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We give an example of a commutative ���-prime ring with a non-nilpotent annihilator
ideal, which solves a problem by Bergen, Montgomery, and Passman.
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1. INTRODUCTION

Let K be a commutative ring, R a K-algebra, DerK�R� the Lie algebra of
K-derivations of R and � a K-submodule of DerK�R�. An ideal U of R is called
�-stable if ��U� ⊆ U for all � ∈ �. The ring R is called �-simple if it has no non-
trivial �-stable ideals (in some articles, an additional restriction R2 �= 0 is required,
see Fisher, 1975; Posner, 1960, for example). We say that R is �-prime if, for �-
stable ideals U and V of R, UV = 0 implies U = 0 or V = 0 (see Bergen et al., 1987;
Fisher, 1975).

It is known (see Fisher, 1975) that every �-prime ring has characteristic zero
or a prime number. The structures of �-prime rings of characteristic 0 are quite
different from those of prime characteristic. For example, let R be an �-simple
ring with R2 �= 0. If R is of characteristic zero, it is a prime ring (see Posner, 1960,
Theorem 4). But if R is of prime characteristic, it need not be even semiprime. The
standard counterexample is R = K�x�/�xp� with K a field of characteristic p, and
� the space spanned by the derivation � on R which is induced by the formal
differentiation in K�x�.

An �-prime ring can be prime under some additional assumptions, see
Burkov (1980), Fisher (1975), and Jordan (1975). Some examples of �-prime rings
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894 CHEBOTAR ET AL.

(even when � is generated by one derivation �, that is, �-prime rings) which are
not prime have been known for a long time (see Fisher, 1975, p. 73; Jordan,
1975, Example 2.3, 1978, p. 448; Jordan and Jordan, 1978, p. 39). However, all
these examples are of prime characteristic. Goodearl and Warfield (1982) posed the
question whether there are �-prime rings of characteristic zero which are not prime.
An example answering this question was constructed by Bergen, Montgomery, and
Passman (see Bergen et al., 1987, Proposition 1.3). This example is a Grassmann
algebra generated by countably many elements x1� x2� � � � over a field K and the
derivation � is the K-derivation with ��xi� = xi+1 for i ≥ 1.

Recall that a ring R is called primary if every annihilator ideal of R is nilpotent,
that is, if I and J are ideals of R such that IJ = 0 or JI = 0, then either I = 0
or J is nilpotent. Certainly, prime rings are primary but not conversely. It was
proved by Posner that an �-simple ring R with R2 �= 0 is primary (see Posner,
1960, Theorem 3). As �-prime rings need not be prime, it is natural to ask whether
they are necessarily primary. Bergen, Montgomery, and Passman noticed that the
�-prime ring in their example is primary, and they mentioned that they did not
know any �-prime ring which is not primary, see Bergen et al. (1987, p. 172).

The goal of this article is to present such an example. We describe the
idea of the construction briefly as follows. Denote by � the field of rational
numbers. First, we introduce a commutative �-algebra B as the factor algebra
of the unital free commutative algebra C = ��x0� y0� x1� y1� � � � � by its ideal J
generated by �n =

∑n
i=0 xiyn−i, n = 0� 1� � � � , and exhibit a basis of B over �. Then

we choose a subspace � of Der��B� in a special way so that B is �-prime. Since
�x0 + J��y0 + J�= J , the ideal generated by y0 + J annihilates the ideal generated by
x0 + J , but yn0 + J �= J for all n ≥ 1.

Note that the ideal J of C is designed so that

�∑
i=0

xiz
i ·

�∑
i=0

yiz
i ≡ 0 �mod J�

in the ring C��z�� of formal power series over C. Thus, we hope that this algebra
B can be used for some exotic examples of power series over commutative rings.
A somehow similar construction has been used by Hamann and Swan (1986) to
show that there exist a ring S and a nilpotent power series f ∈ S��z�� such that the
nilpotency degrees of the coefficients of f are unbounded (see also Puczyłowski and
Smoktunowicz, 1999).

