
8

4 -4 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

, β2 =
1√
8

0 4 0 0 0 0
-4 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

,

β3 =
1√
8

0 0 0 0 0 0
4 -4 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

, β4 =
1√
8

0 0 0 0 0 0
0 4 0 0 0 0

-4 0 0 0 0 0
0 0 0 0 0 0

,

β5 =
1√
8

0 0 0 0 0 0
0 0 0 0 0 0
4 -4 0 0 0 0
0 0 0 0 0 0

, β6 =
1√
8

0 0 0 0 0 0
0 0 0 0 0 0
0 4 0 0 0 0

-4 0 0 0 0 0

,

β7 =
1√
8

-4 -4 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

, β8 =
1√
8

2 2 0 0 0 0
2 2 0 0 0 0
2 2 0 0 0 0
2 2 0 0 0 0

.
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Let N be the lattice generated by the vectors

α1 =
1√
8

2 -2 2 -2 2 0
0 0 0 0 0 2
0 0 0 0 0 2
0 0 0 0 0 2

, α2 =
1√
8

0 2 0 2 0 2
-2 0 -2 0 0 -2
0 0 0 0 2 -2
0 0 0 0 0 0

,

α3 =
1√
8

0 0 0 0 0 -2
2 -2 2 -2 2 0
0 0 0 0 -2 0
0 0 0 0 2 0

, α4 =
1√
8

0 0 0 0 0 2
0 2 0 2 -2 2
-2 0 -2 0 0 0
0 0 0 0 0 -2

,

α5 =
1√
8

0 0 0 0 0 -2
0 0 0 0 2 0
2 -2 2 -2 2 0
0 0 0 0 -2 0

, α6 =
1√
8

0 0 0 0 0 2
0 0 0 0 0 -2
0 2 0 2 -2 2

-2 0 -2 0 0 0

,

α7 =
1√
8

-2 -2 -2 -2 0 -2
0 0 0 0 -2 0
0 0 0 0 -2 0
0 0 0 0 -2 0

, α8 =
1√
8

1 1 1 1 -3 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1

.

By checking the inner products, it is easy to show that N ∼= EE8. Note that
α1, . . . , α7 are supported on octads and thus N ≤ Λ.

In this case, M ∩N = 0 and {β1, β2, . . . , β8, α1, . . . , α8} is a basis of L = M +N .
The Gram matrix of L = M + N is given by

























































4 -2 0 0 0 0 0 0 2 -1 0 0 0 0 0 0
-2 4 -2 0 0 0 -2 0 -1 2 -1 0 0 0 -1 0
0 -2 4 -2 0 0 0 0 0 -1 2 -1 0 0 0 0
0 0 -2 4 -2 0 0 0 0 0 -1 2 -1 0 0 0
0 0 0 -2 4 -2 0 0 0 0 0 -1 2 -1 0 0
0 0 0 0 -2 4 0 0 0 0 0 0 -1 2 0 0
0 -2 0 0 0 0 4 -2 0 -1 0 0 0 0 2 -1
0 0 0 0 0 0 -2 4 0 0 0 0 0 0 -1 2
2 -1 0 0 0 0 0 0 4 -2 0 0 0 0 0 0

-1 2 -1 0 0 0 -1 0 -2 4 -2 0 0 0 -2 0
0 -1 2 -1 0 0 0 0 0 -2 4 -2 0 0 0 0
0 0 -1 2 -1 0 0 0 0 0 -2 4 -2 0 0 0
0 0 0 -1 2 -1 0 0 0 0 0 -2 4 -2 0 0
0 0 0 0 -1 2 0 0 0 0 0 0 -2 4 0 0
0 -1 0 0 0 0 2 -1 0 -2 0 0 0 0 4 -2
0 0 0 0 0 0 -1 2 0 0 0 0 0 0 -2 4

























































By looking at the Gram matrix, it is clear that L = M + N ∼= A2 ⊗ E8. The
Smith invariant sequence is 1111111133333333.
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DIH6(12)
Let

O2 =

∗ ∗ ∗ ∗ ∗
∗
∗
∗

and M := E(O2). Set N := Mξ, where ξ is the isometry defined in (5.2). Consider

γ1 =
1√
8

0 0 0 0 0 0
0 0 0 0 0 0

−4 0 0 0 0 0
4 0 0 0 0 0

, γ2 =
1√
8

0 0 0 0 0 0
−4 0 0 0 0 0

4 0 0 0 0 0
0 0 0 0 0 0

,

γ3 =
1√
8

0 −4 0 0 0 0
4 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

, γ4 =
1√
8

0 4 −4 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

,

γ5 =
1√
8

0 0 4 −4 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

, γ6 =
1√
8

0 0 0 4 −4 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

,

γ7 =
1√
8

0 0 0 0 0 0
0 0 0 0 0 0

−4 0 0 0 0 0
−4 0 0 0 0 0

, γ8 =
1√
8

0 2 2 2 2 2
2 0 0 0 0 0
2 0 0 0 0 0
2 0 0 0 0 0

.

Then {γ1, . . . , γ8} is a basis of M and {γ1ξ, . . . , γ8ξ} is a basis of N .

By the definition of ξ, it is easy to show that γ1ξ = −γ1, γ2ξ = −γ2. Moreover,
for any α ∈ M = E(O2), αξ is supported on O2 if and only if α ∈ spanZ{γ1, γ2}.
Hence, F = M ∩ N = spanZ{γ1, γ2} ∼= AA2. Then annM (F ) ∼= annN (F ) ∼= EE6

and L = M + N is of rank 14.
Note that {γ1, γ2, γ3, . . . , γ8} is a basis and {γ1, γ2, γ3ξ, . . . , γ8ξ} is a basis of N .

Therefore,

{γ1, γ2} ∪ {γ3, . . . , γ8} ∪ {γ3ξ, . . . , γ8ξ}

is a basis of L and the Gram matrix of L is given by
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4 −2 0 0 0 0 0 0 0 0 0 0 0 0
−2 4 −2 0 0 0 −2 0 −2 0 0 0 2 0

0 −2 4 −2 0 0 0 0 0 1 0 0 −2 0
0 0 −2 4 −2 0 0 0 1 −2 1 0 0 0
0 0 0 −2 4 −2 0 0 0 1 −2 1 0 0
0 0 0 0 −2 4 0 0 0 0 1 −2 0 0
0 −2 0 0 0 0 4 −2 2 0 0 0 0 1
0 0 0 0 0 0 −2 4 0 0 0 0 −1 −2
0 −2 0 1 0 0 2 0 4 −2 0 0 0 0
0 0 1 −2 1 0 0 0 −2 4 −2 0 0 0
0 0 0 1 −2 1 0 0 0 −2 4 −2 0 0
0 0 0 0 1 −2 0 0 0 0 −2 4 0 0
0 2 −2 0 0 0 0 −1 0 0 0 0 4 2
0 0 0 0 0 0 1 −2 0 0 0 0 2 4

















































whose Smith invariant sequence is 1111 11111 33366.
In this case, annM (F ) + annN (F ) ∼= A2 ⊗ E6 and thus L contains a sublattice

isometric to AA2 ⊥ (A2 ⊗ E6).
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