2. THE CONSTRUCTION

Let � be the ring of integers and � the field of rational numbers. Let
X be the set 	x0� y0� x1� y1� � � � 
 of commuting indeterminates and C = ��X� the
free commutative algebra in X over �. Let d � C → C be the derivation on C
such that d�xi� = xi+1 and d�yi� = yi+1 for all i ≥ 0. For n ≥ 0, set cn = dn�x0y0� =∑n

i=0 C
n
i xiyn−i, where Cn

i is the binomial coefficient n!/i!�n− i�! (Leibnitz Formula,
cf. Beidar et al., 1996, Remark 1.1.1). Thus, c0 = x0y0, c1 = x0y1 + x1y0, c2 = x0y2 +
2x1y1 + x2y0, and so on. Let I be the ideal of C generated by 	cn 
 n = 0� 1� � � � 
. Let
A = C/I and let � � C → A be the canonical epimorphism with kernel I . We denote
ai = ��xi� and bi = ��yi� for each i = 0� 1� � � � .
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Remark 2.1. From cn =
∑n

i=0 C
n
i xiyn−i it follows that

n∑
i=0

Cn
i aibn−i = 0� (2.1)

Let A� = ��X�/�I ∩ ��X��. Then A� is isomorphic to the subring
���X�+ I�/I of A and so we shall identify them. Both algebras A and A� are
generated by 	ai� bi 
 i ≥ 0
. The difference is that A is an algebra over � while A�

is an algebra over �.
It is not very convenient to work with the coefficients Cn

i all the time. So
we consider another algebra here. For n ≥ 0, let �n =

∑n
i=0 xiyn−i. That is, �0 = x0y0,

�1 = x0y1 + x1y0, �2 = x0y2 + x1y1 + x2y0, and so on. Let J be the ideal of C generated
by 	�n 
 n = 0� 1� � � � 
. Let B = C/J and let 
 � C → B be the canonical epimorphism
with kernel J . We denote �i = 
�xi� and �i = 
�yi� for each i ≥ 0.

Remark 2.2. From �n =
∑n

i=0 xiyn−i it follows that

n∑
i=0

�i�n−i = 0� (2.2)

Remark 2.3. There exists an isomorphism � � A → B such that ��an� = n!�n and
��bn� = n!�n for all n ≥ 0.

Proof. Define two maps � � A → B and �′ � B → A by setting ��an� = n!�n,
��bn� = n!�n, �

′��n� = an/n!, and �′��n� = bn/n! for all n ≥ 0 and extending these
rules additively and multiplicatively. Both � and �′ are well defined, since

�

( n∑
i=0

Cn
i aibn−i

)
= n!

n∑
i=0

�i�n−i = 0�

and

�′
( n∑

i=0

�i�n−i

)
= 1

n!
n∑

i=0

Cn
i aibn−i = 0�

It is clear that �′� = 1A and ��′ = 1B. Hence � is an isomorphism. �

Lemma 2.4. �n+1
0 �n = �n�

n+1
0 = 0 for all n ≥ 0.

Proof. By symmetry, it suffices to prove only �n+1
0 �n = 0. We proceed by induction

on n. For n = 0, we have �0�0 = 0 by (2.2). Assume that n > 0 and �m+1
0 �m = 0 for

m < n. Then, by (2.2) again, we have

�0�n = −
n∑

i=1

�i�n−i�
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896 CHEBOTAR ET AL.

It follows from the induction hypothesis that �n0�j = 0 for all j < n and so

�n+1
0 �n = −

n∑
i=1

�i�
n
0�n−i = 0�

�

For a prime number p, let T = �p�t�/�t
p� and denote t̄ = t + �tp� ∈ T . In the

sequel, we shall make use of the algebra homomorphism � � A� → T defined by
extending additively and multiplicatively the rules ��a0� = t̄, ��a1� = 1, ��ai� = 0 for
all i > 1, ��b0� = t̄p−1, ��b1� = �p− 1�t̄p−2, ��b2� = �p− 1��p− 2�t̄p−3� � � � � ��bp−1� =
�p− 1�! and ��bi� = 0 for all i > p− 1. One can verify that � is well defined as
follows.

Let � be the derivation of T such that ��t̄� = 1. Then ����ai�� = ��ai+1� and
����bi�� = ��bi+1� for all i ≥ 0. Then we have, by Leibnitz’s Formula,

�

( n∑
i=0

Cn
i aibn−i

)
=

n∑
i=0

Cn
i ��ai���bn−i�

=
n∑

i=0

Cn
i �

i���a0���
n−i���b0��

= �n
(
��a0���b0�

)
= 0

since

��a0���b0� = t̄ · t̄p−1 = t̄p = 0�

Therefore, � is well defined.

Lemma 2.5. If p is a prime number, then a
p−1
0 bmp−1 �= 0 and am

p−1b
p−1
0 �= 0 for all

m≥ 0.

Proof. By symmetry, it suffices to prove only a
p−1
0 bmp−1 �= 0. Let T = �p�t�/�t

p� and
let � � A� → T be the homomorphism defined in the preceding paragraph. Since

�
(
a
p−1
0 bmp−1

) = ��a0�
p−1��bp−1�

m = ��p− 1�!�mt̄p−1 �= 0�

we have a
p−1
0 bmp−1 �= 0. �

Corollary 2.6. If p is a prime number, then �
p−1
0 �m

p−1 �= 0 and �mp−1�
p−1
0 �= 0 for all

m ≥ 0.

Proof. Let � � A → B be the isomorphism defined in Remark 2.3 by ��an� = n!�n
and ��bn� = n!�n for all n ≥ 0. Then �

p−1
0 �m

p−1 = ��p− 1�!�−m�
(
a
p−1
0 bmp−1

) �= 0. By
symmetry, �mp−1�

p−1
0 �= 0. �
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Evidently, B is the �-linear span of the monomials u = �i1 · · · �ik�j1
· · · �jm

,
where k ≥ 0, m ≥ 0, is ≥ 0, and jt ≥ 0. It is understood that u = �j1

· · · �jm
if k = 0,

u = �i1 · · · �ik if m = 0, and u = 1 if k = m = 0. We call �i1 · · · �ik the �-part of u and
k the �-length of u. Similarly, �j1

· · · �jm
is called the �-part of u and m the �-length

of u. By the (total) length 
u
 of u we mean the sum k+m. Following Hamann and
Swan (1986), we call the sum of the indices of u the (total) grade of u and denote it
by gr�u�, that is,

gr�u� = i1 + · · · + ik + j1 + · · · + jm�

Also, we call i1 + · · · + ik the �-grade and j1 + · · · + jm the �-grade of u.
From now on, we shall, unless otherwise stated, always write a monomial

u= �i1 · · · �ik�j1
· · · �jm

in the way that i1 ≤ · · · ≤ ik and j1 ≤ · · · ≤ jm. Let M be the
set of monomials of the form u = �i1 · · · �ik�j1

· · · �jm
where k ≥ 0, m ≥ 0, is ≥ 0 and

jt ≥ k. We shall show that M is a basis of B over �.
For each k ≥ 0, let �k be the set of all monomials �i1 · · · �ik in �i of length

k, and � = ⋃�
k=0 �k the set of all monomials in �i. First we proceed to show that

B is the �-linear span of M , or equivalently, for any u ∈ �, u�j1
· · · �jm

is a linear
combination of elements in M .

Lemma 2.7. For any u ∈ � and j ≥ 0, u�j is a linear combination of elements of the
form u′�l with u′ ∈�
u
, l ≥ 
u
 and gr�u′�l� = gr�u�j�.

Proof. We shall proceed by induction on 
u
. If 
u
 = 0, that is u = 1, then u�j = �j

and there is nothing to prove. If 
u
 = 1, that is u = �i for some i, we see that
u�j = �i�j is already of the form as required for j ≥ 1. For j = 0, u�j = �i�0, and
the result holds since �0�0 = 0 and for i ≥ 1, by (2.2),

�i�0 = −
i∑

l=1

�i−l�l�

Assume now that 
u
 = k > 1 and the lemma is true for each v ∈ � with

v
<k.

We define a linear order on �k−1. For words z = �p1 · · · �pk−1
and

w= �q1 · · · �qk−1
in �k−1 with p1 ≤ · · · ≤ pk−1 and q1 ≤ · · · ≤ qk−1, we consider

zl = �p1 · · · �pl and wl = �q1 · · · �ql for l = 1� � � � � k− 1. We define z < w if
gr�z�< gr�w� or there exists an s such that gr�zs� < gr�ws� and gr�zl� = gr�wl� for
all l > s. As one can see, the relation so defined is a linear order on �k−1 indeed.

For u = �i1 · · · �ik , we proceed by induction on the order of u′ = �i1 · · · �ik−1
∈

�k−1. Note that the smallest element in �k−1 is �
k−1
0 and consider the case u′ = �k−1

0 .
If j ≥ k, u�j = �k−1

0 �ik�j is already of the form as required. If j < k− 1, then u�j =
�k−1
0 �ik�j = ��k−1

0 �j��ik = 0 by Lemma 2.4. As to the case j = k− 1, we have by (2.2)

�ik�k−1 = −
ik+k−1∑

l=0�l �=k−1

�ik+k−1−l�l�
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and so, by the previous two cases,

u�k−1 = �k−1
0 �ik�k−1

= −
ik+k−1∑

l=0�l �=k−1

�k−1
0 �ik+k−1−l�l

= −
ik+k−1∑
l=k

�k−1
0 �ik+k−1−l�l�

Consider the case u′ > �k−1
1 . In this case, we have ik−1 > 0 and so ik > 1.

Assume that the lemma is true for each v ∈ �k−1 with v < u′.
If j ≥ k, then u�j is already of the form as required. So assume that j < k.

Suppose first that j < k− 1. Set w1 = �i1 · · · �ij+1
and w2 = �ij+2

· · · �ik . Then

u�j = �i1 · · · �ik�j = w1w2�j = �w1�j�w2�

As 
w1
 = j + 1 < k = 
u
, by the induction hypothesis, we have

w1�j = �1v1�l1
+ · · · + �nvn�ln

�

where �s ∈ �, vs ∈ �j+1, ls ≥ j + 1, and gr�vs�ls
� = gr�w1�j� for each s = 1� 2� � � � � n.

Since gr�vs� = gr�vs�ls
�− ls = gr�w1�j�− ls = gr�w1�+ j − ls < gr�w1�, we see that

gr�vs�ij+2
· · · �ik−1

� < gr�w1�ij+2
· · · �ik−1

� = gr�u′�

and so

vs�ij+2
· · · �ik−1

< u′�

By the induction hypothesis, each vsw2�ls
= �vs�ij+2

· · · �ik−1
��ik�ls

is a linear
combination of elements of the form v�l with v ∈ �k, l ≥ k and gr�v�l� =
gr�vsw2�ls

� = gr�w1w2�j� = gr�u�j� whence so is

u�j = �w1�j�w2 = �1v1w2�l1
+ · · · + �nvnw2�ln

�

Suppose next that j = k− 1. Using

�ik�k−1 = −
k−2∑
l=0

�ik+k−1−l�l −
ik+k−1∑
l=k

�ik+k−1−l�l�

we may write

u�k−1 = u′��ik�k−1� = z1 + z2�

where

z1 = −u′
k−2∑
l=0

�ik+k−1−l�l�
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and

z2 = −u′
ik+k−1∑
l=k

�ik+k−1−l�l�

Note that each term u′�ik+k−1−l�l in z2 has �-grade at least k and so z2 is a
linear combination of elements of the form as required. On the other hand, each
term u′�ik+k−1−l�l in z1 has �-grade less than k− 1 and we are done by the previous
case j < k− 1. This completes the proof. �

Corollary 2.8. For any u ∈ �, u�j1
· · · �jm

is a linear combination of elements of the
form u′�j′1 · · · �j′m where u′ ∈ �
u
, j′s ≥ 
u
 and gr�u′�j′1 · · · �j′m� = gr�u�j1

· · · �jm
�.

Proof. We proceed by induction on m. If m = 0, there is nothing to prove. Assume
that m ≥ 1 and the corollary holds for m− 1. Then we have

u�j1
· · · �jm−1

=
n∑

s=1

�sus�js�1
· · · �js�m−1

�

where �s ∈ �, us ∈ �
u
, js�t ≥ 
u
 and gr�us�js�1
· · · �js�m−1

� = gr�u�j1
· · · �jm−1

�. By
Lemma 2.7, we may write each us�jm

= ∑ns
t=1 �s�tus�t�ls�t

, where �s�t ∈ �, us�t ∈ �
us 
 =
�
u
, ls�t ≥ 
us
 = 
u
, and gr�us�t�ls�t

� = gr�us�jm
� for all s = 1� 2� � � � � n. Thus

u�j1
· · · �jm

=
( n∑

s=1

�sus�js�1
· · · �js�m−1

)
�jm

=
n∑

s=1

ns∑
t=1

�s�s�tus�t�ls�t
�js�1

· · · �js�m−1

is as required since

gr�us�t�ls�t
�js�1

· · · �js�m−1
� = gr�us�jm

�js�1
· · · �js�m−1

� = gr�u�j1
· · · �jm−1

�jm
�

for all t = 1� 2� � � � � ns and s = 1� 2� � � � � n. Thus the proof is complete. �

As a consequence, we have the following lemma.

Lemma 2.9. For any m ≥ 0 and n ≥ 0, both �nm�
m
0 and �n0�

m
n are nonzero and

�-dependent.

Proof. By Corollary 2.8, the monomial �nm�
m
0 can be written as a linear

combination of monomials �i1 · · · �in�j1
· · · �jm

with is ≥ 0, jt ≥ n for all s� t and
i1 + · · · + in + j1 + · · · + jm = gr��nm�

m
0 � = mn. It follows that is = 0 and jt = n for

all s = 1� � � � � n and t = 1� � � � � m. Hence we have �nm�
m
0 = ��n0�

m
n for some � ∈ � and

so �nm�
m
0 and �n0�

m
n are �-dependent.

We claim that �n0�
m
n �= 0. Let p be a prime number such that p > m. It follows

from Corollary 2.6 that �np−1�
p−1
0 �= 0. By the preceding paragraph, we get

�np−1�
p−1
0 = �′�n0�

p−1
n

for some �′ ∈ �. Therefore �n0�
p−1
n �= 0 and so �n0�

m
n �= 0. By symmetry, we have also

�mn �
n
0 �= 0. �
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It follows immediately from the preceding lemma that neither �0 nor �0 is
nilpotent.

Corollary 2.10. �m0 �= 0 and �m
0 �= 0 for any m ≥ 0.

We shall make use of some derivations on B. For convenience, set �i = �i = 0
for a negative integer i. For i ≥ 0, let ��i and ��i be the derivations on B such that
��i ��j� = �j−i, ��i ��j� = 0, ��i ��j� = �j−i, ��i ��j� = 0. First we need to check that ��i
and ��i are well defined. Note that

��i

( n∑
j=0

�j�n−j

)
=

n∑
j=i

�j−i�n−j =
n−i∑
k=0

�k�n−i−k = 0

which is the requirement for ��i to be well defined. Similarly, we can check that ��i
is well defined.

We shall also use a sort of reversed lexicographical order on the �- and �-parts
of the monomials in M . First, we set an order on �i by �0 <�1 <�2 < · · · � Writing
each monomial �i1 · · · �ik with �i1 ≤ · · · ≤ �ik , we define �i1 · · · �ik <r �i′1 · · · �i′k′ if
�ik · · · �i1 < �i′

k′
· · · �i′1 lexicographically. Similarly, we set an order on �i by �0 <�1 <

�2 < · · · . And, writing each monomial �j1
· · · �jm

with �j1
≤ · · · ≤ �jm

, we define
�j1

· · · �jm
<r �j′1 · · · �j′

m′ if �jm
· · · �j1

< �j′
m′ · · · �j′1 lexicographically.

Lemma 2.11. M is a basis of B over �.

Proof. Since B is the �-linear span of the monomials �i1 · · · �ik�j1
· · · �jm

, it follows
from Corollary 2.8 that B is spanned by M over �. Hence, we need only to show
that M is linearly independent.

Suppose that some nontrivial linear combination w of monomials from M
is equal to zero. For �� � ∈ �, let f��� � B → B be the homomorphism defined by
f�����i� = ��i and f�����j� = ��j for all i and j. One can readily verify that the
homomorphism f��� is well defined indeed. Applying f��1 to w for � = 1� 2� � � � , we
see that, for each �, the sum of all the monomials in w having �-length � is equal to
zero since the van der Monde determinant is nonzero. Hence we may assume that
all the monomials in w have the same �-length. Similarly, we may also assume that
all the monomials in w have the same �-length. Thus, assume that

w =
n∑

s=1

�s�is�1 � � � �is�k�js�1
� � � �js�m

= 0

where all the nmonomials �is�1 � � � �is�k�js�1
� � � �js�m

∈ M are different and �s �= 0 for all s.
Let �it�1 � � � �it�k be the largest (with respect to the order <r) �-part among the

monomials in w. Set D� = ��it�1
� � � ��it�k

. Then D���it�1 � � � �it�k � = ��k0 for some positive
integer �, while D���is�1 � � � �is�k � = 0 for �is�1 � � � �is�k <r �it�1 � � � �it�k . Thus we have

D��w� = ��k0

n′∑
s′=1

�′s′�j′
s′ �1

� � � �j′
s′ �m

= 0

where all the n′ monomials �j′
s′ �1

� � � �j′
s′ �m

are different and �′s′ �= 0 for all s′.
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Let �j′
t′ �1

� � � �j′
t′ �m

be the largest (with respect to <r) �-part among the
monomials in D��w�. Set D� = ��j′

t′ �1−k
� � � ��j′

t′ �m−k
. Then D���

k
0�j′

t′ �1
� � � �j′

t′ �m
� = ��k0�

m
k

for some positive integer �, while D���
k
0�j′

s′ �1
� � � �j′

s′ �m
� = 0 for �j′

s′ �1
� � � �j′

s′ �m
<r

�j′
t′ �1

� � � �j′
t′ �m

since �k0�j = 0 for j < k by Lemma 2.4. Therefore, D�D��w� =
�′t′���

k
0�

m
k = 0, contradicting Lemma 2.9. �

Now each element v in B can be expressed as a linear combination of elements
in M . We define the grade of v to be the largest grade of its nonzero summand.

We note that there exists a derivation � on B with ���i−1� = i�i and
���i−1�= i�i for i ≥ 1. To see this, we need only to show that � is well defined:

�

( n∑
i=0

�i�n−i

)
=

n∑
i=0

(
���i��n−i + �i���n−i�

)

=
n∑

i=0

(
�i+ 1��i+1�n−i + �n− i+ 1��i�n−i+1�

)

=
n∑

i=0

�i+ 1��i+1�n−i +
n∑

i=0

�n− i+ 1��i�n−i+1

=
n+1∑
i=1

i�i�n−i+1 +
n∑

i=0

�n− i+ 1��i�n−i+1

=
n+1∑
i=0

i�i�n−i+1 +
n+1∑
i=0

�n− i+ 1��i�n−i+1

=
n+1∑
i=0

�n+ 1��i�n−i+1

= �n+ 1�
n+1∑
i=0

�i�n+1−i

= 0�

Recall that there is an isomorphism � � A → B such that ��an� = n!�n and
��bn� = n!�n for all n ≥ 0. Note that ����an�� = ��an+1� and ����bn�� = ��bn+1� for
all n ≥ 0. Hence we have the following lemma.

Lemma 2.12. ����A��� ⊆ ��A��.

We shall need two more derivations, �� and ��, of B which are defined by
����i� = �i, ����i� = 0, ����i� = 0, and ����i� = �i for all i ≥ 0. Let � be the �-linear
space spanned by 	�� ��� ��
 ∪ 	��i � ��i 
 i ≥ 1
.

Lemma 2.13. For any nonzero �-stable ideal U of B, there exist s ≥ 0 and t ≥ 1
such that �s0�

t
s ∈ U .

Proof. Let u be a nonzero element in U of the smallest grade. We claim that
the �-part of each summand of u is of the form �k0. Assume the contrary. Let
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�
k0
0 �

k1
i1
· · · �krir be the largest (with respect to <r) �-part, where r ≥ 1, 0 < i1 < · · · < ir

and ks ≥ 1 for all s = 1� � � � r. Then set D = �
k1
�i1

· · · �kr�ir and D�u� would be a nonzero
element in U of smaller grade than u, a contradiction.

Thus each monomial in u is of the form �k0�j1
· · · �jm

with each js ≥ k. We
claim that in fact js = k for each s. Assume the contrary. Let �k00 �

m0
k0
�
m1
j1

· · · �mt
jt

be a
monomial in u such that �m0

0 �
m1
j1−k0

· · · �mt

jt−k0
is the largest (with respect to <r), where

t ≥ 1, k0 < j1 < · · · < jt and ms ≥ 1 for all s = 1� � � � t. Then for D = �
m1
�j1−k0

· · · �mt

�jt−k0
,

D�u� would be a nonzero element in U of smaller grade than u, a contradiction.
Hence we have

u =
k∑
i=s

m∑
j=0

�i�j�
i
0�

j
i ∈ U�

where �i�j ∈ � and �s�j �= 0 for some j. Multiplying u by �s we get

u�s =
m∑
j=0

�s�j�
s
0�

j+1
s ∈ U� (2.3)

since �i0�s = 0 for i > s by Lemma 2.4.
Now, we apply �� repeatedly to (2.3):

���u�s� =
m∑
j=0

�s�j��
(
�s0�

j+1
s

) = m∑
j=0

�s�j�j + 1��s0�
j+1
s �

�2��u�s� =
m∑
j=0

�s�j�
2
�

(
�s0�

j+1
s

) = m∑
j=0

�s�j�j + 1�2�s0�
j+1
s �

���

�m� �u�s� =
m∑
j=0

�s�j�
m
�

(
�s0�

j+1
s

) = m∑
j=0

�s�j�j + 1�m�s0�
j+1
s �

Since U is �-stable, �k��u�s� ∈ U for 0 ≤ k ≤ m. Using the van der Monde
determinant and applying the argument as we did in the proof of Lemma 2.11,
we conclude that these m+ 1 elements �s�0�

s
0�

1
s � � � � � �s�m�

s
0�

m+1
s are all in U . Hence

�s0�
t
s ∈ U for some t ≥ 1 with �s�t−1 �= 0 since � ⊆ B. �

Theorem 2.14. B is an �-prime ring which is not primary.

Proof. Let U and V be nonzero �-stable ideals of B. We proceed to show UV �=
0. As Lemma 2.13 indicates, there exist �m1

0 �n1
m1

∈ U and �
m2
0 �n2

m2
∈ V for some non-

negative integers m1�m2 and positive integers n1� n2. We may assume that m1 =m2 =
p− 1 for some prime p and n1 = n2 = n for some positive integer n. To see this,
first we may write, by Lemma 2.9,

�
m1
0 �n1

m1
= �1�

m1
n1
�
n1
0 ∈ U and �

m2
0 �n2

m2
= �2�

m2
n2
�
n2
0 ∈ V (2.4)
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for some nonzero �1 and �2 in �. Take p a prime greater than both m1 and m2.
Multiplying the two elements in (2.4) by �p−1−m1

n1
and �p−1−m2

n2
, respectively, and using

Lemma 2.9 again, we obtain

�1�
p−1
n1

�
n1
0 = �1�

p−1
0 �

n1
p−1 ∈ U and �2�

p−1
n2

�
n2
0 = �2�

p−1
0 �

n2
p−1 ∈ V (2.5)

for some nonzero �1 and �2 in �. Take n = max	n1� n2
 and we have

�1�
p−1
0 �n

p−1 ∈ U and �2�
p−1
0 �n

p−1 ∈ V�

by multiplying the two elements in (2.5) by �
n−n1
p−1 and �

n−n2
p−1 , respectively, and so

w = �
p−1
0 �n

p−1 ∈ U ∩ V�

Since �p−1�w� ∈ U ∩ V , our goal is to show that �p−1�w�2 =
�p−1

(
�
p−1
0 �n

p−1

)2 �= 0� Note that

��p− 1�!�n�p−1
(
�
p−1
0 �n

p−1

) = �p−1���a0�
p−1��bp−1�

n�

= �p− 1�!��a1�
p−1��bp−1�

n +∑
k

�kuk

where �k ∈ � and each uk is a monomial in ��A�� involving either ��ai� with i ≥ 2
or ��bj� with j ≥ p. Thus we have

�−1
(
��p− 1�!�n�p−1

(
�
p−1
0 �n

p−1

)) = �p− 1�!ap−1
1 bnp−1 +

∑
k

�ku
′
k�

where each u′
k = �−1�uk� is a monomial in A� involving either ai with i ≥ 2 or bj

with j ≥ p.
Let T = �p�t�/�t

p� and let � � A� → T be the homomorphism such that
��a0� = t̄, ��a1� = 1, ��ai� = 0 for all i ≥ 2, and ��b0� = t̄p−1, ��b1� = �p− 1�t̄p−2,
� � � , ��bp−1� = �p− 1�!, and ��bi� = 0 for all i ≥ p. Then

�
(
�−1

(
�p− 1�!n�p−1

(
�
p−1
0 �n

p−1

)))
= �p− 1�!��a1�

p−1��bp−1�
n +∑

k

�k��u
′
k� = ��p− 1�!�n+1�

Therefore,

�
(
�−1

(
�p−1

(
�
p−1
0 �n

p−1

))) = �p− 1�!

and so

�
(
�−1

(
�p−1

(
�
p−1
0 �n

p−1�
2
)) = ��p− 1�!�2
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which is not zero in T . This shows that

�p−1
(
�
p−1
0 �n

p−1

)2 �= 0�

Therefore B is an �-prime ring.
Since �0�0 = 0 while �0 �= 0 and �m

0 �= 0 for all m ≥ 1 by Corollary 2.10, the
commutative ring B is not a primary ring. The proof is now complete. �
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